Richard Hahnloser

Work phone:
41 44/ 635 3060
Home page:

What are neural computations, and how do they give rise to animal behavior? Can we study behavior to infer the computations performed by the brain? Is it possible to locate the underlying neural circuit and to infer the manner it which it implements these computations?

My research group is interested in brain functions that can be characterized by a computational goal encompassing sensory inputs and motor outputs. Our favorite examples are vocal production and vocal learning, which we study in songbirds using reductionist experimental and theoretical aspproaches.

We perform electrophysiological recordings to read out the neural code in singing birds, we design behavioral experiments to study vocal communication and social learning in bird groups. Currently we are trying to identify the simplest mechanistic equations to describe vocal learning dynamics.

Our work also focuses on translating songbird research to the domain of natural language processing (NLP) and back. We expect much cross-fertilization between these research areas: On the one hand, NLP approaches are readily applicable to birdsong research, because there are many analytical similarities between songbird-syllable and human-word sequences. On the other hand, we recently discovered that songbirds’ strategy of assigning vocal errors during learning is equivalent to word mover's distance, a highly successful computational strategy for document and sentence retrieval. Thus, songbirds have used retrieval strategies millions of years before computational linguists have invented them. Most certainly, many more analogies are about to be discovered


Forschungsinteressen zum Tierschutz

Manipulationen in der Vogelgesangsforschung: ihr Nutzen und ihre Auswirkungen auf das Wohlbefinden

Die Zebrafinken sind das Tiermodell der Wahl für die Erforschung der Sprachentwicklung im Menschen. Weltweit werden Zebrafinken in mehr als 100 Laboren verwendet. Leider fehlen Studien, die sich mit dem Wohlbefinden von Zebrafinken während solchen Experimente beschäftigen.

Seit ihrer Domestizierung vor ca. 150 Jahren sind Zebrafinken aufgrund ihrer hellen und attraktiven Gefiedermuster, ihres hohen Sozialverhaltens und der Leichtigkeit, mit der sie in Gefangenschaft gezüchtet werden können, zu beliebten Vögeln geworden. Sie werden weltweit als Haustiere gehalten.

Zebrafinken sind seit 60 Jahren ein bevorzugter experimenteller Modellorganismus in der experimentellen Biologie, vor allem in der Neurobiologie der erlernten Vokalisationen. Jugendliche Männchen lernen singen, indem sie einen erwachsenen männlichen Tutor imitieren, meist den Vater (Immelmann 1969).
Die Auseinandersetzung mit dem Gesang und der Gesangspraxis findet in der Regel in einer kritischen Phase statt, die in etwa mit der geschlechtlichen Reifung zusammenfällt.

Wir untersuchen in welchem Masse das Singen der Tiere etwas über ihr Wohlbefinden aussagt. Viele Studien zeigen einen klaren Zusammenhang zwischen einer hohen Gesangsrate und dem Fehlen eines Stressors auf. Wir versuchen diesem Zusammenhang durch extensive Messungen eine numerische Genauigkeit zu verleihen. Von besonderem Interesse ist es, die negativen Auswirkungen auf das Wohlbefinden durch sozialen Isolation und durch einen Umgebungswechsel (Transfer in eine neue Umgebung) zu messen


INI-431, 227-1045-00 Readings in Neuroinformatics
INI-434, 227-1049-00 Block: Insights Into Neuroinformatics
INI-435, 227-0395-00 Neural Systems
INI-701, 227-1043-00 Neuroinformatics - Colloquia



  • Corinna Lorenz, Xinyu Hao, Tomas Tomka, Linus Ruettimann, Richard Hahnloser Interactive extraction of diverse vocal units from a planar embedding without the need for prior sound segmentation, Front. Bioinform, 2:966066:, 2023









  • Bhargava, S. and Blaettler, F. and Kollmorgen, S. and Liu, S.-C. and Hahnloser, R. H. Linear methods for efficient and fast separation of two sources recorded with a single microphone, Neural Computation, 22:(10), 2015
  • Hahnloser, Richard Measurement and control of vocal interactions in songbirds, Journal of the Acoustical Society of America, 137:(4), 2015





  • D'Souza, P and Liu, S C and Hahnloser, R H R Perceptron learning rule derived from spike-frequency adaptation and spike-time-dependent plasticity, Proceedings of the National Academy of Sciences of the United States of America, 107:(10) 4722-4727, 2010 pdf
  • Fiete, I R and Senn, W and Wang, C Z H and Hahnloser, R H R Spike time-dependent plasticity and heterosynaptic competition organize networks to produce long scale-free sequences of neural activity, Neuron, 65:(4) 563-576, 2010 pdf
  • Hahnloser, R H R and Kotowicz, A Auditory representations and memory in birdsong learning, Current Opinion in Neurobiology, 20:(3) 332-339, 2010 pdf



  • Hahnloser, R.H. Cross-intensity functions and the estimate of spike-time jitter, Biological Cybernetics, 96:(5) 497-506, 2007 pdf
  • Hahnloser, R.H.R. and Fee, M.S. Sleep-related spike bursts in HVC are driven by the nucleus interface of the nidopallium, Journal of Neurophysiology, 97:(1) 423-435, 2007 pdf
  • Weber, A.P. and Hahnloser, R.H. Spike correlations in a songbird agree with a simple Markov population model, PLoS Computational Biology, 3:(12) e249 doi:10.1371/journal.pcbi.0030249, 2007 pdf


  • Hahnloser, R.H.R. and Kozhevnikov, A. and Fee, M.S. Sleep-related neural activity in a premotor and a basal-ganglia pathway of the songbird.of birdsong., Journal of Neurophysiology, 96:(2) 794-812, 2006 pdf


  • Danóczy, M and Hahnloser, R.H.R. Efficient estimation of hidden state dynamics from spike trains , NIPS Proceedings, 17:, 2005 pdf


  • Fiete, I and Hahnloser, R and Fee, M and Seung, S Temporal sparseness of the premotor drive is important for rapid learning in a neural network model of birdsong., Journal of Neurophysiology, 92:(4) 2274-82, 2004 pdf
  • Fee, Michale and Kozhevnikov, Alex and Hahnloser, Richard Neural mechanisms of vocal sequence generation in the songbird., Behavioral Neurobiology of Birdsong 153-170, 2004


  • Hahnloser, RH and Douglas, RJ and Hepp, K Attentional recruitment of inter-areal recurrent networks for selective gain control., Neural Computation, 14:(7) 1669-89, 2002 pdf


  • Rasche, C. and Hahnloser, R. Silicon Synaptic Depression, Biological Cybernetics, 84:(1) 57-62, 2001 pdf


  • Hahnloser, Richard and Sarpeshkar, R. and Mahowald, Misha and Douglas, Rodney J. and Seung, S. Digital selection and analog amplification co-exist in an electronic circuit inspired by neocortex, Nature, 405: 947-951, 2000 pdf


  • Hahnloser, R and Douglas, R and Mahowald, M and Hepp, K Feedback interactions between neuronal pointers and maps for attentional processing, Nature Neuroscience, 2: 746-752, 1999 pdf
  • Mudra, R. and Hahnloser, R. and Douglas, R.J. Neuromorphic Active Vision Used in Simple Navigation Behavior for a Robot, Proceedings of the 7th International Conference on Microelectronics for Neural Networks, 1: 32-36, 1999 pdf


  • Hahnloser, R.H.R. Generating Network Trajectories Using Gradient Descent in State Space, IJCNN - International Joint Conference on Neural Networks 2373-2377, 1998
  • Hahnloser, Richard H.R. About the Piecewise Analysis of Networks of Linear Threshold Neurons, Neural Networks, 11: 691-697, 1998 pdf
  • Hahnloser, Richard H.R. Learning Algorithms Based on Linearization, Network, Computation in Neural Systems, 9(3): 363-380, 1998