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Abstract—While Moore’s law has driven exponential comput-
ing power expectations, its nearing end calls for new avenues for
improving the overall system performance. One of these avenues
is the exploration of new alternative brain-inspired computing
architectures that promise to achieve the flexibility and compu-
tational efficiency of biological neural processing systems. Within
this context, neuromorphic intelligence represents a paradigm
shift in computing based on the implementation of spiking neural
network architectures tightly co-locating processing and memory.
In this paper, we provide a comprehensive overview of the field,
highlighting the different levels of granularity present in existing
silicon implementations, comparing approaches that aim at
replicating natural intelligence (bottom-up) versus those that aim
at solving practical artificial intelligence applications (top-down),
and assessing the benefits of the different circuit design styles used
to achieve these goals. First, we present the analog, mixed-signal
and digital circuit design styles, identifying the boundary between
processing and memory through time multiplexing, in-memory
computation and novel devices. Next, we highlight the key trade-
offs for each of the bottom-up and top-down approaches, survey
their silicon implementations, and carry out detailed comparative
analyses to extract design guidelines. Finally, we identify both
necessary synergies and missing elements required to achieve a
competitive advantage for neuromorphic edge computing over
conventional machine-learning accelerators, and outline the key
elements for a framework toward neuromorphic intelligence.

Index Terms—Neuromorphic engineering, spiking neural net-
works, adaptive edge computing, event-based processing, on-chip
online learning, synaptic plasticity, CMOS integrated circuits,
low-power design.

I. INTRODUCTION

TOGETHER with the development of the first mechanical
computers came the ambition to design machines that

can think, with first essays dating back to 1949 [1], [2]. The
advent of the first silicon computers in the 1960s, together with
the promise for exponential transistor integration, known as
Moore’s law and first introduced by Carver Mead [3], further
fuelled that ambition toward the development of embedded
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artificial intelligence. As a key step toward brain-inspired
computation, artificial neural networks (ANNs) take their
roots in the observation that the brain processes informa-
tion with densely-interconnected and distributed computational
elements: the neurons. The successful deployment of the
backpropagation of error (BP) learning algorithm, backed by
significant CPU and GPU computing resources centralized in
cloud servers, recently enabled a massive scaling of ANNs,
allowing them to outperform many classical optimization and
pattern recognition algorithms [4], [5]. Today, the concept of
artificial intelligence (AI) is mainly associated with ANNs [6].
AI applications range from machine vision (e.g., [6]–[8]) to
natural language processing (e.g., [9]–[11]), often nearing or
outperforming humans in complex benchmarking datasets,
games of chance and even medical diagnostic [12]–[14].
Yet, most ANN-based AI developments focus on specialized
problem areas and tasks, corresponding to a narrow AI, in op-
position to a more general form of artificial intelligence [15].
Therefore, compared to biological neural processing systems,
this narrow-AI focus combined with a centralized cloud-based
backend imply a lack of both versatility and efficiency.

Versatility gap: Despite the wide diversity of the above-
mentioned applications, task versatility is limited as each use
case requires a dedicated and optimized network. Porting such
networks to new tasks would at best require retraining with
new data, and at worst imply a complete redesign of the neural
network architecture, besides retraining. The need to tailor and
retrain networks for each use case is made unsustainable as
the amount of both data and compute needed to tackle state-
of-the-art complex tasks grew by an order of magnitude every
year over the last decade. This growth rate was much faster
than that of technology scaling, and outweighed the efforts to
reduce the network computational footprint [16]. In order to
improve the ability of ANN-based AI to scale, diversify, and
generalize from limited data while avoiding catastrophic for-
getting, meta-learning approaches are investigated [17]–[22].
These approaches aim at building systems that are tailored
to their environment and can quickly adapt once deployed,
just as evolution shapes the degrees of versatility and online
adaptation of biological brains [23]. These are key aspects of
the human brain, which excels at learning a model of the world
from few examples [24].

Efficiency gap: The power and area efficiencies of
current AI systems lag behind biological ones for tasks at
all levels of complexity. First, taking the game of Go as
a well-known example for complex applications, both task
performance and efficiency ramped up quickly. From AlphaGo
Fan [25], the first computer to defeat a professional player,
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to AlphaGo Zero [26], the one now out of reach from any
human player, power consumption went from 40kW to only
about 1kW [27]. However, even in its most efficient version,
AlphaGo still lags two orders of magnitude behind the 20-W
power budget of the human brain. While most of this gap
could potentially be recovered with a dedicated hardware im-
plementation, AlphaGo would still be limited to a single task.
Second, on the other end of the spectrum, for low-complexity
tasks, a centralized cloud-based AI approach is not suitable to
endow resource-constrained distributed wireless sensor nodes
with intelligence, as data communication would dominate the
power budget [28]. The trend is thus shifting toward decen-
tralized near-sensor data processing, i.e. edge computing [29].
Shifting processing to the edge requires the development of
dedicated hardware accelerators tailored to low-footprint ANN
architectures, recently denoted as tinyML [30]–[32]. However,
state-of-the-art ANN accelerators currently burn microjoules
for basic image classification1, thereby still lagging orders
of magnitude behind the biological efficiency. As a point
of comparison, the honey bee brain has about one million
of neurons for a power budget of 10µW only, yet it is
able to perform tasks ranging from real-time navigation to
complex pattern recognition, while constantly adapting to
its environment [35]. In order to minimize the energy foot-
print of edge computing devices, state-of-the-art techniques
include minimizing memory accesses [36] and in-memory
computing [37], advanced always-on wake-up controllers [38],
[39], as well as weight and activation quantization [40], [41].
The field is thus naturally trending toward some of the key
properties of biological neural processing systems: processing
and memory co-location, event-driven processing for a fine-
grained computation wake-up, and low-precision computation
with a binary spike encoding, respectively.

Therefore, toward the goal of versatile and efficient com-
puters, taking biological brains as a guide appears as a natural
research direction. This strategy all started in the late 1980s,
the term “neuromorphic” was coined by Carver Mead with
the discovery that direct emulation of the brain ion channels
dynamics could be obtained with the MOS transistor operated
in the subthreshold regime [42]. The field of neuromorphic
engineering lies at the crossroads of neuroscience, computer
science and electrical engineering. It encompasses the study
and design of bio-inspired systems following the biological
organization principles and information representations, thus
implying a two-fold paradigm shift over conventional com-
puter architectures. Firstly, while conventional von-Neumann
processor architectures rely on separated processing and mem-
ory, the brain organization principles rely on distributed com-
putation that co-locates processing and memory with neuron
and synapse elements, respectively [43]. This first paradigm
shift therefore allows releasing the von-Neumann bottleneck
in data communication between processing and memory, a
point whose criticality is further emphasized by the recent
slow down in the pace of Moore’s law, especially for off-
chip DRAM memory [44]. Secondly, von-Neumann processor

1As for the CIFAR-10 dataset [33], comprising 10 classes of animal and
vehicle images in a format of 32 by 32 pixels. Hardware accelerator from [34]
taken as a reference.
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Fig. 1. Summary of the bottom-up and top-down design approaches toward
neuromorphic intelligence. Bottom-up approaches optimize a tradeoff between
versatility and efficiency; their key challenge lies in stepping out from analysis
by synthesis and neuroscience-oriented applications toward demonstrating a
competitive advantage on real-world tasks. Top-down approaches optimize
a tradeoff between task accuracy and efficiency; their key challenge lies in
optimizing the selection of bio-inspired elements and their abstraction level.
Each approach can act as a guide to address the shortcomings of the other.

architectures rely on a clocked information representation
whose resolution is determined by the number bits used for
encoding. On the contrary, the brain processes information by
encoding data both in space and time with all-or-none binary
spike events, each single wire potentially encoding arbitrary
precision in the inter-spike time interval [45], [46]. This
second paradigm shift supports sparse event-driven processing
toward a reduced power consumption, especially if spikes are
used all the way from sensing to computation. However, the
granularity at which these paradigm shifts can be realized in
actual neuromorphic hardware depends on the implementation
choices and the design strategy that is followed, the latter being
of two types: either bottom-up or top-down (Fig. 1).

The former is a basic research approach toward understand-
ing natural intelligence, backed by the design of experimenta-
tion platforms optimizing a versatility/efficiency tradeoff. The
latter is an applied research approach grounded on today’s
ANN successes toward solving artificial intelligence applica-
tions, backed by the design of dedicated hardware accelerators
optimizing the accuracy/efficiency tradeoff of a given task. At
the crossroads of both approaches, we argue that neuromorphic
intelligence can form a unifying substrate toward the design of
low-power bio-inspired neural processing systems. Extending
from [47], this paper will review key design choices and
implementation strategies, covering the different styles of
analog and digital design, together with tradeoffs brought
by time multiplexing and novel devices (Section II). Next,
we will survey bottom-up design approaches in Section III,
from the building blocks to their silicon implementations.
We will then survey top-down design approaches in Sec-
tion IV, from the algorithms to their silicon implementations.
For both bottom-up and top-down implementations, detailed
comparative analyses will be carried out so as to extract key
insights and design guidelines. Finally, in Section V, we will
provide concluding remarks and outline the key synergies
between both approaches, the remaining open challenges and
the perspectives toward on-chip neuromorphic intelligence and
autonomous agents that efficiently and continuously adapt to
their environment.
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TABLE I
PROPERTIES AND TRADEOFFS OF THE DIFFERENT NEUROMORPHIC CIRCUIT DESIGN STYLES. KEY ELEMENTS USUALLY REPRESENTING DESIGN

DEAL-BREAKERS ARE HIGHLIGHTED IN BOLD.

Implementation Analog Mixed-signal Digital
Subthreshold Above-threshold Switched-capacitor Solver-based Phenomenological

Dynamics Physics-based Model-based Model-based Timestepped Event-driven∗

Versatility/efficiency tradeoff Excellent‡ Medium Good Bad Good
Time constant Biological Accelerated Biological to accelerated Biological to accelerated
Noise, mismatch, PVT sensitivity High Medium Medium to low –

Indirect overhead Bias generation Clocked digital control Clock tree (sync)
Low tool support (async)

Design time High High Low (sync)
Medium (async)

Technology scaling potential Low Medium High

∗ Although phenomenological digital designs can also implement timestepped updates, event-driven updates are the preferred choice to reduce data movement.
‡ Degrades at the system level if variability is not exploited and requires compensation.

II. NEUROMORPHIC CIRCUIT DESIGN STYLES

Regardless of the chosen bottom-up or top-down approach
to the design of neuromorphic systems, different circuit design
styles can be adopted. Usually, a key question consists in
choosing whether an analog or a digital circuit design style
should be selected. In this section, we provide a principled
analysis for choosing the circuit design style that is appropriate
for a given use case.

Analog and digital neuromorphic circuit design each come
in different flavors with specific tradeoffs. A qualitative
overview is provided in Table I. The tradeoffs related to
analog and mixed-signal design are analyzed in Section II-A,
and those of digital design in Section II-B. Important aspects
related to memory and computing co-location, such as time
multiplexing and in-memory computation, are discussed in
Section II-C. This highlight of the key drivers behind each
circuit design style is then illustrated in Sections III and IV,
where actual neuromorphic circuit implementations are pre-
sented and compared.

A. Analog and mixed-signal design

Subthreshold analog design allows leveraging an emulation
approach directly grounded on the physics of the silicon
substrate. Indeed, in the subthreshold regime, the electron
flow in the MOS transistor channel is governed by a dif-
fusion mechanism, which is the same mechanism as for
the ion flow in the brain ion channels [42]. This emulation
approach allows for the design of compact and low-power
neuromorphic circuits that lie close to the brain biophysics.
Considering voltage swings of 1V for capacitors and currents
on the order of 1pF and 1nA, respectively, the resulting time
constants are on the order of milliseconds [48], similarly to
those observed in biology. Subthreshold analog designs are
thus inherently adapted for real-time processing with time
constants well-matched to those of environmental and bio-
logical stimuli. Therefore, device-level biophysical modeling
makes subthreshold analog designs suited for efficient brain
emulation and basic research through analysis by synthesis.
However, this excellent versatility/efficiency tradeoff of sub-
threshold analog designs is not yet fully leveraged at the
system level due to a high sensitivity to noise, mismatch

and power, voltage and temperature (PVT) variations. Indeed,
this key challenge usually requires increasing redundancy
in neuronal resources or circuit calibration procedures [49]–
[51]. These costly workarounds could be avoided through the
exploration of mitigation techniques with robust computational
primitives at the network and system levels [52] or through
embedded online learning (see Sections III-A2 and IV-A).
Furthermore, recent research shows that this variability, which
is also present in the brain, may even be exploited for the
processing efficiency and the learning robustness, especially
for data with a rich temporal structure [53], [54].

Above-threshold analog designs are suited for accelerated-
time modeling of biological neural networks. Indeed, com-
pared to subthreshold analog designs, even when the capacitor
size is of the same order (e.g., of 1 pF), higher currents and
reduced voltage swings allow reaching acceleration factors
ranging from 103 to 105 compared to biological time, thus
mapping year-long biological developmental timescales to
day-long runtimes [55]–[57]. However, the majority carrier
flow in the channel of the MOS transistor operated in the
above-threshold regime is governed by a drift mechanism
instead of diffusion, therefore emulation of neural processes
cannot take place anymore at the level of the device physics.
Instead, the implementation of neural processes is done at
the abstract computational model level: following a structured
analog design approach, appropriate analog circuits with tun-
able parameters are designed for each term of the equations in
the chosen models [58]. Although transistors operated in the
above-threshold regime have an improved robustness to noise,
mismatch and PVT variations compared to the ones operated
in subthreshold, device mismatch is still a critical problem and
methods to cope with it at the circuit and system levels are still
required. Therefore, calibration procedures are also common,
and sometimes directly implemented in the hardware [59].

Designs based on switched-capacitor (SC) circuits exhibit
an interesting blend between specific properties of sub- and
above-threshold analog designs. Similarly to above-threshold
designs, they follow a model-based approach, however compu-
tation is carried out in the charge domain instead of the current
domain. SC neuromorphic designs are thus able to achieve not
only accelerated time constants, but also biologically-realistic
ones. Furthermore, replacing nanoampere-scale currents by the



4 FRENKEL et al.: BOTTOM-UP AND TOP-DOWN NEURAL PROCESSING SYSTEMS DESIGN

equivalent accumulated charge has the advantage of reducing
the sensitivity to noise, mismatch and PVT variations [60],
[61]. The price to pay, however, is the overhead added by
the clocked digital control of SC circuits, which can take up
a significant portion of the system power consumption. As
the digital part of this overhead can benefit from technol-
ogy scaling, an overall good versatility/efficiency tradeoff for
SC circuits in advanced technology nodes is possible [61].
Switched capacitors can also be used to implement time
multiplexing (see Section II-C).

B. Digital design
As opposed to their analog counterparts, digital designs

forgo the emulation approach. Instead, they simulate the neural
processes at a behavioral level, thereby relying on functional
abstractions lying far from the biophysics, which does not
allow exploiting the dynamics of the silicon substrate. In
exchange, digital designs are robust to noise, mismatch and
PVT variations, and can leverage technology scaling. The
former ensures a predictable behavior and possibly a one-to-
one correspondence with the simulation software, while the
latter ensures competitive power and area efficiencies with
deep sub-micron technologies.

The most straightforward starting point for digital neuro-
morphic design is to implement solvers for the equations
modeling the biophysical behavior of neurons and synapses,
which requires retrieving and updating all model states at
every integration timestep [62]–[65]. This implies an extensive
and continuous amount of data movement and computation,
including when no relevant activity is taking place in the net-
work. Therefore, these approaches have poor power and area
efficiencies, especially at accelerated time constants. Piecewise
linear approximations of neuron models have been proposed
to reduce the complexity and resource usage (e.g., [66], [67]),
however they still require an update of all model states after
each integration timestep. In order to minimize updates, some
studies analyzed the maximum integration timestep values for
a given neuron model [68]. In any case, the extensive data
movement implied by solver-based digital implementations
makes them difficult to match with a low-power event-driven
neuromorphic approach.

Phenomenological digital design aims at reducing the inflex-
ible timestepped data movement of its solver-based counterpart
by carrying out updates when and where relevant in the neural
network. To do so, two strategies can be followed: either
the detail level of biophysical modeling can be reduced and
the model simplified, or key behaviors of complex models
can directly be implemented (i.e. not the underlying math-
ematical model nor the exact dynamics). While referring to
Section III-A1 for the neuron models mentioned below, key
examples on each side can be seen in:
• for the former, the popular leaky integrate-and-fire (LIF)

neuron model, which eliminates all biophysical details of
ion channels and only keeps the leaky integration property
of the neuron membrane,

• for the latter, the design of [69] that sidesteps the Izhike-
vich neuron model equations and implements its firing
behaviors directly.

In both examples given above, the model requirements are suf-
ficiently relaxed so as to allow for event-driven state updates,
thus strongly reducing data movement and the associated
overhead. The strategy to be pursued and the approximations
that can be made depend on the chosen application, there-
fore phenomenological digital design is a co-design approach
trading off model complexity, biophysical accuracy and im-
plementation efficiency.

Finally, for both the solver-based and phenomenological
approaches, a significant source of overhead is the clock tree,
which for modern synchronous digital designs represents 20–
45% of the total power consumption [70]. Although clock
gating techniques can help, this leads to a tradeoff between
power and complexity that is a severe issue for neuromorphic
circuits, whose activity should be event-driven. Asynchronous
digital circuits avoid this clock tree overhead and ideally
support the event-driven nature of spike-based processing. This
is the reason why asynchronous logic is a widespread choice
for the on- and off-chip spike communication infrastructures
of neuromorphic systems, both analog and digital. However,
asynchronous circuit design currently suffers from a lack of
industrial computer-aided design (CAD) tool support. Indeed,
all neuromorphic systems embedding asynchronous logic rely
on a custom tool flow (e.g., see [71]–[75]), which increases
the design time and requires support from a team experienced
in asynchronous logic design. Therefore, solutions to avoid the
development of a custom tool flow are increasingly being in-
vestigated: in [76]–[78], the application of specific constraints
to industrial digital CAD tools allows automatically optimizing
the timing closure of asynchronous bundled-data circuits.
This idea was recently applied in the context of network-
on-chips (NoCs), where Bertozzi et al. demonstrate signifi-
cant power-performance-area improvements for asynchronous
NoCs compared to synchronous ones, while maintaining an
automated flow based on standard CAD tools [79]. Leveraging
the efficiency of asynchronous circuits with a standard digital
tool flow may soon become a key element to support large-
scale integration of neuromorphic systems.

C. Defining the boundary between memory and processing –
Time-multiplexing, in-memory computation and novel devices

Neuromorphic engineering aims at a paradigm shift from
von-Neumann-based architectures to distributed and co-
integrated memory and processing elements. However, the
granularity at which this paradigm shift is achieved in practice
strongly depends on the selected memory storage and on
the level of resource sharing. Indeed, a key design choice
for neuromorphic architectures consists in selecting between
a fully-parallel resource instantiation and the use of a time
multiplexing scheme (i.e. shared update logic and centralized
state storage). A summary of the tradeoffs between both
approaches is provided in Table II. An important benefit of
time multiplexing is the substantial reduction of the area
footprint, usually by one to three orders of magnitude, at
the expense of a reduction in the maximum throughput.
This throughput reduction is usually not problematic, unless
when targeting acceleration factors higher than one order
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TABLE II
PROPERTIES AND TRADEOFFS OF FULLY-PARALLEL AND

TIME-MULTIPLEXED DESIGNS. KEY ELEMENTS USUALLY REPRESENTING
DESIGN DEAL-BREAKERS ARE HIGHLIGHTED IN BOLD.

Implementation Fully-parallel Time-multiplexed

Time Analog: represents itself
Digital: simulated

Simulated

Continuous dynamics Intrinsic 3
Timestepped updates: 3 (power ↑)
Event-driven updates: 7

Mem/proc co-location Highest granularity SRAM: Cache-level granularity
Off-chip DRAM: 7

Maximum throughput High Low
Power penalty Static Dynamic
Area footprint High Low

of magnitude compared to biological time. Importantly, re-
garding the power consumption, the penalty for fully-parallel
implementations is in static power (through the duplication
of circuit resources with leakage power), while the penalty
for time-multiplexed designs is in dynamic power (through
an increase in memory accesses to a more centralized state
storage). Therefore, minimizing leakage is necessary for fully-
parallel designs, while timestepped updates should be avoided
and sparsity maximized for time-multiplexed ones.

While SRAM-based time multiplexing is applied to nearly
all digital designs due to its ease of implementation for a
minimized area footprint, this technique is not applied to
analog designs if a fully-parallel emulation of the network
dynamics is to be maintained. Otherwise, time multiplexing
can be applied to analog designs as well, as shown in [56],
[61], [80], [81]. It can be either SRAM-based or capacitor-
based, the former is a mixed-signal approach that minimizes
the storage area for large arrays but requires digital-to-analog
(DAC) converters, while the latter avoids DACs at the expense
of a higher-footprint storage. In both cases, the addition of dig-
ital control logic is required. Furthermore, time multiplexing
can also be applied selectively to different building blocks.
As synapses are usually the limiting factor (Section III-A2), a
good example consists of time-multiplexed synapses and fully-
parallel neurons, as in [80], which represents an interesting
tradeoff to minimize the synaptic footprint while keeping
continuous parallel dynamics at the neuron level.

Finally, an important aspect of fully-parallel implemen-
tations is to enable synergies with in-memory computation,
a trend that is popular not only in neuromorphic engineer-
ing [82], but also in conventional machine-learning accel-
erators based on SRAM [37], DRAM [83] and novel de-
vices [84]. A recent comparative analysis by Peng et al.
shows that, at normalized resolution and compared to six
different memristor technologies, SRAM still offers the highest
accuracy, throughput, density and power efficiency for deeply-
scaled processes [85]. However, voltage-sensing SRAM-based
in-memory computing relies on frame-based computation to
efficiently compute a vector-matrix product. Indeed, as each
bitline needs to be pre-charged, all input data elements need
to be available in parallel. This requirement for frame-based
computation is incompatible with the event-driven nature of
spiking neural networks (SNNs): only zero or a few input
spikes are available in parallel at any given time. As bitlines
need to be precharged in any case, this would result in an

energy waste that increases with the sparsity level. For this
reason, to the best of our knowledge, SRAM-based in-memory
computing has so far not been adopted in neuromorphic
designs.

Instead, fully-parallel memristor crossbar arrays are a
promising avenue for in-memory computation in neuromor-
phic systems [86]–[88]. Beyond the usual prospects for im-
provement in density and power efficiency linked with in-
memory computation, memristors offer specific synergies for
neuromorphic engineering, such as characteristics similar to
those of biological synapses [89]. Furthermore, a neuromor-
phic approach exploiting non-idealities instead of mitigating
them could be particularly appropriate to alleviate the high lev-
els of noise and mismatch encountered in these devices [86], or
to leverage parasitic effects such as the conductance drift [90].
However, high-yield large-scale co-integration with CMOS is
still at an early stage [91], [92].

III. BOTTOM-UP APPROACH – TRADING OFF BIOPHYSICAL
VERSATILITY AND EFFICIENCY

The vast majority of neuromorphic designs follow a bottom-
up strategy, which is also the historic one adopted since
the first neuromorphic chips from the late 1980s. It takes
its roots in neuroscience observations and then attempts at
(i) replicating these observations in silico, and (ii) integrating
them at scales ranging from hundreds or thousands [61], [75],
[81], [93]–[96] to millions of neurons [56], [71]–[74], leading
to a tradeoff between versatility and efficiency. Integrations
reaching a billion neurons can be achieved when racks of
neuromorphic chips are assembled in a supercomputer setup.
The simulation in real time of about 1% of the human brain
is currently possible [97], and of the full human brain within
a few years [98]. Bottom-up approaches thus allow designing
experimentation platforms that cover acceleration of neuro-
science simulations [56], brain reverse-engineering through
analysis by synthesis [43], [99] and even the exploration of
hybrid setups between biological and artificial neurons [100],
[101]. Their application to brain-machine interfaces [102],
[103] and closed sensorimotor loops for autonomous cognitive
agents [104]–[107] is also under investigation. However, the
inherent difficulty of bottom-up approaches lies in applying the
resulting hardware to real-world problems beyond the scope
of neuroscience-oriented applications, a point that is further
emphasized by the current lack of appropriate and widely-
accepted neuromorphic benchmarks [108]. Therefore, bottom-
up designs are mostly used for basic research. In this section,
as highlighted in Fig. 1, we follow the steps of the bottom-
up approach by surveying neuromorphic designs from the
building block level (Section III-A) to their silicon integration
(Section III-B).

A. Building blocks

As the key computational elements of biological systems,
the neurons carry out nonlinear transformations of their in-
puts, both in space and time, and are divided into three
stages [109]: the dendrites act as an input stage, the core
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Fig. 2. Main encodings in spiking neural networks, as defined in [46]. The
neuron axons represent a time axis, the most recent spikes being closest to the
soma. (a) Conventional rate code, easy to use and accurate but inefficient in
its spike use. (b) Rank order code, efficient in its spike use but with a limited
representational power. (c) Timing code in the specific case of time-to-first-
spike (TTFS) encoding, both efficient in its spike use and accurate, illustrated
for an arbitrary resolution of 1ms.

computation takes place in the soma and the outputs are
transmitted along the axon, which connects to dendrites of
other neurons through synapses. The soma, often simply
referred to as neurons in neuromorphic systems, is covered
in Section III-A1. The synapses, dendrites and axons are then
covered in Sections III-A2, III-A3 and III-A4, respectively.
The neural tissue also contains glial cells, which are believed
to take a structuring and stabilizing role [110], but whose study
is beyond the scope of this paper.

1) Neurons (soma):

One of the simplest neuron models, which originates from
the work of Louis Lapicque in 1907 [111], describes biological
neurons as integrating synaptic currents into a membrane
potential and firing a spike (i.e. action potential) when the
membrane potential exceeds a firing threshold, after which
the membrane potential is reset. It is thus referred to as
the integrate-and-fire (I&F) model, while the addition of a
leakage term leads to the leaky integrate-and-fire (LIF) model,
which emphasizes the influence of recent inputs over past
activity [112]. This basic linear-filter operation can be modeled
by an RC circuit. The widespread I&F and LIF models are
phenomenological models: they aim at computational effi-
ciency while exhibiting, from an input/output point of view,
a restricted repertoire of biophysical behaviors chosen for
their prevalence or relevance for a specific application. On the
other end of the neuron models spectrum, conductance-based
models aim at a faithful correspondence with the biophysics of
biological neurons. The Hodgkin-Huxley (H&H) model [113]
provides the highest accuracy but is computationally-intensive
as it consists of four nonlinear ordinary differential equations.
The Izhikevich model is a two-dimensional reduction of the
H&H model [114] that can still capture the 20 main behaviors
of biological spiking neurons found in the cortex [115], but
whose parameters lost correspondence with the biophysics.
The adaptive-exponential (AdExp) two-dimensional model is
similar to the Izhikevich model and differs by the spike
mechanism, which is exponential instead of quadratic [116].
Due to the exponential nature of its spiking mechanism,
the AdExp neuron model suits well a subthreshold analog
design approach and can be seen as a generalized form of the
Izhikevich model. We refer the reader to [115] for a detailed
neuron model summary.

The choice of the neuron model is also intrinsically tied
to the target neural coding approach. As the LIF neuron
model only behaves as a leaky integrator, it does not allow
leveraging complex temporal information [117]. Therefore, the
LIF model is usually restricted to the use of the rate code
(Fig. 2(a)), a standard spike coding approach directly mapping
continuous values into spike rates [46]. It is a popular code
due to its simplicity, which also allows for straightforward
mappings from ANNs to SNNs [118]–[120], at the expense of
a high power penalty as each spike only encodes a marginal
amount of information. This aspect can be partly mitigated
with the use of the rank order code (Fig. 2(b)), sometimes
used as an early-stopping variant of the rate code, without
taking into account relative timings between spikes. Behavior
versatility is thus necessary to explore codes that embed
higher amounts of data bits per spike and favor sparsity by
leveraging time, such as the timing code [46], [121], [122],
where the popular time-to-first-spike (TTFS) variant encodes
information in the time taken by a neuron to fire its first spike
(Fig. 2(c)). The 20 Izhikevich behaviors of biological cortical
spiking neurons offer a variety of ways to capture time into
computation [115], as we previously discussed in [94]. For
example, phasic spiking captures the stimulation onset [115]
and could be useful for codes relying on the emission of a
single spike per neuron [46]. Spike frequency adaptation is
useful to encode time since the stimulation onset [115], [123],
while both spike frequency adaptation and threshold variability
can be used to implement forms of homeostatic plasticity,
which allows stabilizing the global network activity [74],
[124]. Spike latency can emulate axonal delays, which are
useful to induce temporal dynamics in SNNs [125] and to
enhance neural synchrony [126], another mechanism believed
to increase the representational power of SNNs through pop-
ulation coding [46]. Finally, resonant behaviors may allow
selectively responding to specific frequencies and spike time
intervals, thus enabling the timing code [127].

Therefore, the tradeoff between biophysical accuracy, ver-
satility and implementation efficiency of silicon neurons is
strongly dependent on the underlying model, the target code,
and whether an emulation or a simulation implementation
strategy is pursued (Table I). An overview of the current state
of the art for analog, mixed-signal and digital neurons is pro-
vided in Fig. 3. Only standalone non-time-multiplexed neuron
implementations are shown for a fair comparison of their
versatility/efficiency tradeoff, measured here by the number
of Izhikevich behaviors and the silicon area, respectively. The
physics-based emulation approach pursued with subthreshold
analog design achieves overall excellent versatility/efficiency
tradeoffs [96], [128]–[130], followed closely by the model-
based above-threshold analog designs [56], [58]. By their
similarity with the Izhikevich model, which is implemented
in [128], AdExp neurons are believed to reach the 20 Izhike-
vich behaviors [131], although it has not been demonstrated
in their silicon implementations in [56], [58], [96], [130].
Neuron implementations from [72] and [132] should provide
similar tradeoffs, but no information is provided as to their
number of Izhikevich behaviors. With a reduced number of
behaviors, mixed-signal SC implementations of the Mihalas-
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Fig. 3. State of the art of analog and digital neuron implementations:
versatility (measured in the number of Izhikevich behaviors) against area
tradeoff. The area of digital designs has been normalized to a 28-nm node
using the node factor. This normalization has not been applied to analog
designs as they require redesign to compensate for performance degradation
during technology scaling: original area and technology node are reported.
All neurons presented in this figure are standalone (i.e. non time-multiplexed),
except in [137] for which only the update logic area is reported, and in [133]
for which contributions from shared soma and threshold adaptation circuits
are excluded. The designs from [56], [58], [96], [130] emulate an adaptive-
exponential neuron model and are thus believed to reach the 20 Izhikevich
behaviors [131], though not demonstrated. Adapted and extended from [69].

Niebur model in [133] and [134] were demonstrated to exhibit
9 and 15 out of the 20 Izhikevich behaviors, respectively,
although with relatively high areas due to the older technology
node used. The Morris-Lecar model is also explored in [129]
and is believed to reach 13 out of the 20 Izhikevich behav-
iors [115]. The phenomenological approach is followed in [81]
with LIF neurons in an extended two-compartment version. On
the other hand, digital designs release the constraints on design
time and sensitivity to noise, mismatch and PVT variations at
the expense of going for a simulation approach lying further
from the biophysics, thus inducing overall a large area penalty
compared to analog designs. This is illustrated in the neuron
implementation from [135] that implements a timestepped
solver for the differential equations of the Izhikevich neuron
model, while the phenomenological approach is followed
in [136] with a 10-bit LIF neuron. Between both approaches
lies the neuron model of Cassidy et al. [137], it is based on a
LIF neuron model to which configurability and stochasticity
are added. This model is used in the TrueNorth chip [73]
and exhibits 11 Izhikevich behaviors, while the 20 behaviors
can be reached by coupling three neurons together, showing a
configurable versatility/efficiency tradeoff. Finally, the event-
driven phenomenological Izhikevich neuron proposed in [69]
alleviates the efficiency gap of digital approaches by pursuing
a direct implementation of the Izhikevich behaviors, not of the
underlying mathematical model [114].

2) Synapses:

Biological synapses embed the functions of memory and
plasticity in extremely dense elements [43], allowing neu-
rons to connect with fan-in values ranging from 100 to
10k synapses per neuron [138]. Optimizing the versatil-
ity/efficiency tradeoff appears as especially critical for the
synapses, as they often dominate the area of neuromorphic pro-
cessors, sometimes by more than one order of magnitude [96].
In order to achieve large-scale integrations, designers often
either move synaptic resources off-chip (e.g., [71], [72]),
which comes at the expense of an increase in the system power
and latency [44], or drop the key feature of synaptic plas-
ticity (e.g., [73], [75]). However, retaining embedded online
learning is important for three reasons. First, it allows low-
power autonomous agents to collect knowledge and adapt to
new features in uncontrolled environments, where new training
data is presented on-the-fly in real time [35], [107]. Second,
from a computational efficiency point of view, neuromorphic
designs deprived from synaptic plasticity rely on off-chip
optimizers, thus precluding deployment in applications that
are power- and resource-constrained not only in the infer-
ence phase, but also in the training phase. Finally, exploring
biophysically-realistic silicon synapses embedding spike-based
plasticity mechanisms may help unveil how they operate in the
brain and support cognition [139]. This bottom-up analysis-
by-synthesis step (Fig. 1) may also ideally complement top-
down research in bio-plausible error backpropagation algo-
rithms (see Section IV-A). Therefore, a careful hardware-aware
selection of spike-based synaptic plasticity rules is necessary
for the design of efficient silicon synapses.

A wide range of plasticity mechanisms is believed to take
place at different timescales in the brain, where it is common
to segment them into four types [43], [140]–[142], listed
hereafter in the order of increasing timescales. First, short-term
plasticity (STP) operates over milliseconds, it covers adaptive
neuronal behaviors (Section III-A1) and short-term synaptic
adaptation [143]. A few analog CMOS implementations of
STP have been proposed, e.g. in [61], [96]. Second, long-
term plasticity mechanisms operate over tens to hundreds
of milliseconds and cover spike-based plasticity rules, as
well as working memory dynamics [144]. Third, homeo-
static plasticity operates over tens to hundreds of seconds
and allows scaling synaptic weights to stabilize the neuron
firing frequency ranges, and thus the network activity [145].
There is a particular interest for homeostatic plasticity in
analog designs so as to compensate for PVT variations at
the network level [146]. The design of efficient strategies for
circuit implementations of homeostaticity is not yet mature:
achieving the long homeostatic timescales in analog CMOS
design is challenging, although solutions have been proposed
for subthreshold design in [124], while it incurs high control
and memory access overheads in time-multiplexed digital
designs. Finally, structural plasticity operates over days to
modify the network connectivity [147]. It is usually applied to
the mapping tables governing system-level digital spike routers
(see Section III-A4).
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approximation proposed by Cassidy et al. in [154] (black). (b) SDSP learning
rule from Brader et al. [155]. Adapted from [94], [158].

As the timescale of long-term plasticity rules is usually ap-
propriate to perform training on spike-based image and sound
classification tasks, an important body of work covers their
silicon implementations. Being one of the first formulations
of a long-term spike-based plasticity mechanism relying on
experimental data derived by Bi and Poo [148], pair-based
spike-timing-dependent plasticity (STDP) is a conceptually
simple and popular learning rule for silicon synapses [93],
[121], [149]–[153]. STDP is a two-factor Hebbian learning
rule relying on the relative timing of pre- and post-synaptic
spikes occurring at times tpre and tpost, respectively. STDP
strengthens correlation in the pre- and post-synaptic activities
by increasing (resp. decreasing) the synaptic weight for causal
(resp. anti-causal) orderings between pre- and post-synaptic
spikes. It follows an exponential shape shown as a blue line
in Fig. 4(a). A phenomenological implementation is proposed
by Cassidy et al. in [154] for digital implementations and is
shown in black in Fig. 4(a).

The spike-driven synaptic plasticity (SDSP) learning rule
proposed by Brader et al. in [155] led to several silicon
implementations [61], [94]–[96], [156]–[158]. Instead of re-
lying on relative pre- and post-synaptic spike timings, SDSP
computes updates based on the internal state of the post-
synaptic neuron at the time of the pre-synaptic spike. If the
post-synaptic membrane voltage Vmem is above (resp. below)
a given threshold θm, the synaptic weight undergoes a step
increase (resp. decrease) upon the arrival of a pre-synaptic
spike (Fig. 4(b)). As for STDP, SDSP strengthens correlation
between pre- and post-synaptic activities as the membrane
potential indicates whether or not the post-synaptic neuron
is about to spike. In order to improve the recognition of
highly-correlated patterns, Brader et al. add a stop-learning
mechanism based on the Calcium concentration of the post-
synaptic neuron [155]. The Calcium concentration provides an
image of the recent post-synaptic firing activity: if it is beyond
average ranges (thresholds θ1, θ2 and θ3), there is evidence that
learning already occurred and that further potentiation or de-
pression is likely to result in overfitting. The learning ability of
SDSP is similar to that of STDP but presents better biophysical
accuracy and generalization properties [155], although with a
careful hyperparameter tuning [94], [95].

Overall, the specific learning rule and resolution selected
for the design determines the synapse circuit size, its task-

specific learning performance and the memory lifetime of
the network as a function of the number of new stimuli
received (i.e. the palimpsest property) [159]. A particularly
important aspect for the choice of the spike-based learning
rule is its impact on the memory architecture, which will
in turn define how tightly memory and computation can be
co-integrated (see Section II-C). In particular, current high-
density integrations with on-chip synaptic weight storage
usually rely on SRAM (see Section III-B). Indeed, standard
single-port foundry SRAMs currently have densities as high as
0.120µm2/bit in 28-nm FDSOI CMOS [160] or 0.031µm2/bit
in the recent Intel 10-nm FinFET node [161]. Foundry SRAMs
are thus an efficient substrate for low-cost synapse array
design, which suits well a time-multiplexed approach. How-
ever, the memory access patterns required by the considered
learning rule might imply the use of custom SRAMs instead
of single-port foundry SRAMs, thus automatically inducing
design time and density penalties as the layout design rule
checking (DRC) rules for logic must be used instead of the
foundry bitcell pushed rules [162]. This is a known issue for
spike-timing-based rules [93], while SDSP-derived rules were
shown to be compatible with single-port foundry SRAMs as
they only rely on information available locally in time and
space [94], [95], [158].

However, purely local two-factor learning rules are unable
to accommodate for dependence on higher-order feedback:
adding a third modulation factor is necessary to represent
global information (output-prediction agreement, reward, sur-
prise, novelty or teaching signal), and to relate it to local input
and output activities for synaptic credit assignment [163]. Just
as the Calcium concentration in SDSP corresponds to a third
factor modulating the pre- and post-synaptic activities, several
other third-factor learning rules have been proposed, includ-
ing the Bienenstock-Cooper-Munro (BCM) model [164], the
triplet-based STDP [165], and several other variants of STDP
and SDSP, e.g. [166], [167], from which the silicon synapse
design from [168] is inspired. Furthermore, as the global
modulation signal may be delayed over second-long behavioral
timescales, there is a need for synapses to maintain a memory
of their past activity, which may be achieved through local
synaptic eligibility traces [169]. While the computation of
eligibility traces is already supported by some neuromorphic
platforms with the help of von-Neumann co-processors [71],
[74], [170], a fully-parallel implementation was proposed
in [90] by exploiting the drift non-ideality of phase change
memory (PCM) devices. This growing complexity in synaptic
learning rules is also closely related to dendritic computation
(Section III-A3).

3) Dendrites:
While the theory of synaptic plasticity focused first on point

(i.e. single-compartment) spiking neuron models and two-
factor learning rules driven by the correlation between the pre-
and post-synaptic spike timings, it now appears that STDP-
based learning rules emerge as a special case of a more general
plasticity framework [171], [172]. Although not fully defined
yet, several important milestones toward this general plasticity
framework appear to involve dendritic functions. First, corre-
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lating pre-synaptic spikes with the post-synaptic membrane
voltage and its low-pass-filtered version, which could corre-
spond to a local dendritic voltage, allows accommodating for
most experimental effects that cannot be explained by STDP
alone [173]. Second, multi-compartment neuron models with
basal and apical dendrites support a form of predictive coding
where plasticity adapts the dendritic potential to match the
somatic activity, with implications in supervised, unsupervised
and reinforcement learning setups [167]. Finally, combining
a detailed dendritic model of a cortical pyramidal neuron
with a single general plasticity rule strongly grounded on the
biophysics (i.e. local low-pass-filtered voltage traces at the
pre- and post-synaptic sites) could unify previous theoretical
models and experimental findings [172]. Therefore, dendrites
emerge as a key ingredient that allows generalizing STDP,
providing a neuron-specific feedback and potentially enabling
synaptic credit assignment in the brain. Furthermore, new
top-down algorithms mapping onto dendritic primitives also
give a strong incentive for neuromorphic hardware supporting
dendritic processing (see Section IV-A). For these reasons,
although their implementation into neuromorphic silicon sub-
strates was mostly overlooked until recently, dendrites and
multi-compartment neuron models are now receiving an in-
creasing interest [74], [174]–[176].

4) Axons:
Neurons communicate spikes through their axon, which

covers both short- and long-range connectivity. While the
neuron and synapse implementation can be analog, mixed-
signal or digital, the spike distribution infrastructure is al-
ways implemented digitally to allow for a high-speed com-
munication of spike events on shared bus resources with a
minimized footprint [177]. The standard protocol for spike
communication is the asynchronous address-event represen-
tation (AER) [178], [179], from simple point-to-point links
in small-scale designs [61], [94], [96] to complex network-
on-chip (NoC) infrastructures allowing for large-scale on-
and off-chip integration [56], [72]–[75], [95], [180], [181].
While point-to-point links cannot scale efficiently as they
require the use of dedicated external routing tables, large-scale
infrastructures ensure that several chips can be interconnected
directly through their on-chip routers. We refer the reader
to [181] for a review on linear, mesh-, torus- and tree-based
router types.

Given constraints on the target network structure, such as
the fact that biological neural networks typically follow a
dense local and sparse long-range connectivity (i.e. small-
world connectivity [182]), an efficient routing infrastructure
must maximize the fan-in and fan-out connectivity while min-
imizing its memory footprint. Common techniques to optimize
this tradeoff include a two- or three-level hierarchical combi-
nation of different router types (e.g., [75], [95], [181]), and of
source- and destination-based addressing. In the former, source
neurons are agnostic of the implemented connectivity, only the
source neuron address is sent over the NoC. In exchange, this
scheme requires routers to implement mapping tables, and thus
to have access to dedicated memory resources, which can be
either off-chip [72], [181] or on-chip [75], [180] depending on

the target tradeoff between efficiency and flexibility. On the
other hand, in the latter, the source neuron sends a destination-
encoded packet over the NoC. This allows having low-cost
high-speed memory-less routers, at the expense of moving the
connectivity memory overhead at the neuron level [73], [95].
These different hierarchical combinations of router types and
of source- and destination-based addressing allow reaching dif-
ferent tradeoffs between scalability, flexibility and efficiency,
which will become apparent when comparing experimentation
platforms in Table IV.

B. Silicon integration

Based on the neuron, synapse, dendrite and axon build-
ing blocks described in Section III-A, small- to large-scale
integrations in silico have been achieved with a wide di-
versity of design styles and use cases. Here, we review
these designs, first qualitatively to outline their applicative
landscape (Section III-B1), then quantitatively to assess the
key versatility/efficiency tradeoff that bottom-up designs aim
at optimizing (Section III-B2). Finally, we highlight the chal-
lenges encountered by a purely bottom-up design approach
when efficient scaling to real-world tasks is required (Sec-
tion III-B3).

1) Overview of neuromorphic experimentation platforms:
Depending on their implementation and chosen circuit de-

sign styles, bottom-up neuromorphic experimentation plat-
forms can be used as testbeds for neuroscience-oriented
applications if they aim at a detailed correspondence with
the biophysics, either through emulation or simulation of
detailed models (see Section II). Small-scale systems can
also support bio-inspired edge computing applications, which
will be further discussed in Section V. Finally, large-scale
systems usually target high-level functional abstractions of
neuroscience, i.e. cognitive computing. In the following, we
review the applicative landscape of analog and mixed-signal
designs, followed by digital ones. A global overview is pro-
vided in Table III.

a) Analog/mixed-signal designs:

The physics-based emulation approach based on subthresh-
old analog design is pursued in three main designs, which
mainly target basic research and also allow for the exploration
of edge computing use cases in small- to medium-scale
designs. First, the 0.18-µm ROLLS chip [96] is a neurosy-
naptic core that embeds 256 AdExp neurons (Section III-A1),
64k synapses with STP and 64k synapses with SDSP (Sec-
tion III-A2). Second, the 0.18-µm DYNAPs chip [75] is a
quad-core 2k-neuron 64k-synapse scale-up of ROLLS whose
focus is put on the spike routing and communication in-
frastructure, at the expense of synaptic plasticity, which has
been removed. A 28-nm version of the DYNAPs chip has
been designed, which includes a plastic core embedding 64
neurons and 8k 4-bit digital STDP synapses, with preliminary
results reported in [183]. Finally, the Neurogrid, a 1-million-
neuron system based on sixteen 0.18-µm Neurocore chips,
was designed in order to emulate the biophysics of cortical
layers [72]. However, large-scale integration is achieved at
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TABLE III
BOTTOM-UP NEUROMORPHIC EXPERIMENTATION PLATFORMS OVERVIEW.

(S) DENOTES SMALL-SCALE CHIPS EMBEDDING UP TO 256 NEURONS.
(M) DENOTES MEDIUM-SCALE CHIPS EMBEDDING 1K TO 2K NEURONS

WITH A LARGE-SCALE COMMUNICATION INFRASTRUCTURE.
(L) DENOTES LARGE-SCALE CHIPS OR SYSTEMS, FROM 10K-100K

NEURONS (SINGLE CHIP/WAFER) TO MILLIONS OF NEURONS (MULTI-CHIP
SETUPS), WITH UP TO A BILLION NEURONS FOR SUPERCOMPUTER SETUPS.

Implementation Key designs Main application

Analog
mixed-signal



Subthreshold
ROLLS (S) [96]

DYNAPs (M) [75]
Neurogrid (L) [72]

Brain emulation,
basic research and

edge computing (S-M)

Above-threshold
BrainScaleS (L) [56]

(BrainScaleS 2) (L)∗ [184], [185]

Neuroscience
simulation

acceleration

Switched- or
time-muxed-cap

Mayr et al. (S) [61]
IFAT (L) [81]

Bio-inspired edge to
cognitive computing

Digital



Software-based†

GENESIS [189]
NEURON [190]

NEST [191]
Auryn [193]

Brian 1,2 [192], [196]
ANNarchy [194]

GeNN [195]

Low-cost and
flexible neuro-

science simulation

Distributed
von-Neumann

SpiNNaker (L) [71]
(SpiNNaker 2) (L)∗ [199]

Neuroscience
simulation

acceleration

Full-custom

Seo et al. (S) [93]
ODIN (S) [94]

MorphIC (M) [95]
Bio-inspired

edge computing

TrueNorth (L) [73]
Loihi (L) [74]

Cognitive
computing

FPGA-based‡

Cassidy et al. (L) [62]
Minitaur (L) [202]

Wang et al. (L) [203]
Luo et al. (L) [204]
Yang et al. (L) [65]

Low-cost, flexible
neuroscience

simulation and
cognitive computing

∗ The second-generation BrainScaleS and SpiNNaker large-scale systems are currently
in development, only proof-of-concept prototype chips have been reported so far. The
BrainScales 2 prototype embeds only 64 neurons, while the SpiNNaker 2 prototype
embeds only 4 ARM cores out of the 152 planned.
† Software-based approaches run on CPU and/or GPU hardware. The implementation
scale depends on available resources and the granularity of the biophysical modeling.
‡ Non-exhaustive list.

the expense of synaptic weight storage, which has been
moved off-chip, thus inducing power and latency overheads.
Importantly, by aiming at a direct reproduction of biophysical
phenomena, these subthreshold analog designs mainly aim at
understanding by building.

The model-based above-threshold analog design approach
allows accelerating neuroscience simulations and is pursued
in the BrainScaleS wafer-scale design. It relies on 0.18-
µm HICANN chips with 512 AdExp neurons and 112k 4-
bit STDP synapses integrated at a scale of 352 chips per
wafer [56]. BrainScaleS thus embeds 180k neurons and 40M
synapses per wafer for large-scale simulation and exploration
of cortical functions, with acceleration factors ranging from
103 to 105 compared to biological time. The second-generation
BrainScaleS is currently being designed, with early small-
scale 64-neuron 2k-synapse prototypes embedding a pro-
grammable plasticity processor as well as multi-compartment
neuron models for dendritic computation and structural plastic-
ity [184], [185]. In contrast with subthreshold analog designs,
the BrainScaleS platform aims at the implementation of a tool
for neuroscientists, and thus follows a building-to-understand
approach.

Approaches based on switched-capacitor and capacitor-
based time multiplexing have been proposed in [61] and [81].
The 28-nm chip from Mayr et al. is an interesting attempt
at leveraging technology scaling by using digital control and
SRAM-based weight storage, while maintaining the higher
biophysical accuracy of analog designs for synaptic plasticity
through SC circuits [61]. Capacitor-based time multiplexing
is used for neuron membrane potential storage. This small-
scale chip embeds 64 neurons and 8k 4-bit synapses with both
STP and SDSP, as per the implementation described in [186].
It is thus suitable for near-sensor applications at the edge,
where the power and area footprints should be minimized [28],
[29]. The 65-nm integrate-and-fire array transceiver (IFAT)
chip from Park et al. relies on conductance-based neuron and
synapse models with capacitor-based time multiplexing [81],
embedding as high as 65k two-compartment integrate-and-fire
neurons per chip. However, synapses do not embed synaptic
plasticity and their weights are stored off-chip. This chip is
thus appropriate for large-scale cognitive computing experi-
ments with relaxed synaptic requirements.

Finally, solutions based on non-volatile memory and emerg-
ing devices have been proposed. As mentioned in Section II-C,
co-integration of memristors with CMOS is still at an early
stage. A first proof-of-concept chip has recently been pro-
posed in [187], though only demonstrated for very small
problems (e.g., classification of 5×5-pixel binary patterns).
It embeds 5k memristor synapses at a density of 10µm2 per
synapse, which is an order of magnitude larger than state-of-
the-art digital integrations. Significant work is thus required
to achieve optimized memristor-based neuromorphic systems
and to alleviate the aspects of synaptic resolution control,
mismatch and fabrication costs. As an alternative with more
mature technologies, a 0.35-µm flash-based STDP design has
also been proposed in [188], but embedded flash memory
is difficult to scale beyond 28-nm CMOS and requires high
programming voltages.

b) Digital designs:

While neuromorphic engineering aims at a paradigm shift
from von-Neumann-based architectures to distributed and co-
integrated memory and processing elements, the granularity at
which this paradigm shift is achieved in digital implementa-
tions strongly varies between three main approaches: software-
based, distributed von-Neumann or full-custom, from high to
low processing and memory separation.

Software-based approaches run on conventional von-
Neumann hardware. Dedicated spiking neural network simu-
lators such as GENESIS [189], NEURON [190], NEST [191],
Brian [192] and Auryn [193] allow running experiments
on conventional CPUs, while simulators such as ANNar-
chy [194], GeNN [195] and Brian 2 [196] provide GPU sup-
port. Software-based approaches provide the highest flexibility
and control over the neuron and synapse models and the scale
of the experiments. However, using von-Neumann hardware
to simulate SNNs comes at the cost of power and simulation
time overhead, although recent work has demonstrated that
GPUs can compare favorably to a SpiNNaker-based system
for cortical-scale simulations [197], [198].
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SpiNNaker follows a distributed von-Neumann approach. It
was fabricated in a 0.13-µm CMOS technology and embeds
18 ARM968 cores per chip in a globally asynchronous locally
synchronous (GALS) design for efficient handling of asyn-
chronous spike data, spanning biological to accelerated time
constants [71]. SpiNNaker has been optimized for large-scale
SNN experiments while keeping a high degree of flexibility,
with the current supercomputer-scale setup reaching the billion
of neurons, i.e. about 1% of the human brain [97]. The second-
generation SpiNNaker system is in development. Current 28-
nm prototype chips embed 4 ARM Cortex M4F cores out of
the 152 per chip planned for the final 22-nm SpiNNaker 2
system [199]. The objective is to simulate two orders of mag-
nitude more neurons per chip compared to the first-generation
SpiNNaker: when integrated at supercomputer scale, real-time
simulations at the scale of the human brain will be within
reach [200]. Therefore, similarly to BrainScaleS, SpiNNaker
also follows a building-to-understand approach.

Full-custom digital hardware allows for high-density and
energy-efficient neuron and synapse integrations, thanks to
memory being moved closer to computation compared to the
two above-mentioned digital approaches. As all full-custom
digital designs reported so far are using SRAM-based time
multiplexing, this can be related to the efficiency improve-
ment brought by caches in conventional von-Neumann pro-
cessors [201]. Full-custom designs can usually be configured
to span biological to accelerated time constants. The 45-nm
small-scale design from Seo et al. embeds 256 LIF neurons
and 64k binary synapses based on a stochastic version of
STDP (S-STDP) [93], it achieves high neuron and synapse
densities compared to mixed-signal designs, despite the use
of a custom SRAM (Section III-A2). Its scale thus makes it
ideal for edge computing. In line with this small-scale edge
computing use case, the ODIN chip embeds 256 neurons
with the 20 Izhikevich behaviors and 64k SDSP-based (3+1)-
bit synapses in 28-nm CMOS [94]. The 65-nm MorphIC
chip scales up the neurosynaptic core of ODIN in a quad-
core design allowing for large-scale multi-chip setups with a
total of 2k LIF neurons and more than 2M binary synapses
with stochastic SDSP (S-SDSP) per chip [95]. Being based
on SDSP, ODIN and MorphIC can leverage the density ad-
vantage of standard single-port foundry SRAMs to achieve
record neuron and synapse densities (Section III-A2). Finally,
cognitive computing applications require large-scale platforms,
which is currently offered by the 28-nm IBM TrueNorth [73]
and the 14-nm Intel Loihi [74] neuromorphic chips. On the
one hand, TrueNorth is a GALS design embedding as high
as 1M neurons and 256M binary non-plastic synapses per
chip, where neurons rely on a custom model exhibiting 11
Izhikevich behaviors, or 20 behaviors if three neurons are
combined [137]. On the other hand, Loihi is a fully asyn-
chronous design embedding up to 180k neurons and 114k (9-
bit) to 1M (binary) synapses per chip. Neurons rely on a LIF
model with a configurable number of compartments to which
several functionalities such as axonal and refractory delays,
spike latency and threshold adaptation have been added. The
spike-based plasticity rule used for synapses is programmable
and eligibility traces are supported.

Finally, it should be noted that digital approaches also
encompass FPGA designs, which trade off efficiency for a
higher flexibility and a reduced deployment cost compared
to full-custom designs. Although beyond the scope of this
review, a wide diversity of FPGA designs cover small- to
large-scale cognitive computing (e.g., [62], [202], [203]) and
neuroscience-oriented applications (e.g., [65], [204]).

2) Versatility / efficiency comparative analysis:
A quantitative overview of state-of-the-art bottom-up neu-

romorphic chips is provided in Table IV. Mixed-signal designs
with analog cores and high-speed digital periphery are grouped
on the left [56], [61], [72], [75], [81], [96], digital designs are
grouped on the right [71], [73], [74], [93]–[95].

Regarding the neuron and synapse densities, numbers are
overall quite low for mixed-signal designs relying on core
sub- and above-threshold analog computation, especially as
current designs mostly use older technology nodes. In this
respect, the mixed-signal design of Mayr et al. is able to
exhibit higher densities as SC circuits easily scale to advanced
technology nodes (see Section II). However, through their
ability to fully leverage technology scaling and through a
straightforward implementation of time multiplexing, digital
designs demonstrate the highest neuron and synapse densi-
ties. Considering technology-normalized numbers and equal
synaptic resolutions, ODIN and MorphIC currently have the
highest neuron and synapse densities reported to date. Indeed,
the memory access patterns of on-chip SDSP-based learning
allow for the use of high-density single-port foundry SRAMs.
Loihi is also a high-density design given its extended feature
set and network configurability. On the contrary, TrueNorth
does not embed learning and has a restricted network config-
urability through low fan-in and fan-out values. However, to
date, TrueNorth remains the largest-scale single-chip design
with embedded synaptic weight storage. While digital designs
achieve high neuron and synapse densities based on time
multiplexing and simplified neuron and synapse models, this
comes at the expense of precluding a fully-parallel emulation
of network dynamics. Although SpiNNaker is an exception
and can be programmed with conductance-based models, it
requires timestepped updates of all neuron and synapse states
based on computationally-expensive models, thereby limiting
its power efficiency and its ability to maintain real-time
operation for large networks.

For a fair comparison of the energy per synaptic operation
(SOP), Table IV provides two definitions: the incremental
energy per SOP and the global one. The former is the
amount of dynamic energy paid for each SOP, while the
latter corresponds to the overall chip power consumption
divided by the SOP execution rate, which includes static
power contributions, including leakage and idle switching
power (see Table IV for details). On the analog side, the
ROLLS and DYNAPs subthreshold analog designs have a
very low incremental energy per SOP on the order of 100fJ.
However, when taking the chip static energy into account,
the global energy per SOP in DYNAPs increases by two
orders of magnitude, which can be explained by two factors.
First, fully-parallel implementations have a penalty in static
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TABLE IV
COMPARISON OF SPECIFICATIONS AND MEASURED PERFORMANCES ACROSS BOTTOM-UP NEUROMORPHIC CHIPS. EXTENDED FROM [94].

Author Schemmel [56] Benjamin [72] Qiao [96] Moradi [75] Park [81] Mayr [61] Painkras [71] Seo [93] Akopyan [73] Davies [74] Frenkel [94] Frenkel [95]
Publication ISCAS, 2010 PIEEE, 2014 Front. NS, 2015 TBioCAS, 2017 BioCAS, 2014 TBioCAS, 2016 JSSC, 2013 CICC, 2011 TCAD, 2015 IEEE Micro, 2018 TBioCAS, 2019a TBioCAS, 2019b
Chip name HICANN Neurogrid ROLLS DYNAPs IFAT – SpiNNaker – TrueNorth Loihi ODIN MorphIC

Implementation
Mixed-signal

(above-threshold)
Mixed-signal
(subthreshold)

Mixed-signal
(subthreshold)

Mixed-signal
(subthreshold)

Mixed-signal
(subthr. + SC-mux)

Mixed-signal
(SC) Digital Digital Digital Digital Digital Digital

Technology 0.18µm 0.18µm 0.18µm 0.18µm 90nm 28nm 0.13µm 45nm SOI 28nm 14nm FinFET 28nm FDSOI 65nm LP
Cores� 1 16 1 4 32 1 18 1 4096 128 1 4
Neurosynaptic core area [mm2] 49 168 51.4 7.5 0.31 0.36 3.75 0.8 0.095 0.4 0.086 0.715
State update circuits Fully-parallel Fully-parallel Fully-parallel Fully-parallel Time-multiplexed Time-multiplexed Time-multiplexed Time-multiplexed Time-multiplexed Time-multiplexed Time-multiplexed Time-multiplexed
Time constant Accelerated Biological Biological Biological Biological Bio. to accel. Bio. to accel. Biological Biological N/A Bio. to accel. Bio. to accel.

Routing
flexibility

fan-in / fan-out
Medium

N/A
Medium

N/A
Low

512 / 256
Medium
64 / 4k

Medium
N/A / 1k

Low
128 / 64

High
Programmable

Low
256 / 256

Medium
256 / 512

High
Programmable

Low
256 / 256

Medium
1k / 2k

Neurons per core 512 64k 256 256 2k 64 max. 1000◦ 256 256 max. 1024 256 512
Izhikevich behaviors† (20) N/A (20) (20) 3 3 Programmable 3 11 (3 neur: 20) (6) 20 3
Synapses per core 112k – 128k 16k – 8k – 64k 64k 1M to 114k (1-9 bits) 64k 528k
Synaptic weight storage 4-bit (SRAM) Off-chip Capacitor 12-bit (CAM) Off-chip 4-bit (SRAM) Off-chip 1-bit (SRAM) 1-bit (SRAM) 1- to 9-bit (SRAM) (3+1)-bit (SRAM) 1-bit (SRAM)
Embedded online learning STDP – SDSP – – SDSP Programmable S-STDP – Programmable SDSP S-SDSP

Neuron core density [neur/mm2]∗
raw

norm.
10.5

–
390
–

5
–

34
–

6.5k
–

178
–

max. 267◦

max. 5.8k
320
826

2.6k
2.6k

max. 2.5k
max. 1k

3.0k
3.0k

716
3.9k

Synapse core density [syn/mm2]∗
raw

norm.
2.3k

–
–

2.5k
–

2.1k
–

–
22.2k

–
–

80k
207k

674k
674k

2.5M to 282k
1M to 113k

741k
741k

738k
4M

Supply voltage 1.8V 3.0V 1.8V 1.3V-1.8V 1.2V 0.75V, 1.0V 1.2V 0.53V-1.0V 0.7V-1.05V 0.5V-1.25V 0.55V-1.0V 0.8V-1.2V

Energy per SOP‡
raw

norm.
N/A

(941pJ)N

–
>77fJM

–
134fJM/30pJN (1.3V)

–
22pJN

–
>850pJN

–
>11.3nJM/26.6nJN

>2.4nJM/5.7nJN
N/A

26pJN (0.775V)
26pJN

>23.6pJM (0.75V)
(66.1pJM)

8.4pJM/12.7pJN (0.55V)
8.4pJM/12.7pJN

30pJM/51pJN (0.8V)
12.9pJM/22pJN

� When chips are composed of several neurosynaptic cores, we report the density data associated to a single core. Care should be taken that, depending on the core definition in the different chips, routing resources might
be included (all single-core designs, IFAT, TrueNorth, Loihi and MorphIC) or excluded (Neurogrid, DYNAPs and SpiNNaker). As opposed to the other reported designs, we consider the full Neurogrid system, which
is composed of 16 Neurocore chips, each one considered as a core; routing resources are off-chip. For DYNAPs and SpiNNaker, sharing routing overhead among cores would lead to 28-% and 37-% density penalties
compared to the reported results, respectively. The HICANN chip can be considered as a core of the BrainScaleS wafer-scale system. Pad area is excluded from all reported designs.
† By its similarity with the Izhikevich neuron model, the AdExp neuron model is believed to reach the 20 Izhikevich behaviors [131], but it has not been demonstrated in HICANN, ROLLS and DYNAPs. The neuron
model of TrueNorth can reach 11 behaviors per neuron and 20 by combining three neurons together [137]. The neuron model of Loihi is based on a LIF model to which threshold adaptation is added: the neuron should
therefore reach 6 Izhikevich behaviors, although it has not been demonstrated.
◦ Experiment 1 reported in Table III from [71] is considered as a best-case neuron density: 1000 simple LIF neuron models are implemented per core, each firing at a low frequency.
∗ Neuron (resp. synapse) core densities are computed by dividing the number of neurons (resp. synapses) per neurosynaptic core by the neurosynaptic core area. Regarding the synapse core density, Neurogrid, IFAT
and SpiNNaker use an off-chip memory to store synaptic data. As the synapse core density cannot be extracted when off-chip resources are involved, no synapse core density values are reported for these chips. Values
normalized to a 28-nm CMOS technology node are provided for digital designs using the node factor, at the exception of the 14-nm FinFET node of Loihi for which Intel data from [161] has been used.
‡ The synaptic operation energy measurements reported for the different chips do not follow a standardized measurement process. There are two main categories for energy measurements in neuromorphic chips. On the
one hand, incremental values (denoted with M) describe the amount of dynamic energy paid per each additional SOP computation, they are measured by subtracting the leakage and idle switching power consumption of
the chip, although the exact power contributions taken into account in the SOP energy vary across chips. On the other hand, global values (denoted with N) are obtained by dividing the total chip power consumption by the
SOP processing rate. Values normalized to a 28-nm CMOS technology node are provided for digital designs using the node factor, including for the 14-nm FinFET node of Loihi in the absence of reliable data for power
normalization in [161]. The conditions under which all of these measurements have been done can be found hereafter. For Neurogrid, a SOP energy of 941pJ is reported for a network of 16 Neurocore chips (1M neurons,
8B synapses, 413k spikes/s): it is a board-level measurement, no chip-level measurement is provided [72]. For ROLLS, the measured SOP energy of 77fJ is reported in [207], it accounts for a point-to-point synaptic input
event and includes the contribution of weight adaptation and digital-to-analog conversion, it represents a lower bound as it does not account for synaptic event broadcasting. For DYNAPs, the measured SOP energy of
134fJ at 1.3V is also reported in [207], while the global SOP energy of 30pJ can be estimated from [75] using the measured 800-µW power consumption with all 1k neurons spiking at 100Hz with 25% connectivity
(26.2MSOP/s), excluding the synaptic input currents. For IFAT, the SOP energy of 22pJ is extracted by measuring the chip power consumption when operated at the peak rate of 73M synaptic events/s [81]. In the chip of
Mayr et al., the SOP energy of 850pJ represents a lower bound extracted from the chip power consumption, estimated by considering the synaptic weights at half their dynamic at maximum operating frequency [61]. For
SpiNNaker, an incremental SOP energy of 11.3nJ is measured in [208], a global SOP energy of 26.6nJ at the maximum SOP rate of 16.56MSOP/s can be estimated by taking into account the leakage and idle clock power;
both values represent a lower bound as the energy cost of neuron updates is not included. For TrueNorth, the measured SOP energy of 26pJ at 0.775V is reported in [209], it is extracted by measuring the chip power
consumption when all neurons fire at 20Hz with 128 active synapses. For Loihi, a minimum SOP energy of 23.6pJ at 0.75V is extracted from pre-silicon SDF and SPICE simulations, in accordance with early post-silicon
characterization [74]; it represents a lower bound as it includes only the contribution of the synaptic operation, without taking into account the cost of neuron update and learning engine update. For ODIN and MorphIC,
both incremental and global SOP energy values are provided and include power contributions from all blocks [94], [95]. The global energy per SOP is measured at the maximum acceleration factor. The global energy per
SOP for ODIN in biological time is 54pJ.

power (Table II). Second, the energy cost of the digital routing
infrastructure of DYNAPs suffers from an implementation
in an older 0.18-µm technology node. Preliminary results
from a 28-nm implementation of DYNAPs show a promising
global energy per SOP of 2.8pJ [183]. On the digital side,
the full flexibility in neuron and synapse models offered by
the SpiNNaker platform leads to a global energy per SOP
on the order of tens of nJ (a few nJ if normalized to a
28-nm node). This can be partly mitigated with advanced
power reduction techniques and increased hardware acceler-
ation, which is currently being investigated for the second
generation of SpiNNaker (e.g., see [199], [205], [206]). Full-
custom digital designs have incremental and global energies
per SOP on the order of tens of pJ. As digital designs usually
allow spanning biological to accelerated time constants, an
important aspect to consider is the time constant used for the
characterization of the global SOP energy, as accelerated time
constants allow amortizing the contribution from static power.
For example, the 26-pJ global energy per SOP reported for
TrueNorth was measured in biological time [209], while for
ODIN, the reported 12.7pJ/SOP was measured in maximum
acceleration (this number increases to 54pJ in biological time,
with all neurons firing at 10Hz) [94].

Overall, Table IV allows clarifying the different versa-
tility/efficiency tradeoff optimizations achieved in bottom-
up neuromorphic experimentation platforms. Analog designs
focus on optimizing the versatility at the level of neuronal

and synaptic dynamics while maintaining power efficiency, at
the expense of density efficiency. On the contrary, in digital
designs, versatility cannot be obtained through fully-parallel
real-time conductance-based neuronal and synaptic dynamics.
Instead, it can be obtained either from a phenomenological
viewpoint or at the system level, while allowing for a joint
optimization with power and area efficiencies. This flexibility
in optimizing between versatility and efficiency in digital
designs is highlighted with platforms going from versatility-
driven (e.g., SpiNNaker) to efficiency-driven (e.g., ODIN and
MorphIC), through platforms aiming at a well-balanced trade-
off on both sides (e.g., Loihi). Finally, mixed-signal designs
based on SC circuits provide an interesting middle ground by
maintaining rich dynamics, while partly alleviating the density
penalty of analog designs. However, a competitive energy
efficiency remains to be demonstrated in SC neuromorphic
designs.

3) Spike-based online learning performance assessment:

While bottom-up experimentation platforms offer efficient
implementations bio-inspired primitives, exploiting them on
complex real-world tasks can be difficult. This challenge is
particularly apparent for bio-plausible synaptic plasticity, as
shown in Table V. Indeed, to the best of our knowledge,
no silicon implementation of an STDP- or an SDSP-based
learning rule has so far been demonstrated on at least the
full MNIST dataset [211] without any pre-processing step.
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TABLE V
BENCHMARK SUMMARY FOR SILICON IMPLEMENTATIONS OF STDP- AND

SDSP-BASED LEARNING RULES. ADAPTED FROM [95].

Chip(s) Implementation Learning rule Benchmark

BrainScaleS [56] Mixed-signal 4-bit STDP –
DYNAPs + ROLLS [207] Mixed-signal Fixed + SDSP 8-pattern classification
Mayr et al. [61] Mixed-signal 4-bit SDSP –
Seo et al. [93] Digital 1-bit S-STDP 2-pattern recall
Chen et al. [210] Digital 7-bit STDP Denoising / Pre-processed MNIST
Loihi [74] Digital STDP-based Pre-processed MNIST
ODIN [94] Digital 3-bit SDSP 16×16 deskewed MNIST
MorphIC [95] Digital 1-bit S-SDSP 8-pattern classification

Furthermore, in all cases, these learning rules are only applied
to single-layer networks or to the output layer of a network
with frozen hidden layers (i.e. shallow learning). Recent
studies have demonstrated STDP-based multi-layer learning
in simulation [212], [213], but they have not yet been ported
to silicon.

Another important aspect lies in weight quantization, which
is commonly applied to synapses in order to reduce their
memory footprint. While standard quantization-aware training
techniques need to maintain a full-resolution copy of the
weights to accommodate for high-resolution updates (Sec-
tion IV-A), neuromorphic hardware needs to carry out learning
on weights that have a limited resolution not only during infer-
ence, but also during training [95]. This issue, combined with
simple bottom-up learning rules, tends to reduce the ability
of the network to discriminate highly-correlated patterns, as
highlighted by the binary-weight S-STDP study in [214]. This
is another reason why simple datasets with reduced overlap
are selected for benchmarking, as shown in Table V. One way
to help release this issue is to go for a top-down approach
instead (Section IV).

IV. TOP-DOWN APPROACH – TRADING OFF TASK
ACCURACY AND EFFICIENCY

The top-down neuromorphic design approach attempts at
answering the key difficulty of bottom-up designs in tackling
real-world problems efficiently, beyond neuroscience-oriented
applications (Fig. 1). Taking inspiration from the field of dedi-
cated machine-learning accelerators, top-down design (i) starts
from the applicative problem and the related algorithms,
(ii) investigates how to release key constraints in order to
make these algorithms hardware- and biophysically-aware, and
(iii) proceeds with the hardware integration. This leads to a
tradeoff between efficiency and accuracy on the selected use
case. The resulting designs can thus be distinguished from
their bottom-up counterparts studied in Section III in that
they can hardly be applied to another purpose than the one
they were designed and optimized for (e.g., speech instead
of image recognition), although upcoming developments may
help release this restriction (see Section V).

Interestingly, in line with the challenge of embedded synap-
tic plasticity highlighted by bottom-up approaches, edge com-
puting research currently sees the integration of on-chip learn-
ing capabilities within power budgets of sub- to tens of µW as
one of the next grand challenges [215]. Therefore, following
the steps of the top-down approach (Fig. 1), we first cover the

development of algorithms allowing for efficient spike-based
on-chip training in Section IV-A. Then, we move to silicon
implementations in Section IV-B.

A. Algorithms

The backpropagation of error (BP) algorithm [4], [5] is
usually chosen as a starting point for SNN training, however it
needs to be adapted due to the non-differentiable nature of the
spiking activation function. In this respect, several techniques
were proposed, such as linearizing the membrane potential at
the spike time [216], temporally convolving spike trains and
computing with their differentiable smoothened version [217],
treating spikes and discrete synapses as continuous probabil-
ities from which network instances can be sampled [218],
treating the influence of discontinuities at spike times as noise
on the membrane potential [219], using a spiking threshold
with a soft transition [220], or differentiating the continuous
spiking probability density functions instead [221]. Another
popular and robust approach consists in using a surrogate
gradient in place of the spike function derivative during
the backward pass [222]–[224], similarly to the use straight-
through estimators for non-differentiable activation functions
in ANNs [40], [41], [225].

However, while these techniques allow for the application of
BP to SNNs, it is also necessary to reduce the computational
complexity and memory requirements of BP toward an on-chip
implementation. The first key issue of BP is the weight trans-
port problem, also known as weight symmetry [226], [227]: the
same weight values need to be accessed during the forward
and the backward passes, implying the use of complex memory
access patterns and architectures. The second key issue of BP
is update locking [228], [229], which requires buffering the
activation values of all layers before the backward pass can
be carried out, and thus entails severe memory and latency
overheads. Interestingly, these issues also preclude BP from
being biologically plausible [230], and both of them arise from
a non-locality of error signals and weights during the forward
and backward passes [231]. On the one hand, locality of the
error signals can be addressed with layerwise loss functions
allowing for an independent training of the layers with local
error information [232]–[234]. A similar strategy is pursued
in synthetic gradient approaches [228], [229], which rely on
local gradient predictors. Yet another approach consists in
defining target values based on layerwise auto-encoders [235],
[236]. On the other hand, approaches aiming at weight locality
are found in the recent development of feedback-alignment-
based algorithms [237]–[240]. They rely on fixed random
connectivity matrices in the error pathway, either as a direct
replacement of the backward weights (feedback alignment,
FA [237], [238]), for a projection of the network output error
on a layerwise basis (direct feedback alignment, DFA [239]),
or for a projection of the one-hot-encoded classification labels
(direct random target projection, DRTP [240]). Interestingly,
the DRTP algorithm releases not only the weight transport
problem, but also update locking by ensuring locality in both
weight and error signals. However, feedback-alignment-based
algorithms currently do not offer a satisfactory performance for
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the training of convolutional neural networks (CNNs) as the
kernel weights have insufficient parameter redundancy, which
is known as the bottleneck effect [237], [240], [241].

The above-mentioned algorithms can be straightforwardly
applied to SNNs with rate-based coding. For example, DFA
has been formulated as a three-factor rule for SNNs in [242],
and DECOLLE was shown to be suitable for memristive
neuromorphic hardware in [243]. However, rate-based coding
implies two key issues. First, updates cannot be carried out as
long as activity has not reached a steady-state regime, leading
to a latency penalty. Second, rate coding is unlikely to lead to
any power advantage compared to conventional non-spiking
approaches [244], an issue that also applies to ANN-to-SNN
mapping approaches that rely on the equivalence between
the ReLU activation function and the spike rate of an I&F
neuron [118]–[120]. Therefore, taking time into consideration
is necessary, otherwise the key opportunities in sparsity and
low power consumption of SNNs cannot be exploited. To
solve this issue, several gradient-based algorithms exploiting
a TTFS encoding were proposed [245]–[247]. The algorithm
from [247] was demonstrated with the BrainScaleS-2 system,
although based on a training-in-the-loop setup as the full
update rules have a complexity level that is incompatible
with an on-chip implementation. However, a simplified version
was also shown in [247] to exhibit a low complexity while
maintaining the learning ability on simple tasks.

In order to perform gradient-based training in both space
and time, another approach consists in starting from the back-
propagation through time (BPTT) algorithm [248]. Approxi-
mations of BPTT were investigated in the context of recurrent
SNNs, among which the e-prop [249] and the online spatio-
temporal learning (OSTL) [250] algorithms. The former relies
on the simplification that only the direct influence of spikes
on the output error is taken into account, not their influence
on future errors through the network dynamics. The latter
elegantly separates the spatial and temporal components of the
gradient, and approximates to zero a residual term resulting
from cross-layer spatio-temporal dependencies. Interestingly,
both algorithms map onto bio-plausible synaptic eligibility
trace primitives (see Section III-A2) and have the ability to
learn the spike encoding of the input data. Furthermore, they
can be applied online as new data is provided (i.e. no unrolling
of the network through time is required). They can thus be seen
as simplifications of the real-time recurrent learning (RTRL)
algorithm [251], thereby addressing the prohibitive memory
and time complexities of the original RTRL formulation [252].

Just as the latter BPTT-derived rules can be mapped onto
bio-plausible synaptic eligibility traces, there is a growing
interest into the development of algorithms that can be mapped
onto primitives related to dendritic processing. In [253], Guer-
guiev et al. show how segregated basal and apical dendritic
compartments can be used to integrate feedback and feedfor-
ward signals, respectively. However, it does so in two distinct
forward and target phases, which is not biologically plausible.
This constraint is released in the cortical model proposed by
Sacramento et al.: the distal compartments encode prediction
errors resulting from top-down feedback and lateral inhibition
with local interneurons, which then modulate plasticity on

bottom-up basal synapses through the soma [254]. This model
is also closely related to another predictive coding architecture,
in which errors are represented in specific subpopulations of
neurons, instead of dendrites [255]. Importantly, the work of
Payeur et al. demonstrates how to combine numerous bio-
inspired elements mentioned in Section III, such as bursts of
spikes, voltage traces, dendritic compartments, neuromodula-
tion and STP [256]. For the first time, scaling to machine learn-
ing datasets as complex as ImageNet [257] is demonstrated.
Although this scaling is still at a proof-of-concept level with
an inefficient resource usage, this is a key first step toward
large-scale bio-plausible learning.

Finally, for energy-based models (of which Hopfield net-
works may be the prime example [258]), the equilibrium
propagation algorithm offers an alternative to BPTT for an
implementation of gradient-based training [259]. While BPTT
requires carrying out distinct computations in the forward and
backward passes of the algorithm, equilibrium propagation
estimates gradients by running the energy-based model in two
phases: a free phase until the network reaches equilibrium, and
a nudging phase during which the output neurons are nudged
toward the desired solution, leading to a new equilibrium.
Updates can then be carried out based on the results of
these two phases. As this would lead to hardware constraints
similar to those of update locking, another version of the
equilibrium propagation algorithm has been proposed in which
weights can be updated in a continuous manner during the
nudging phase [260]. This continuous version recently led to
a first spike-based implementation of equilibrium propagation
in [261]. However, the use of rate coding currently implies
latency and power penalties similar to those of the previously-
mentioned DFA-based and DECOLLE-based spiking algo-
rithms of [242] and [243], respectively.

B. Silicon implementation

While most of the algorithms outlined in Section IV-A
result from recent developments, some of them already made
it to silicon. We first review top-down designs qualitatively to
illustrate their applicative landscape, including developments
merging bottom-up and top-down insight (Section IV-B1).
Then, we quantitatively assess the key accuracy/efficiency
tradeoff that top-down designs optimize for their selected use
cases (Section IV-B2).

1) Overview of neuromorphic accelerators:
As the scopes, implementations and applications of top-

down designs vary widely, comparing them directly is difficult,
except when standard benchmarks are used. In order to extract
the main trends, a summary of top-down neuromorphic designs
is provided in Table VI.

The three chips from Knag et al. [262], Kim et al. [263]
and Buhler et al. [264] follow a similar approach for sparse
coding of images based on an SNN implemented as a locally
competitive algorithm (LCA). The LCA is implemented as a
systolic ring of SNN cores, each of which is fully-connected
to input pixels with feedforward excitatory connections, while
lateral connections between neurons are inhibitory to favor
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TABLE VI
COMPARISON OF TOP-DOWN NEUROMORPHIC CHIPS. THE THREE DESIGNS ON THE RIGHT COMBINE BOTTOM-UP AND TOP-DOWN APPROACHES.

Author Knag [262] Kim [263] Buhler [264] Park [266] Frenkel [267] Chen [210] Pei [273] Neckar [274]
Publication JSSC, 2015 VLSI-C, 2015 VLSI-C, 2017 JSSC, 2019 ISCAS, 2020 JSSC, 2019 Nature, 2019 PIEEE, 2019
Chip name – – – – SPOON – Tianjic Braindrop

Implementation Digital Digital Mixed-signal Digital Digital Digital Digital Mixed-signal
Technology 65nm 65nm 40nm 65nm 28nm FDSOI 10nm FinFET 28nm HPL 28nm FDSOI
Architecture Spiking LCA Spiking LCA Spiking LCA BNN eCNN SNN/BNN SNN/ANN SNN
Resources

or topology
256 neur
128k syn

256 neur
83k syn

512 neur
32k syn

FC200–FC200
–FC10

C5×5@10
–FC128–FC10

4k neur
1M syn

40k neur
10M syn

4k neur
64k syn

Embedded
online

learning
SAILnet

(unsupervised)
BP

(last layer only)
Yes

(unspecified) DFA DRTP STDP No No

Demonstrated
application

Image sparse
coding

Image sparse
coding & recog.

Image sparse
coding & recog. Image recog. Image recog.

Image sparse
coding & recog.

Real-time image,
sound recognition

& control

NEF-based
networks

Benchmark(s)‡ Denoising MNIST (84%–90%) MNIST (88%) MNIST (97.8%)
MNIST (95.3%,97.5%),

N-MNIST (93.0%,93.8%)
Denoising,

MNIST (98.6%)
Autonomous
bike driving∗

Function fitting,
integrator

Energy metric 48pJ/pix 5.7pJ/pix 48.9pJ/pix 302pJ/pix
1.7nJ per

pixel event†
3.8pJ/SOP

0.78pJ/OP,
1.54pJ/SOP 0.38pJ/SOP

‡ Accuracy results in bold font are obtained with on-chip online learning.
† Pre-silicon results.
∗ Pei et al. also use N-MNIST and MNIST to quantify the efficiency and throughput improvement over a GPU and the improvement brought by hybrid SNN-ANN processing over SNN-only processing, respectively.
However, the reported results are used only for relative comparisons, the provided data is not sufficient to be included in this table and in Section IV-B2.

sparsity in image representation. The 65-nm digital chip from
Knag et al. furthermore implements SAILnet, a bio-inspired
unsupervised algorithm with local spike-based plasticity for
adaptation of the neuron receptive fields [265]. Its main
purpose is thus image feature extraction applied to denoising,
however it lacks an inference module for image recognition
and classification. This point is addressed by the chips from
Kim et al. and Buhler et al. The former is a 65-nm digital
design whose last layer can be trained with stochastic gradient
descent (SGD) to perform classification. The latter is a 40-
nm mixed-signal design embedding analog LIF neurons, it is
also claimed to embed online learning, but without specifying
the associated algorithm. Both chips are benchmarked on
MNIST [211], although with limited accuracies ranging from
84% to 90%.

Another approach is proposed by Park et al. [266], whose
claim is to leverage the advantages of both ANNs (i.e. single-
timestep frame-based processing) and SNNs (i.e. sparse bi-
nary activations). The proposed architecture is thus equiva-
lent to a binary neural network (BNN). It embeds the bio-
inspired version of the DFA algorithm proposed by Guer-
guiev et al. in [253]. Although DFA suffers from update
locking, which implies a pipelined weight update scheme,
Park et al. demonstrate a low-power design achieving an
accuracy of 97.8% on MNIST with on-chip online learning.

Therefore, top-down neuromorphic designs mostly split
among two categories: SNNs with event-driven processing
at the expense of accuracy [262]–[264] or BNNs with high
accuracy at the expense of conventional frame-based pro-
cessing [266]. The SPOON chip proposed in [267] aims
at bridging the two approaches. It is a 28-nm event-driven
CNN (eCNN) combining both event-driven and frame-based
processing: through the use of a TTFS code, the former
leverages sparsity from spiking neuromorphic retinas [268]–
[271], while the latter ensures efficiency, accuracy and low
latency during training and inference. It also embeds the
low-overhead DRTP algorithm in the fully-connected layers.
SPOON is benchmarked on MNIST and on the spike-based

neuromorphic MNIST (N-MNIST) dataset [272], which was
generated by presenting MNIST images to an ATIS neuro-
morphic retina [269] mounted on a pan-tilt unit and moved
in three saccades. SPOON reaches accuracies of 95.3% (on-
chip training) and 97.5% (off-chip training) on MNIST, and
of 93.0% (on-chip training) and 93.8% (off-chip training) on
N-MNIST.

Finally, three recently-published chips highlight that em-
bedding bottom-up insight into a top-down approach can be
beneficial to neuromorphic computing (Table VI): the chip
from Chen et al. [210], Tianjic [273] and Braindrop [274]. The
first one is another attempt to bridge the gap between the BNN
and SNN trends with a low-power STDP-based SNN in 10-
nm FinFET that can also be programmed as a BNN. However,
these two modes are still segmented at the application level:
SNN operation with STDP is chosen for image denoising
and BNN operation with offline-trained weights is chosen for
image recognition. Indeed, Chen et al. show that an offline-
trained BNN achieves 98.6% on MNIST, while a single-
layer SNN with STDP training only achieves 89% on a
pre-processed Gabor-filtered version of MNIST. Event-driven
computation can thus not be leveraged in this device if high
accuracy is required. The second one is Tianjic, a 28-nm digital
design allowing for hybrid ANN-SNN setups and embedding
as high as 40k neurons and 10M synapses per chip. This scale
allows multi-chip Tianjic setups to be benchmarked on an
autonomous bike driving task, demonstrating how both the
ANN and SNN paradigms can be combined for real-time
image recognition, sound recognition, and vehicle control.
The third one is Braindrop, a 28-nm mixed-signal design that
relies, together with its software frontend, on an efficient set
of mismatch- and temperature-invariant abstractions to pro-
vide one-to-one correspondence with the neural engineering
framework (NEF) [275] (see also Section V-B). It follows an
encode-transform-decode architecture directly inspired by the
previous-generation bottom-up Neurogrid design [72], and was
benchmarked on nonlinear 1D and 2D function fitting tasks
and on integrator modeling. These three chips demonstrate
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Fig. 5. Analysis of tradeoffs between accuracy, area and energy per classifi-
cation on the MNIST dataset for SNNs, BNNs, ANNs and CNNs. Although
MorphIC and the chip from Chen et al. embed online learning, the MNIST
experiments of these two chips were obtained with offline-learned weights.
Results on the non-pre-processed MNIST dataset are reported for the chip
from Chen et al. in its BNN configuration. All chips are digital and allow
for technology normalization, except the 40-nm design from Buhler et al. and
the 65-nm design from Chen et al., which are mixed-signal [264], [276]. Pre-
silicon results are reported for SPOON. (a) Area-accuracy tradeoff. Silicon
area (excluding pads) has been normalized to a 28-nm technology node using
the node factor (e.g., a (28/65)2-fold reduction for normalizing 65nm to
28nm), except for the 10-nm FinFET node from Chen et al. [210] where
data from [161] was used for normalization. The TrueNorth area varies as
Esser et al. used different numbers of cores for their experiments (5, 20,
80 and 120 cores, in the order of increasing accuracy) [218]. A 1920-core
configuration is also reported in [218], leading to a 99.42-% accuracy on
MNIST with TrueNorth, a record for SNNs. However, as this configuration
would lead to a normalized area of 980mm2, we only included TrueNorth
configurations whose scale are comparable with the other chips. (b) Energy-
accuracy tradeoff. Energy has been normalized to a 28-nm technology node
using the node factor (e.g., a (28/65)-fold reduction for normalizing 65nm to
28nm). Adapted from [267].

a high energy efficiency with 3.8pJ/SOP for the chip of
Chen et al., 0.78pJ/OP (ANN setup) or 1.54pJ/SOP (SNN
setup) for Tianjic and 0.38pJ/SOP for Braindrop. However,
Braindrop and Tianjic do not embed online learning and
require an offline setup for network training and programming,
while the STDP rule in the chip from Chen et al. has a limited
training ability beyond denoising tasks (Table V).

2) Accuracy / efficiency comparative analysis:
While bottom-up SNN designs favor a comparison based on

low-level criteria such as neuron behaviors, synaptic plasticity

and weight resolution, neuron and synapse densities, energy
per SOP, or fan-in and fan-out (Section III-B2), top-down neu-
romorphic approaches require a comparison based on bench-
mark performance as they start from the applicative problem.
Currently, MNIST is the only dataset for which data is avail-
able for many bottom-up and top-down neuromorphic designs,
as well as for conventional machine-learning accelerators.
Therefore, MNIST allows for accuracy/efficiency comparisons
across all neural network types, including SNNs, BNNs, ANNs
and CNNs (see further discussion in Section V-B).

The tradeoff analysis of energy, area and accuracy on the
MNIST dataset2 is shown in Fig. 5, which has been normalized
to a 28-nm technology node to allow for fair comparisons,
except for the two mixed-signal designs of [264], [276].
SNNs appear to lag behind conventional ANN and CNN
accelerators [277], [278], the BNN from Park et al. [266],
the chip from Chen et al. in its BNN configuration [210], and
the SPOON eCNN [267]. Among SNNs, MorphIC achieves a
high area efficiency without incurring a power penalty. In-
terestingly, the hybrid approach pursued in SPOON leads
to the only design achieving the efficiency of conventional
machine-learning accelerators while enabling online learning
with event-based sensors, thanks to a tight combination of
event-driven and frame-based processing supported by DRTP
on-chip training. Similar trends were also recently outlined
in Tianjic by Pei et al., where a hybrid ANN-SNN network
was demonstrated to outperform the equivalent SNN-only
network [273]. These findings form an interesting trend worth
investigating for the deployment of top-down neuromorphic
designs in real-world applications.

V. DISCUSSION AND OUTLOOK

From this comprehensive overview of the bottom-up and
top-down neuromorphic engineering approaches, it is pos-
sible to identify important synergies. In the following, we
discuss them toward the goal of neuromorphic intelligence
(Section V-A), elaborate on the missing elements and open
challenges (Section V-B), and finally outline some of the most
promising use cases (Section V-C).

A. Merging the bottom-up and top-down design approaches

The science-driven bottom-up approach, which aims at
replicating and understanding natural intelligence, is driven
mainly by neuroscience observations, under the constraint of
optimizing the silicon implementation efficiency of neuron ver-
satility, synaptic plasticity and communication infrastructure
scalability. Through Section III, we highlighted how these
tradeoffs can be optimized in silico, but also showed that
bottom-up designs can struggle to achieve the efficiency of
dedicated machine-learning accelerators. Identifying suitable
applications that can exploit the design choices driven by
neuroscience considerations and outperform conventional ap-
proaches is still an open challenge.

2 Results obtained on pre-processed or simplified versions of MNIST are
not included.
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The engineering-driven top-down approach, which aims at
designing artificial intelligence devices, is fed by efficient
engineering solutions to real-world problems, under both the
constraint and guidance of bio-inspiration. However, the effi-
ciency and relevance of top-down design for neuromorphic en-
gineering is conditioned by the bio-inspired elements that are
considered as essential, with widely different choices reported
in Section IV. This assessment actually bears key importance,
yet it is often not sufficiently grounded on theoretical and/or
experimental evidence.

It thus appears that each approach can act as a guide
to address the shortcomings of the other (Fig. 1). Indeed,
on the one hand, top-down guidance helps pushing bottom-
up neuron and synapse integration beyond the purpose of
exploratory neuroscience-oriented experimentation platforms.
On the other hand, more bottom-up investigation is needed to
identify the computational primitives and mechanisms of the
brain that are useful, and to distinguish them from artefacts
induced by evolution to compensate for the non-idealities
of the biological substrate. The concept of neuromorphic
intelligence reflects this convergence of natural and artificial
intelligence, which requires an integrative view not only of
the global approach (i.e. bottom-up or top-down), but also
along the processing chain (i.e. from sensing to action through
computation) and down to the technological design choices
outlined in Section II.

B. Open challenges and opportunities

Two key components are still missing to help achieve neu-
romorphic intelligence and to design neuromorphic systems
with a clear competitive advantage against conventional ap-
proaches: research and development frameworks, and adequate
benchmarks.

Frameworks: Unveiling the road to neuromorphic in-
telligence requires a clearly-articulated framework that should
provide three elements. The first element is the definition of
appropriate abstraction levels that can be formalized, from
the behavior down to the biological primitives. For this, the
NEF [275] and the free energy principle (FEP) [279] may
be good candidates. The former approaches the modeling of
complex neural ensembles as dynamical systems of nonlinear
differential equations. Support for the NEF is available down
to the silicon level with Braindrop [274], which allows map-
ping dynamical systems onto neuromorphic hardware made of
somas and synaptic filters. A large scope of NEF applications
has already been studied in the literature (e.g., see [280] for a
recent review). The latter, the FEP, articulates action, percep-
tion and learning into a surprise minimization problem. The
FEP has the potential to unify several existing brain theories
at different abstraction levels, from the smallest synapse-level
scales to network, system, behavioral and evolutionary scales
(e.g., see [281] for a review). The second element required for
a framework toward neuromorphic intelligence is a coherent
methodology. By reviewing the bottom-up and top-down ap-
proaches as well as their strengths, drawbacks, and synergies,
this work provides a first step in this direction. Finally, the
framework needs to provide clear metrics and guidelines to

measure progress toward neuromorphic intelligence, an aspect
that is closely linked to the lack of suitable benchmarks
described hereafter.

Benchmarks: Appropriate benchmarks are missing
at two levels. First, task-level benchmarks suitable for neu-
romorphic architectures are required in order to demonstrate
an efficiency advantage over conventional approaches. In Sec-
tion IV-B2, while the MNIST dataset was used to highlight
that the accuracy/efficiency tradeoff of neuromorphic chips
is catching up with state-of-the-art machine-learning accel-
erators, it was chosen mainly because it is the only dataset
currently allowing for such comparisons. Indeed, MNIST
does not capture the key dimension inherent to SNNs and
neuromorphic computing: time [107]. It is thus unlikely for
a neuromorphic efficiency advantage to be demonstrated on
MNIST. N-MNIST introduces this time dimension artificially
as it is generated with a spiking retina from static im-
ages. Moreover, while it is popular for the development of
spike-based algorithms and software- or FPGA-based SNNs
(e.g., see [282] for a review), to the best of our knowledge,
none of the bottom-up and top-down neuromorphic designs
discussed in this review were benchmarked on N-MNIST,
except in [267] for SPOON and in [273] where Pei et al. use
this dataset to quantify the efficiency and throughput im-
provement of Tianjic over GPUs. This further highlights the
need for widely-accepted neuromorphic datasets embedding
relevant timing information, as recently called for in [108].
Recent trends in keyword spotting may offer an interesting
common task-level benchmark for neuromorphic designs and
machine-learning accelerators in the near future. Indeed, the
time dimension now becomes an essential component, and
spiking auditory sensors can be used on standard datasets such
as TIDIGITS or the Google Speech Command Dataset [283],
[284]. For the promising use case of biosignal processing
(see Section V-C), an EMG- and vision-based sensor fusion
dataset for hand gesture classification was recently proposed
in [285]. Data is available in both spiking and non-spiking
formats, allowing for fair comparisons between neuromorphic
and conventional approaches. Results are already available
for an ODIN/MorphIC system, Loihi, and an NVIDIA Jetson
Nano portable GPU, showing a favorable accuracy/efficiency
tradeoff for the neuromorphic systems. Overall, we would like
to emphasize that although demonstrating an advantage for
neuromorphic application-specific integrated circuits (ASICs)
over general-purpose CPUs and GPUs is a valuable first step,
the challenge is now to demonstrate a compelling advantage
over conventional machine learning ASICs, such as [38], [286]
for keyword spotting and [287] and biosignal processing tasks.

Second, general benchmarks should also allow for a proper
evaluation of neuromorphic intelligence. This assessment can-
not be done on specific tasks, as prior task-specific knowledge
can be engineered into a system or acquired through massive
training data [288]. Instead, such benchmarks should measure
the end-to-end ability of the system to adapt and generalize,
and thus measure its efficiency in acquiring new skills [288].
To date, general datasets and task definitions suitable for the
assessment of small-scale neuromorphic intelligence are still
missing.
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C. Neuromorphic applicative landscape: future directions

The purpose of this section is not to provide an extensive
overview of the whole applicative landscape of neuromorphic
systems, but rather to outline some of the most promising
current and future use cases. These high-potential use cases
are mainly at the edge, where low-power resource-constrained
devices must process incoming data in an always-on, event-
driven fashion. Furthermore, in all of the applications de-
scribed below, on-chip learning will be a key feature to
enable autonomous adaptation to users and environments. For
neuromorphic applications beyond the scope of adaptive edge
computing, we refer the reader to [289], which provides a
thorough overview based on the Intel Loihi platform.

Smart sensors: The use case of smart sensors is
currently the dominant one in the literature. As highlighted
throughout this review, it is currently mostly driven by
small-scale image recognition. However, as discussed in Sec-
tion V-B, keyword spotting embeds biological-time temporal
data and may soon be a key driver for neuromorphic smart
sensors. Early proof-of-concept works in this direction can
be seen in [290], [291], though they still rely on keyword
spotting datasets that have been pre-processed off-chip to
extract the Mel-frequency cepstral coefficient (MFCC) fea-
tures, which is problematic for two reasons. First, it re-
moves the most computationally-expensive part of the problem
(e.g., see [286]). Second, it removes the intrinsic time dimen-
sion of the input data, thus falling back onto an image classifi-
cation problem. Therefore, end-to-end time-domain processing
of speech data in neuromorphic smart sensors appears as an
exciting direction for future research, especially if combined
with on-chip learning for user customization and privacy.

Biosignal processing: Biological signals share with
speech two key properties that make them suitable for neu-
romorphic processing at the edge in wearables: they involve
temporal data and unfold in biological time. Furthermore,
biosignals offer the additional advantage of being intrinsically
based on a spiking activity, thus allowing for end-to-end
spike-based processing. Therefore, there has recently been
extensive work on the processing of ExG signals with neuro-
morphic systems, i.e. electrocardiography (ECG) [292], [293],
electroencephalography (EEG) [294], [295], and electromyo-
graphy (EMG) [285], [296]. Detailed reviews are available
in [297], [298]. As biosignals are subject to wide variations
over time and on a user-to-user basis, on-chip adaptation is
also a key requirement [298].

Neuromorphic robots: The use of neuromorphic
processing in robotics is currently actively being investi-
gated [104]–[107], [291], [299]–[302], from closed sensorimo-
tor loops to simultaneous localization and mapping (SLAM),
path planning and control. However, importantly, the design
of autonomous robotic agents is not only a suitable use case
for neuromorphic systems per se, but may also be an essential
step for bottom-up analysis by synthesis. Indeed, achieving
cognition and neuromorphic intelligence in silico may not be
possible without a body that interacts and adapts continuously
with the environment [303], as it is one of the very purposes
biological brains evolved for [304], [305].
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