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Abstract—Spiking neural networks have shown great promise
for the design of low-power sensory-processing and edge-
computing hardware platforms. However, implementing on-
chip learning algorithms on such architectures is still an open
challenge, especially for multi-layer networks that rely on the
back-propagation algorithm. In this paper, we present a spike-
based learning method that approximates back-propagation using
local weight update mechanisms and which is compatible with
mixed-signal analog/digital neuromorphic circuits. We introduce
a network architecture that enables synaptic weight update mech-
anisms to back-propagate error signals across layers and present
a network that can be trained to distinguish between two spike-
based patterns that have identical mean firing rates, but different
spike-timings. This work represents a first step towards the
design of ultra-low power mixed-signal neuromorphic processing
systems with on-chip learning circuits that can be trained to
recognize different spatio-temporal patterns of spiking activity
(e.g. produced by event-based vision or auditory sensors).

I. INTRODUCTION

Spiking neural network (SNN) models are highly efficient

at processing sensory signals while minimizing their memory

and power-consumption resources. For this reason, they have

established themselves as a valuable alternative to traditional

deep learning methods for applications that require ultra-low

power edge-computing capabilities. These models, compared

to standard Artificial Neural Networks (ANNs), take one

step closer to brain-inspired processing by using an event-

driven processing mode: their leaky Integrate-and-Fire (I&F)

neurons transmit information only when there is sufficient

input data to reach their spiking threshold. As the I&F neu-

rons are implemented with passive current-mode sub-threshold

circuits [1], this data-driven computation mode only burns

power when there are signals to process. However, training

neural networks implemented with these circuits remains a

challenging problem due to their intrinsic spiking non-linearity

and to the requirement of local learning rules. To this end,

adapting the original back-propagation algorithm [2] to work

with spiking neural networks has drawn substantial atten-

tion [3]–[5]. So far, however, these attempts have been done

for software simulations of spiking neurons and the underlying

incongruity between the proposed training mechanism and the

limitations of the (noisy, imprecise and low-resolution) mixed-

signal analog/digital silicon neurons remains.

Dedicated neuromorphic spiking neural network platforms

able to implement learning mechanism have indeed been

proposed in recent years [6]–[9]. However, such architectures

have been designed with pure digital circuits, or with digital

co-processors in the loop. They have not been optimized for

power consumption, hence rendering the use of such networks

less efficient for low power edge computing applications.

The contribution of this paper, is to investigate the fea-

sibility of creating a dedicated mixed-signal learning circuit

that implements a spiking version of a recently proposed

cortical model [10] which approximates the back-propagation

algorithm through the propagation of local error signals at

the network level. We show that this network is able to

correctly learn to distinguish different temporal input patterns,

relying solely on feedback propagation of a teacher stimulus

and local weight updates mechanism, compatible with mixed-

signal neuromorphic circuits [1]. The main challenge in this

work was to find a spiking neural network architecture that is

able to approximate the back-propagation algorithm and at the

same time is compatible with mixed-signal learning circuits.

II. NETWORK TOPOLOGY

Inspired by the functionality, connectivity, and diversity

of cell types found in the neocortex, previous work [10]

has proposed a cortical model of learning and neural com-

putation comprising of a population of rate-based multi-

compartment excitatory neurons and inhibitory interneurons.

Multi-compartment neurons aim to approximate dendritic pro-

cesses more accurately by having separate compartments,

which interact with each other. Figure 1 shows a simplified

representation of such a model: the neuron is schematized as

a three-compartment ((A) Apical, (B) Basal and (S) Somatic

compartment) pyramidal neuron (P) which integrates sensory

bottom-up information and a top-down teaching signal. Pyra-

midal neurons are driven by sensory inputs, while interneurons

(I) are laterally driven by the pyramidal neurons. The apical

compartment (A) of the pyramidal neurons receive feedback

from higher-order areas as well as from the interneurons.

All bottom-up connections, as well as lateral recurrent

connections, (see Figure 1) are subject to plasticity, while

the synapses that modulate the top-down teaching signals are

fixed and conductance-based (see Figure 1, dotted connections,

Eq. 4 and [11]). Plasticity is driven by the requirement of the

apical compartment to match the top-down teaching signal

coming from the layer above with the lateral connectivity

coming from the interneurons. This requires the inhibitory

interneuron to match the activity of the above layer. As such
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Fig. 1: Network connectivity between (P)yramidal, (I)nter and

(R)eadout neurons. Sensory input is propagated bottom-up via

the pyramidal neuron; the teacher signal is propagated top-

down via the readout neuron. Recurrent connections between

pyramidal neurons and interneurons are set-up to minimize the

prediction error in the apical compartment of the pyramidal

neuron. Dotted connection are conductance-base excitatory

synapses, as described in Section III-A

the hidden layer has a number of interneurons equal to the

number of neurons in the layer above.

During learning, interneurons learn to replicate the spiking

activity of specific neurons in the above layer, such as to cancel

the top-down teacher signal in the apical compartment of the

pyramidal neuron [12]. Similarly, the firing rate of the readout

neuron (R) will tend to the teacher signal. The weights of the

network converge so that the firing rate of the readout neuron

will tend to the teacher signal, even when the teacher signal

is turned off.

III. CONSTRAINTS AND MODELS FOR THE HARDWARE

IMPLEMENTATION

A. Equations

In the following, we adapted the model to use equations and

plasticity mechanisms that can be directly implemented with

sub-threshold neuromorphic circuits as presented in [1], and

that are implemented on the DYNAP-SE chip [13].

In the theoretical model, the voltage V k
Comp of individ-

ual compartments is approximated by low-pass filtering the

incoming current Ik of the k–th compartment (Eq. 1). For

compatibility with the current-mode neuromorphic circuits, the

membrane voltage, is represented as a current IS , as defined in

Eq. 2. This membrane current will trigger an action potential

when crossing a predefined threshold.

IkComp = −
∑
i

dIi
dt

(1)

dIS

dt
=

1

τ

∑
k

αk

αk + l
IkComp − lIS + σ2 (2)

where τ is the membrane time constant, αk the coupling factor

of the k–th compartment, l the leak and σ2 an additional noise

term (see Section III-B).

Bottom-up weight updates (Figure 1, arrowed connections)

are modulated by the learning rule in Eq. 3. The postscripts

S and B represent different compartments of the neuron

(such as the somatic and basal compartments), but the same

learning rule takes place in the (A) apical compartment of the

pyramidal neuron between the top-down projection and the

lateral inhibitory connection. The hysteresis term (Θ) of the

equation gives rise to a stop-learning region which enables life

long learning [14].

Bottom-up connections follow the following learning rule :

Δw =

⎧⎪⎨
⎪⎩

η(IS − IB)−Θ if IS − IB > Θ

η(IS − IB) + Θ if IS − IB < −Θ

0 else

(3)

where Δw is the incremental weight update to be applied,

being a function of the difference between somatic and basal

membrane currents IS and IB , η a learning update rate and

Θ an hysteresis term.

Top-down conductance-based connections (Figure 1, dotted

connections) are described by Eq. 4.

IAComp = Isynα(IS − Erev) (4)

Where IAComp is the apical compartment current injected

into the somatic compartment, IS is the somatic membrane

current and Erev is the reversal potential. Finally, α is a scaling

factor and Isyn is the post-synaptic current.

B. Parameters mismatch

This work was carried out using the Python Teili software

library [15] for the Brian spiking neural network simula-

tor [16] which reduces the gap between software simulation

and hardware emulation by directly simulating the properties

of the mixed-signals CMOS neuron circuits. In order to model

the device-mismatch effects due to the fabrication process of

circuits, all the variables in the neuron and synapse network

are subject to a 20% random variability, centered around their

nominal value, which is in the range of the expected variations

[17], [18].
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Fig. 2: Architecture of the network. The two input patterns

have identical statistics: 128 spikes for a 200ms pattern,

distributed on 32 input neurons.

C. Learning Circuits

The learning rules described in section III-A have already

been implemented in previously proposed neuromorphic hard-

ware [19]. Conductance based synapses, such as the top-down

connections in this work, have been described and tested thor-

oughly [11]. Using the NMDA block of single neurons, these

equations are implementable on mixed-signal neuromorphic

processors and have been used in spiking dendritic prediction

algorithms [20]. The hardware implementation of the bottom-

up connections have been implemented in recent learning

circuits [21] and can be extended to exploit the stochasticity

of memristive devices.

IV. RESULTS

Following the rate-based model previously proposed [10],

we validate the spiking network in a spatio-temporal pattern

recognition task: two distinct spatio-temporal patterns, with

same mean firing rates, are presented to the network, which

was trained to respond only to one of the two. A network

comprising two pyramidal neurons and one interneuron is able

to learn to detect a 32 channel input sensory pattern. Figure 2

describes the proposed network. A synthetic randomly gen-

erated periodic spiking pattern was presented together with a

900 Hz teaching signal. The teacher signal was presented for
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Fig. 3: Results from the pattern recognition task. The plot

shows the calcium current which is approximated by the low-

passed (200ms time constant) spiking activity of the readout

neuron. Spikes are not shown due to their oscillatory dynamics.

The amplitude L represents the learning process: the difference

in activity of the output neuron between before and after

the presentation of teaching signal and input pattern. The

amplitude D represents the difference in activity between

a known pattern (Pattern 1) and a deviatory sensory input

(Pattern 2), proving that learning is specific. Optimally, we

would expect L and D to be as large as possible. The spiking

activity of the output neuron is measured as a current due to

hardware constraints as explained in III-A.

an arbitrary long period during which the network learns to

associate the higher firing activity due to the teaching signal

with an input pattern and nudges the weights in order to sustain

this activity even when the teaching signal is turned off. It is

then able to differentiate the input pattern (Pattern 1) from a

deviating pattern (Pattern 2) with identical statistics.

Figure 3 shows the results of the pattern recognition task:

first, the input pattern is presented without the teaching signal,

then the teaching signal and the input pattern are presented

together. Finally, the teaching signal is removed. The activity

of the output neuron has increased by a factor L due to learning

process that took place. After a period in which no input

is presented, a second, deviatory pattern is presented to the

network: the activity of the output neuron is lower by a factor

of D. The response of the untrained network to either pattern

is comparable, signifying that the learning process is selective

to the shown pattern.

Figure 4 shows how the input weights get modified during

the training phase. The different distribution of the input

weights between before and after learning proves that the

network becomes selective for specific inputs that, combined,

enable the output neuron to match the desired target.
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Fig. 4: Input weight distribution before (in red, top) and

after (in blue, bottom) learning. The density of occurrences

indicates the probability density distribution of the weights.

Weights are initialized randomly from a uniform distribution

and can evolve freely. The different distributions proves that

after learning the network becomes selective to specific inputs.
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Fig. 5: Results of the pattern discrimination task. The Calcium

current plotted in the figure represents the average firing

rate (low-pass filtered with a time constant of 200 ms) of

the readout neuron. After learning, when the teacher signal

is turned off, the network can correctly distinguish the two

patterns. During classification, the neuron that encodes the

pattern which is not presented is silent.

A. Pattern discrimination

Building on the results of the pattern recognition task,

described above, we improved the network to be able to

correctly classify separate temporal patterns. The hidden layer

of the network has two interneurons and 8 pyramidal neurons.

The teaching signal, as well as the two input patterns, are kept

the same between experiments.

Figure 5 shows the results of the pattern discrimination task.

Each sensory pattern is fed in the presence of the teaching

signal, specifically only the output neuron that is attributed in

classifying the input pattern is stimulated. After having trained

the network on both patterns, each pattern is presented in the

absence of the teaching signal. The spiking activity of the

output neurons, correctly classify the input patterns. In order

to optimize the hardware resources at our disposal (limited

number of synapses on neuromorphic chips [13]), synaptic

connections were created with 50% sparsity constraint: each

sensory neuron has a 50% probability of being connected to

any neuron in the hidden layer and analogously the neurons

in the hidden layer have 50% probability of being connected

to any neuron in the readout layer. Weights are randomly

initialized with uniform distributions, and can freely evolve.

It should be noted that the teacher signal is presented for the

same amount of time for both patterns.

V. CONCLUSION

In this paper, we leverage existing spike-based learning

circuits to propose a biologically plausible architecture which,

through forward and backward propagation of sensory input

and error signals, can successfully classify distinct complex

spatio-temporal spike patterns. Such a task, is non-trivial

due to the nature of the spatio-temporal patterns. This new

architecture relies solely on weight updates triggered by local

variables and parameters, thus being suitable for implementa-

tion on mixed-signal analog/digital neuromorphic chips. This

will enable the construction of low power always-on learning

chips that can be applied to edge computing, robotics, and

distributed computation. Due to the low-power nature of the

hardware the network is implemented for, we expect it to be

a good candidate for bio-signals processing [22] and brain-

machine interfaces [23]. Further work will include the detailed

circuit-level implementation and simulation of the network

layout, including transient and Monte-Carlo simulations to

fully validate the network’s robustness to parameter mismatch

and variability.

ACKNOWLEDGMENT

The authors would like to thank Joao Sacramento for

fruitful discussions and comments, Ole Richter, Felix Bauer

and Melika Payvand for original ideas and insight about the

circuit and equations.

This work was partially supported by the Swiss National

Science Foundation Sinergia project #CRSII5-18O316 and

the ERC Grant ”Neu-roAgents” (724295).

87



REFERENCES

[1] E. Chicca, F. Stefanini, C. Bartolozzi, and G. Indiveri, “Neuromorphic
electronic circuits for building autonomous cognitive systems,” Proceed-
ings of the IEEE, vol. 102, no. 9, pp. 1367–1388, 9 2014.

[2] D. E. Rumelhart, G. E. Hintont, and R. J. Williams, “Learning repre-
sentations by back-propagating errors,” Nature, vol. 323, no. 6088, pp.
533–536, 1986.

[3] J. H. Lee, T. Delbruck, and M. Pfeiffer, “Training deep spiking neural
networks using backpropagation,” Frontiers in Neuroscience, vol. 10,
p. 508, 2016. [Online]. Available: http://journal.frontiersin.org/article/
10.3389/fnins.2016.00508

[4] E. O. Neftci, C. Augustine, S. Paul, and G. Detorakis, “Event-
driven random back-propagation: Enabling neuromorphic deep learning
machines,” Frontiers in Neuroscience, vol. 11, p. 324, 2017. [Online].
Available: https://www.frontiersin.org/article/10.3389/fnins.2017.00324

[5] B. Rueckauer, I.-A. Lungu, Y. Hu, M. Pfeiffer, and S.-C. Liu, “Con-
version of continuous-valued deep networks to efficient event-driven
networks for image classification,” Frontiers in neuroscience, vol. 11,
p. 682, 2017.

[6] J. Schemmel, J. Fieres, and K. Meier, “Wafer-scale integration of
analog neural networks,” in Proceedings of the IEEE International Joint
Conference on Neural Networks, 2008.

[7] C. Frenkel, J. Legat, and D. Bol, “A 0.086-mm2 9.8-pJ/SOP
64k-synapse 256-neuron online-learning digital spiking neuromorphic
processor in 28nm CMOS,” CoRR, vol. abs/1804.07858, 2018. [Online].
Available: http://arxiv.org/abs/1804.07858

[8] P. A. Merolla, J. V. Arthur, R. Alvarez-Icaza, A. S. Cassidy, J. Sawada,
F. Akopyan, B. L. Jackson, N. Imam, C. Guo, Y. Nakamura, B. Brezzo,
I. Vo, S. K. Esser, R. Appuswamy, B. Taba, A. Amir, M. D. Flickner,
W. P. Risk, R. Manohar, and D. S. Modha, “A million spiking-neuron
integrated circuit with a scalable communication network and interface,”
Science, vol. 345, no. 6197, pp. 668–673, Aug 2014.

[9] M. Davies, N. Srinivasa, T.-H. Lin, G. Chinya, Y. Cao, S. H. Choday,
G. Dimou, P. Joshi, N. Imam, S. Jain et al., “Loihi: A neuromorphic
manycore processor with on-chip learning,” IEEE Micro, vol. 38, no. 1,
pp. 82–99, 2018.

[10] J. Sacramento, R. P. Costa, Y. Bengio, and W. Senn, “Dendritic cortical
microcircuits approximate the backpropagation algorithm,” in Advances
in Neural Information Processing Systems, 2018, pp. 8721–8732.

[11] C. Bartolozzi and G. Indiveri, “Synaptic dynamics in analog VLSI,”
Neural Computation, vol. 19, no. 10, pp. 2581–2603, Oct 2007.

[12] R. Urbanczik and W. Senn, “Learning by the dendritic prediction of
somatic spiking,” Neuron, vol. 81, no. 3, pp. 521–528, 2014.

[13] S. Moradi, N. Qiao, F. Stefanini, and G. Indiveri, “A scalable multicore
architecture with heterogeneous memory structures for dynamic neuro-
morphic asynchronous processors (DYNAPs),” Biomedical Circuits and
Systems, IEEE Transactions on, vol. 12, no. 1, pp. 106–122, Feb. 2018.

[14] M. Payvand and G. Indiveri, “Spike-based plasticity circuits for always-
on on-line learning in neuromorphic systems,” pp. 1–5, 2019.

[15] M. Milde, A. Renner, R. Krause, A. M. Whatley, S. Solinas, D. Zen-
drikov, N. Risi, M. Rasetto, K. Burelo, and V. R. C. Leite, “teili: A
toolbox for building and testing neural algorithms and computational
primitives using spiking neurons,” 2018, unreleased software, Institute
of Neuroinformatics, University of Zurich and ETH Zurich.

[16] D. Goodman and R. Brette, “Brian: a simulator for spiking neural
networks in Python,” Frontiers in Neuroinformatics, vol. 2, 2008.

[17] T. Serrano-Gotarredona and B. Linares-Barranco, “Systematic width-
and-length dependent CMOS transistor mismatch characterization and
simulation,” Analog Integrated Circuits and Signal Processing, vol. 21,
no. 3, pp. 271–296, December 1999.
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