
Memristive devices for brain-inspired computing

Editors: Sabina Spiga, Abu Sebastian, Damien Querlioz, Bipin Rajendran

1

Chapter 18

System-level integration in
neuromorphic co-processors

Giacomo Indiveri, Bernabe Linares Barranco, and Melika Payvand

Abstract

In this chapter we present results on system-level integration of memristive

devices with neuromorphic circuits and systems. Specifically, we present an

overview of the current state-of-the-art hybrid memristive-CMOS mixed-signal

neuromorphic circuits for learning and plasticity and present perspectives

towards integration of memristive devices in neuromorphic spiking neural

network architectures. We focus on neuromorphic circuits and architectures

that allow for a relatively natural integration of memristive devices, irrespective

of the specific characteristics of the specific memristive device technology

adopted. We address the co-integration of memristive devices with on-chip

learning mechanisms, using both analog and digital CMOS circuits, to build

a solid background of the functionality of neuromorphic circuits explaining

how memristive devices can be implemented on them. Furthermore, we also

address the system-level integration of such architectures in multi-core and

multi-chip systems, for connecting them to input and output devices, such as

sensors, actuators, and conventional CMOS processing devices.

3

4

CHAPTER 18. SYSTEM-LEVEL INTEGRATION IN NEUROMORPHIC
CO-PROCESSORS

18.1 Neuromorphic computing

Neuromorphic computing systems typically comprise neuron and synapse

circuits arranged in a massively parallel manner to support the emulation of

large-scale spiking neural networks. Different approaches have been proposed

for implementing hardware implementations of neuromorphic computing

systems, ranging from digital CMOS ones based on synchronous [1] and asyn-

chronous logic [2, 3], to analog and mixed-signal ones based on standard strong

inversion circuits [4] and weak-inversion circuits [5–7]. Although implemented

in pure conventional CMOS technology, most of these neuromorphic architec-

tures are optimally suited for co-integration with memristive devices, which

can be used to both emulate synaptic function and to support non-volatile

local storage of network parameters [8, 9]. In such architectures memory

elements (e.g., that store the synaptic state) are used also as computing ele-

ments (i.e., that convert input pulses into weighted synaptic currents) and are

placed just next to the main processing units (i.e., the neurons that integrate all

synaptic inputs and produce output spikes). These architectures are radically

different from the ones based on the classical von Neumann computer one,

in which memory and compute elements are implemented in separate and

distinct blocks that exchange data across a common shared bus, as quickly

as possible. The spiking neural networks implemented by the neuromorphic

architectures can be configured to carry out multiple types of signal processing

tasks, ranging from sensory signal processing [10] to pattern recognition [6],

to finite-state-machine like computation [11]. These spiking neural networks

represent new brain-inspired computing paradigms and the hardware archi-

tectures that implement them have the potential of solving the von Neumann

memory bottleneck problem [12] efficiently [13]: given their co-localization of

memory and computation, no fast exchange of data across different memory

and compute blocks takes place. In addition, these architectures can minimize

power consumption by performing data-driven computation (i.e., carrying out

computations only when there is data to drive the circuits), and processing

the data at a rate that matches the time constants of the input signals and the

real-time requirements of the task at hand. Setting the time constants of the

processing elements to match those of the signals that need to be processed can

reduce the power consumption and data bandwidth requirements by orders

of magnitude, compared to synchronous clock-driven conventional computer

approaches. Despite the use of slow, reduced precision, and variable com-

putational elements, these architectures can achieve fast, robust, and reliable

computation by virtue of their massively parallel mode of operation. Given this

design strategy, these architectures can also exhibit remarkable fault-tolerance

features, by taking advantage of the inherent redundancy in the use of their

components. Indeed, while the memory-related constraints of conventional

computers require high-speed data transfers using reliable bit-precise devices,

these brain inspired computing systems, as well as the biological nervous

systems they emulate, are able to perform fast and robust computation, using

memory and computing elements that are slow, in-homogeneous, stochastic

and faulty [8, 14, 15].

18.2. INTEGRATING MEMRISTIVE DEVICES AS SYNAPSES IN
NEUROMORPHIC COMPUTING ARCHITECTURES 5

18.2 Integrating memristive devices as synapses in
neuromorphic computing architectures

Typically, in neuromorphic computing architectures, very large arrays of

synaptic elements are connected to a smaller number of neuron circuits. In

addition to being compatiblewithdesigns that faithfullymodel biological neural

networks, architectures comprising neurons connected to a large number of

many parallel synapses support the implementation of a wide range of spiking

neural network topologies, including multi-layer or deep neural networks, and

recurrent neural networks. In order to configure the desired network topology

and program the connectivity among neurons, neuromorphic systems typically

assign an address to each neuron and encode the spikes produced by such

neurons as “address-events”. In these systems information is typically encoded

in the timing of the address-events. Specifically, the interval between successive

address-events produced by the same neuron (i.e., the inter-spike interval) can

be used to represent analog values. Neural processing of analog variables can

be achieved by using the digital address-event representation (AER) [16–19]

and connecting multiple neurons among each other with different types of AER

connectivity schemes. Spikes produced by source neurons are transmitted to

one or more destination synapse circuits that integrate them with different gain

factors and convey them to the post-synaptic neuron. Unlike classical digital

logic circuits, these networks are typically characterized by very large fan-in

and fan-out numbers. For example, in cortical networks neurons project on

average to about 10’000 destinations. The type of processing and functionality

of these spiking neural networks is determined by the their specific structure

and parameters, such as the properties of the neurons or the weights of the

synapses [20]. It is therefore important to design neuromorphic computing

platforms that can be configured to support the construction of different

network topologies, with different neuron and synapse properties. This

requires the development of both configurable neuron/synapse circuits, and of

programmable event-based routing and communication schemes. The latter

elements are particularly important, because the scalability of neuromorphic

systems is mainly restricted by communication requirements. Figures 18.1

and 18.2 show examples of architectures that follow two complementary

approaches for achieving the implementation of large-scale neural networks.

Each of the populations of neurons shown in these figures could be implemented

in a single “core” and multi-population (e.g. multi-layer) networks can be

implemented by designing multi-core neuromorphic processors [1–3, 7].

The high-density multi-core approach of Fig. 18.1 aims to capitalize on the

nano-scale size ofmemristive devices anduses themas simple synaptic elements

in dense cross-bar arrays [21–23]. In this approach the single synapse element

is kept as simple and compact as possible using either one single passive

memristive device element per synapse arranged in “1R” cross-bar arrays,

or single memristive devices connected to a “select” transistor or “selector”

device in “1T-1R” cross-bar arrays (see also Chapter [XBAR CHAPTER]). The
state of a specific memristive synapse, corresponding to its synaptic weight,

can be changed by appropriately setting the voltage values of the row and

column lines connected to the top and bottom electrodes of the target device

(e.g., with a large voltage difference ∆V), while setting the ∆V of all other

6

CHAPTER 18. SYSTEM-LEVEL INTEGRATION IN NEUROMORPHIC
CO-PROCESSORS

Figure 18.1: Example of cross-bar multi-neuron architecture.

devices to a low value (or ideally zero). Programming circuits that implement

these operations can be designed and placed at the periphery of the cross-bar

arrays. Similarly, these programming blocks can be driven by spike-based

learning circuits which evaluate the state of the input and output pulses and

produce an appropriate voltage profile to be applied between the top and

bottom electrodes of the addressed synapse. While this approach has the

advantage of being able to support very dense cross-bar array fabrications, it

has the disadvantage that it requires large overhead circuitry at the periphery

for the address encoders, decoders, programming logic, and voltage drivers.

Depending on the technology node used, these peripheral circuits can be made

quite small. However, since the technology has to support sufficiently large

voltage values for forming the memristive devices and updating their state,

the corresponding minimum feature size is typically not very small and the

overall area used by the overhead circuitry can become prohibitive for typical

neuromorphic computing designs. Another disadvantage of this approach, in

case on-chip learning features are desired, is given by the fact that learning and

weight updates require the cross-bar row and column select lines to be actively

driven for the full duration of the memristive device set operation, which is

determined by the length of the ∆V pulse used to change the memristor state.

Therefore the bandwidth of the data flow in these architectures is limited by

the minimum duration of the ∆V pulse. Since typical spike-based learning

protocols require pre-synaptic input pulses to overlapwith post-synaptic output

pulses in order to produce the right∆V pulse, these operations can keep the row

and column select lines busy for very long periods, reaching even milliseconds

(e.g., for learning protocols that model real synapses and/or that are used for

processing sensory signals), and severely limit the overall system bandwidth,

as well as power consumption.

Conversely, the multi-core approach of Fig. 18.2 forgoes the attempt to

maximise density at the cross-bar level to allow the use of larger synapse

blocks at the benefit of adding additional complexity within each synapse and

enabling more sophisticated and massively parallel computations. Examples

of more complex “compound” synapses that comprise multiple memristive

devices per synapse have been shown to enable more precise modulation of

18.2. INTEGRATING MEMRISTIVE DEVICES AS SYNAPSES IN
NEUROMORPHIC COMPUTING ARCHITECTURES 7

AER INPUT

A
E
R

 O
U

T
P
U

T

Figure 18.2: Example of AER multi-neuron architecture.

the synaptic weight over a wide dynamic range [24] and to reduce the effect

of device variability [9] (e.g., see Fig. 18.3). Following this approach, both

input spikes into the individual synapses and output spikes generated by the

post-synaptic neurons are fast asynchronous digital pulses encoded using the

AER protocol. If the activity of the neuron circuits is sparse and their firing

rates are biologically plausible (e.g., ranging from a few spikes per second to a

few hundred spikes per second), then it is possible to trade-off space with speed

very effectively, by time-multiplexing a single (very fast) digital bus to represent

many (very slow) neuron axons. The AER input circuits in Fig. 18.2 receive

input address-events and decode them to stimulate corresponding columns

of synaptic cells. These circuits transmit the events as soon as they arrive and

as quickly as possible (e.g., within a few nano-seconds). This frees the shared

communication bus to transmit spikes to the cross-bar array, increasing the

throughput of the network by use of shared or time-multiplexed communication

resources. Integrators and pulse-extenders can be used inside each synapse

circuit in the array to convert the fast AER pulses into slower dynamic signals

used to emulate synaptic and neural dynamics. On the output side an AER

output circuit arbitrates the spikes produced by the neurons and queues output

events in case of collisions. The circuit converts the asynchronous spikes

produced by the neurons into fast address-events and transmits them on the

shared output bus [17].

In both high-density and high-complexity memristive synapse approaches

the neurons are typically implemented using Integrate-and-Fire (I&F) models:

they receive input currents, that represent the weighted sum of all synaptic

contributions, integrate them over time and produce an output spike when

their integrated value exceeds the spiking threshold. As a consequence, the

timing of the output spike is directly related to the amplitude of the total input

current, which in turn depends on the relationship between the timing of the

input spike on each synapse and its synaptic weight. In addition to the precise

timing of spikes, the neurons can encode signals also with their average firing

rates (the average number of spikes produced per second), which are also

proportional to their input currents. Therefore the same neuron circuit and

8

CHAPTER 18. SYSTEM-LEVEL INTEGRATION IN NEUROMORPHIC
CO-PROCESSORS

(a)

(b)

Figure 18.3: Example of compound synapse blocks: (a) Multi-memristive

synapse concept, adapted from [24] in which the synaptic weight is represented

by the combined conductance of multiple devices; (b) Differential memristive

synapse circuit, adapted from [25], inwhichvoltagepulses aredirectly converted

to currents via current-mode normalizer circuits.

architecture can be used to carry out computation on the precise timing of the

input/output network signals, or on analog variables encoded in the average

firing rates of inputs and outputs. Indeed, it is even possible to use both signal

representations (single spike timing and average firing rate) together to carry

out complex computations.

18.3 Spike-based learning mechanisms for hybrid
memristive-CMOS neuromorphic synapses

Synaptic plasticity plays a crucial role in allowing neural networks to learn

and adapt to various input environments. Neuromorphic electronic systems

that seek to emulate these learning abilities struggle to meet the seemingly

incompatible requirements of reproducing complex plasticity mechanisms

in each neuromorphic synapse circuit, while keeping the size of the plastic

synapse circuit small, in order to integrate large numbers of synapses per

neuron. While many attempts have been made in this respect with pure CMOS

mixed signal analog/digital circuits [2, 6, 26–28], several challenges related to

the circuit size and the volatility of the learned synaptic weights are still open.

In this respect, memristive devices can play a key role in the design of mixed

memristive-CMOS learning mechanisms.

18.3. SPIKE-BASED LEARNING MECHANISMS FOR HYBRID
MEMRISTIVE-CMOS NEUROMORPHIC SYNAPSES 9

−80 −40 0 40 80

−40

−20

0

20

40

60

80

100

 ∆T (ms)

ξ
(%

)

−80 −40 0 40 80

−100

−80

−60

−40

−20

0

20

40

 ∆T (ms)

ξ
(%

)

T(ms)∆

∆T(

)
ξ

(i
n

 %
)

−80 0−40 40 80

−40

−20
0

20
40

60
80

100

(a) (b) (c)

Figure 18.4: STDP learning rule. (a) Experimentally measured STDP function

ξ(∆T) on biological synapses (data from Bi and Poo [29]), (b) Ideal STDP

update function used in computational models of STDP synaptic learning. (c)

Anti-STDP learning function for inhibitory STDP synapses.

Here we review different spike-based plasticity models that lend themselves

well to hardware implementation using mixed CMOS-memristive circuits.

The learning mechanisms and their corresponding circuit design solutions

have different properties that trade-off the complexity of the plasticity model

emulated with the size and complexity of the circuit proposed.

Spike-timing dependent plasticity (STDP) mechanism
Spike Timing Dependent Plasticity (STDP) is the ability of natural or artificial

synapses to change their strength according to the precise timing of individual

pre- and/or post-synaptic spikes [29–32]. A comprehensive overview of STDP

and its history can be found in [33]. STDP learning in biology is inherently

asynchronous and on-line, meaning that synaptic incremental update occurs

while neurons and synapses transmit spikes and perform computations. This

contrasts to more traditional learning rules, like back-propagation [34, 35],

where first neurons and synapses perform signal aggregation and neural

state update (we call this here “inference phase”) and then error signals are

computed and corresponding weight updates are applied (we call this here

“weight update phase”) alternating these two phases during training.

Even early proposals for memristor-based STDP learning implementations

used artificial time-multiplexing to alternate continuously and synchronously

between “inference” and “weight update” phases, thus requiring global system-

wide synchronization. This can become a severe handicap when scaling up

systems to arbitrary size. However, it is possible to do a fully asynchronous

implementation of memristor-based STDP where “inference” and “weight

update” phases happen simultaneously in a natural manner, as in biology [36],

where there is no need for any global synchronization.

Figure 18.4(a) shows the change of synaptic strength (in percent) measured

experimentally from biological synapses as function of relative timing ∆T �

tpos − tpre between the arrival time tpre of a pre-synaptic spike and the time tpos
of generation of a post-synaptic spike. Although the data shows stochasticity,

we can infer an underlying interpolated function ξ(∆T) as shown in Fig. 18.4(b)

ξ(∆T) �
{

a+e−∆T/τ+ i f ∆T > 0

−a−e∆T/τ− i f ∆T < 0

(18.1)

For a causal pre to post spike timing relation (∆T > 0) the strength of the

10

CHAPTER 18. SYSTEM-LEVEL INTEGRATION IN NEUROMORPHIC
CO-PROCESSORS

synapse is increased, while for an anti-causal relation (∆T < 0) it is decreased.

In the case of synapses with negative synaptic strength (as in some artificial

realizations), the reversed version shown in Fig. 18.4(c) can be used. Pure

CMOS-based VLSI circuit implementations of STDP rules that follow the

description of eq. (18.1) have been reported [37, 38], which result in more than

about 30 transistors per plastic synapse, thus demonstrating the very high cost

of their hardware realization. However, combining memristive crossbars (as

those shown in Fig. 18.1) with neurons that comprise learning circuits which

send spikes both forward and backwards, it is possible to realize the STDP

learning rule in a fully asynchronous manner [39]. Furthermore, by changing

the analog shape of the forward and backward voltage pulses produced by the

neuron learning circuits, it is possible to massage the STDP learning function.

The main drawback of this approach is that the crossbar lines need to be

kept "active" for sufficiently long times to guarantee proper overlap between

pre- and post-synaptic spikes (sometimes even for up to many milliseconds).

This implies that crossbar lines are kept busy for long times, and also that

important power is dissipated by the resistive memristors while the spikes are

applied. Moreover, such design requires the design of amplifiers which can

drive resistive loads. Hence, at least a two-stage amplifier is needed with a

high current drive to support such load. However, a problem arises since the

resistive load is changing in the process of learning: the compensation required

to stabilize the amplifier should be designed to adapt to the changing load.

Such design is not only complicated but also is power hungry and consumes

a large amount of area on silicon. These issues, however, can be solved by

engineering second order memristors having internal dynamics, on which

STDP can be induced without forcing pre- and post-synaptic spikes to overlap

in time [40]. Under these circumstances, spikes can be made fast in time and

resistive power dissipation can be reduced to a minimum.

Spike-timing and -rate dependent plasticity (STRDP) mechanism

The spike-timing and -rate dependent plasticity (STRDP) model was proposed

in [41], and is based onwork originally presented in [42]. In thismodel synapses

have two stable states on long-time scales (the potentiated and depressed

states), but multiple transient states, on short-timescales, that enable a gradual

transition between the two stable states. The synapticweight w(t) is expressed as

a function of the synapse internal state variable X(t). Examples of such function

can be equivalence (w(t) � X(t)) or binary-threshold: w(t) � 1i f X(t) > wth
and 0 otherwise, where wth is an arbitrary threshold value. The internal state

variable X(t) is updated upon the arrival of a pre-synaptic spike, at time tpre .

The direction of the weight update (increase or decrease) depends on the value

of the post-synaptic neuron membrane voltage Vmem(tpre) (whether it is above

or below a set threshold θV). An additional third factor, the variable C(t),
is used to model the intra-cellular Calcium concentration and to determine

whether to actually do the weight update or not. Specifically, upon the arrival

of the pre-synaptic spike at time tpre , the synaptic weight is updated according

to the following equations:

18.3. SPIKE-BASED LEARNING MECHANISMS FOR HYBRID
MEMRISTIVE-CMOS NEUROMORPHIC SYNAPSES 11

0.0

θl
up
,θl

down

θh
downθh

up

θ
v

θ
x

0.1 0.2 0.3 0.4

α

β

Calcium variable C(t)

Postsynaptic membrane potential V
mem
(t)

Synaptic state X(t)

Presynaptic spikes

a
b

Figure 18.5: Illustration waveforms of the STDRP learning rule showing key

parameters from Eqs. 18.2- 18.6 (adapted from [43]).

X→ X + a i f Vmem(tpre) > θV and θl
up < C(tpre) < θh

up (18.2)

X→ X − b i f Vmem(tpre) ≤ θV and θl
down < C(tpre) < θh

down (18.3)

where a and b are jump sizes, θV is a voltage threshold, and θl
up , θ

h
up , θ

l
down , and

θh
down are thresholds on the calcium variable. In other words, X(t) is increased

if Vmem(t) is elevated (above θV) when the pre-synaptic spike arrives and

decreased if Vmem(t) is lower than θV at time tpre , provided that the Calcium

variable C(t) is in the correct range. The Calcium variable C(t) is an auxiliary

variable that corresponds to a low-pass filtered version of the post-synaptic

spikes: C(t) is incremented by JC (which corresponds to magnitude of spike-

triggered calcium influx into the cell) at each post-synaptic spike time ti , and

decays with a time constant τC:

dC(t)
dt

� − 1

τC

C(t) + JC
∑

i

δ(t − ti) (18.4)

The dependence of the weight updates on C(t) allows the learning rule to

enable/disable the weight updates based on the long-term average of post-

synaptic activity. This implements a “stop-learning” condition that allows

the network to stop changing weights when it is performing correctly, and

allows the system to keep the learning process always enabled, without having

to separate a “training phase” from a “test phase” as is typically done in

conventional artificial neural network applications.

In parallel to the spike-driven weight updates described above, X(t) is
continuously and slowly driven towards one of two stable values, depending

on whether it is above or below an additional threshold parameter θX :

12

CHAPTER 18. SYSTEM-LEVEL INTEGRATION IN NEUROMORPHIC
CO-PROCESSORS

dX

dt
� α i f X > θX (18.5)

dX

dt
� −β i f X ≤ θX (18.6)

The state variable X(t) is bounded above and below by the two stable

states Xhi gh and Xlow which are not shown in the equations to simplify the

notation. Figure 18.5 illustrates the relevant wave-forms and parameters of the

spike-based voltage dependent learning rule.

Although this learning rule has been shown to reproduce, on average, the

classical STDP phenomenology [41], it differs from the vast majority of STDP

rules in that it does not explicitly depend on the precise timing of both pre- and

post-synaptic neuron spikes. The compatibility with the classical STDP learning

rule comes about through the rule’s dependence on the post-synaptic neuron’s

membrane potential: a pre-synaptic spike that occurs when the post-synaptic

membrane potential is high will potentiate the synapse and will likely produce

a post-synaptic spike shortly after. Thus, the synapse tends to get potentiated

in pre-before-post scenarios. The synapse also tends to get depressed in

post-before-pre scenarios because the membrane potential is usually low for

some time after a post-synaptic spike is emitted, and a pre-synaptic spike

arriving in this interval will depress the synapse. However, as this rule also

has access to post-synaptic neuron’s rate information, through the C(t) signal,
it can reproduce effects beyond classical pair-wise STDP, such as increased

potentiation at high post-synaptic firing rates and increased depression at low

post-synaptic firing rates [44].

Spike-based stochastic weight update rules

Filamentary memristive devices have large variations in their operational

parameters which stem from the underlying switching mechanisms that are

based on filament formation. This switching mechanism exhibits stochastic

behavior due to the thermally activated filament formation process [22, 45–47].

Filament formation inmemristive devices is typically bias-dependent and can be

explained by the hopping of positively charged particles in a thermally activated

process [22]. The hopping rate is exponentially related to the activation energy

and linearly dependent in time:

Γ � 1/τ � υe−Ea (V)/kBT
(18.7)

where υ is the attempt frequency for particle hopping, kB is the Boltzmann

constant and T is the absolute temperature. The bias dependent nature of the

switching characteristics results in a stochastic process which follows a Poisson

distribution. The Poisson distribution implies that the switching events are

independent from one another. Therefore the probability of a switching event

occurring within ∆t at time t is:

P(t) � ∆t
τ

e−t/τ
(18.8)

18.3. SPIKE-BASED LEARNING MECHANISMS FOR HYBRID
MEMRISTIVE-CMOS NEUROMORPHIC SYNAPSES 13

where τ is the characteristic wait time and is an exponential function of the

voltage applied across the device:

τ(V) � τ0e−V/V0
(18.9)

The parameters τ0 and V0 are fitting parameters that depend on the physical

characteristics of the memristive device and can be found by experimental

measurements (e.g., see [22]). This intrinsic probabilistic property ofmemristive

devices can be exploited for implementing stochastic learning in neuromorphic

architectures, to overcome the limitations and problems typically found with

non-linear conductance changes in deterministic learning approaches [48] and

to reduce the network sensitivity to their variability [49].

The learning algorithm that we use for achieving such features is based on

the delta rule [50]. This rule minimizes the cost function of a single-layer neural

network defined as the error between a desired target value T and the variable

y calculated as weighted sum of the network input:

y �

∑
i

(wi xi) (18.10)

where wi and xi are the ith synaptic weight and input respectively. In the

original formulation [50] the network inputs xi were binary signals and the

output was a thresholded and binarized function of the weighted sum variable.

In neuromorphic architectures the xi inputs are spiking events and the network

output corresponds to the activity of the spiking neurons. If one considers the

average firing rate of the neurons, then the output is a sigmoidal function of y.
According to this rule, the weight change of the ith input synapse should be

proportional to: ∆W ji �∝ (T − y)xi [51]. If we consider binary synapses with

synaptic weights represented by set or reset memristive devices, the analog

nature of the weight change can be interpreted as the probability of switching

rather than a gradual change in the device conductance. Taking into account the

stochastic filament formation behavior described above, the synapse probability

of switching for t << τ can be written as

P(t) � ∆t
τ

�
∆t

τ0eV/V0

(18.11)

To map this stochastic property to the delta rule the voltage across the device

should be set to:

V/V0 � ln(T − y) (18.12)

Therefore, with this setting, upon the arrival of an input spike event xi , the

probability of switching thus becomes:

P(t) � ∆te ln(T j−y j)xi � ∆t(T − y)xi (18.13)

In this the requirement to linearly change synaptic weights with gradual

changes in memristive device conductances has been converted to switching

binary devices with a probability that is linearly proportional to the error.

The circuits required to implement this stochastic rule on a neuromorphic

chip have been recently proposed in [49]. They comprise:

14

CHAPTER 18. SYSTEM-LEVEL INTEGRATION IN NEUROMORPHIC
CO-PROCESSORS

• a block that compares the sum of the synaptic currents (obtained by

simply using Kirchhoff’s current law on the neuron’s input node) with a

target current provided by the system

• a circuit that produces a a ramping voltage whose slope is proportional

to the logarithmic value of the error, as specified by eq. (18.12) Such ramp

voltage has been shown to be able to modulate the probabilty of the

switching of the device depending on the final value it reaches by the end

of a programming time [52].

Behavioral simulations of such probabilistic mechanism [49] have shown that

this stochastic learning rule provides promising results for example in classical

benchmark tasks, such as the classification of handwritten MNIST charac-

ters [53], and that performance improves when combining memristive single

devices into compound multi-memristive devices, as explained in Section 18.2.

Recent results on STDP learning with binary weights following stochastic

updates with additional regularizations, such as homeostasis and moving

and double thresholds [54], present an excellent potential to be exploited on

memristors restricted to binary values.

Comparison between the spike-based learning architectures
STDP and STRDP are spike-based hebbian rules which at a network level

could be utilized for example in Hopfield networks, Restricted Boltzmann

machines and Deep belief networks where they minimize the energy function

of such networks. Moreover, they are used as unsupervised learning paradigm

to cluster the data in competitive learning structures in which the distance

between the moving average of the cluster and each data point is minimized

[55]. However, to learn a specific target function in the hardware, it is much

more desirable to define a more specific cost function and employ gradient

descent for its optimization. Deriving an update rule based on this optimization

algorithm results in Delta rule for a one layer network and extends to "back-

propagation" using chain rule for deeper networks. Back-propagation update

rule however, does not pass the locality criteria required for being implemented

in hardware. However, recently it has been shown that such update rule can be

implemented in a local fashion to approximate back propagation which makes

such an algorithm even more powerful [56, 57].

Given the 7 bits of precision reported in [58], this learning rule can take

advantage of the "almost" analog nature of the memory by translating the error

of the network to the number of pulses applied to the device. Such circuit is

presented in [59] in which the network error modulates the frequency of a ring

oscillator and hence the device can be tuned more precisely to a desire value.

18.4 Spike-based implementation of the neuronal intrinsic
plasticity

Neurons have multiple parameters which elicits certain computational features.

Such properties include but are not limited to its time constant, refractory

period and adaptation time constants. These parameters are determined by

the conductance of the nerurons’ membrane proteins. Biological neurons

18.5. SCALABLE MIXED MEMRISTIVE-CMOS MULTI-CORE
NEUROMORPHIC COMPUTING SYSTEMS 15

continuously adapt these conductances to maximize information transfer

and minimize power consumption [60]. This local adaptive mechanism is

described as neuronal intrinsic plasticity (IP) which is shown to act as a

neuronal homeostatic plasticity regulating the network’s activity [61]. These

neuron parameters are in the range of biological time constants in the order of

milliseconds which are emulated in hardware using sub-threshold circuits [5]

biased using a central bias generator [62].

Currently, the state of the art NPs compromise variety and share these

parameters for all the neurons and synapses on a single core (thousands

of neurons and synapses). If parameters were not shared the static power

consumption and the area consumed by wires (metal lines) running across the

chip for connecting the biases grows linearly with the number of parameters.

As memristive devices are adaptable conductances, it is a natural implemen-

tation to use them as the replacement for the biases and use local plasticity rules

to adapt them based on the neuron’s activity. However, given the millisecond

range of time constant required, the memristive devices should always be in

their High Resistive State (HRS). Measurements in [52] shows that the mean

HRS value of memristive devices in a 4kb array is an exponential function of the

reset voltage applied across the device which follows a lognormal distribution.

The circuit introduced in section 18.3 could be used to apply the appropriate

reset voltage acorss the device until the neuron’s firing rate falls into the target

range of activity. In such hybrid systems each circuit model has its own pa-

rameters set by the incorporated RRAM without area or static power overhead

which also enables the self-organisation of individual parameters locally.

18.5 Scalable mixed memristive-CMOS multi-core
neuromorphic computing systems

To create complete neuromorphic computing systems that can support large-

scale networks, including deep neural network and convolutional neural

network architectures, it is necessary to develop an infrastructure to integrate

in a single VLSI die multiple spiking neural network cores and to connect the

neurons and synapses of each core among all other neurons and synapses.

Examples of pure CMOS neuromorphic computing systems that comprise

auxiliary circuits for interconnecting multiple cores and creating large-scale

neural processing systems have already been developed in the past [1–4, 7].

These all make use of the AER communication protocol to route spikes from

source neurons to destination synapses, and implement different types of

routing schemes. One of the most critical factors for building routing schemes

that can support very large scale networks is the memory required to store the

network connectivity parameters (routing tables and weights). While some

solutions have resorted to using external DRAM memory chips [1], others

chose to use on-chip SRAM circuits [2, 3, 7]. Both solutions have advantages

and disadvantages: external DRAM chips can store very large amounts of

memory, but the energy required to transfer the data from the memory chip to

the neuromorphic processor is substantially larger than that used by on-chip

SRAM circuits; on the other hand SRAM cells require at least 6 transistors per

bit, and therefore occupy a substantial amount of area on the silicon die. The

use of memristive devices can have a significant impact on the design of future

16

CHAPTER 18. SYSTEM-LEVEL INTEGRATION IN NEUROMORPHIC
CO-PROCESSORS

neuromorphic processor chips also if used as classical digital memory circuits

to store the routing data. They promise to significantly increase the density and

at the same time reduce the power consumption, as the wr"Siting of the data

would be performed only at the onset of the experiment, during the definition

of the network connectivity tables. Furthermore, when stored in DRAM or

SRAM cells, the network parameters would be deleted when the chips are

reset, and when power is removed. This would require users to upload all the

parameters again when the system is powered-up. This can be particularly

problematic in large networks, whereby the storing and initialization of all

the system parameters can take a significant amount of time. By virtue of

their non-volatility features [63], these memristive devices will save also the

configuration/start-up time, when booting up the system.

18.6 Conclusions and discussion

In this Chapter we have given a quick overview of some techniques to exploit

memristive devices for implementing neuromorphic computing and learning

systems. In such systems, most of chip area is devoted to the implementation

of synapses. Therefore, it is in these components where the use of memristors

can provide a significant boost for system density. We have quickly discussed

two main approaches. One, in which a synapse is built using one single

memristor, giving the highest possible density, but at the cost of introducing

significant overheads for the peripheral circuits and introducing timing and

power constraints (unless second order memristors are used, which is not

discussed in this Chapter). And a second one, in which synapses are made

more complex by combining memristors and CMOS transistors, resulting in

less complex and more efficient peripheral circuits. Several STDP learning

mechanisms exploiting memristors are discussed, ranging from plain STDP,

STRDP, to stochastic STDP. Finally, some quick scalability considerations are

discussed.

Overall, it is clear thatmemristivedevices have agreat potential for providing

new ways of performing neuromorphic computing, including learning, with

highly compact as well as low power physical realizations. On the other hand it

is also true that by today such realizations remain at the lab level, at small scale,

and practical issues remain to be solved. For example, at the time of this writing,

we are only aware of onehybridCMOS-memristor technologybeing available for

circuit design researchers as MPW (multi project wafers) through Europractice

(www.europractice-ic.com) or CMP (mycmp.fr) that offers monolithic 1T1R

(one memristor with one NMOS selector transistor) devices that can store

1-bit. Still these memristors require one selecting transistor in series each, thus

increasing significantly its size, while occupying Si area, as opposed to pure

memristors which could be added on top of the CMOS transistor layer without

consuming transistor space. These selectors are necessary to limit the current

during forming and writing operations. However, researchers are investigating

on non-transistor-based selectors that could share the same footprint than

the memristors [64]. This, together with the successful use of second-order

memristors for learning could potentially yield to compact and low power

self-learning neuromorphic systems. Another not yet fully solved problem is

the issue of using the memristors as reliable analog memory. Some preliminary

18.6. CONCLUSIONS AND DISCUSSION 17

results showing up to 7-bit equivalent analogmemory for a single 10µm×10µm
memristor have been reported recently [58]. Exploiting the analog memory

potential of memristors reliably, would be an additional important twist to

achieve ultra high density memories co-existing with CMOS transistors for

ultra-dense low-power massive parallel computation (wether neuromorphic

or not). For example, imagine that an equivalent of 8-bit per memristor could

be achieved while assembling them at a pitch of 20nm within a layer, and that

one could stack 10 of such layers, over a surface of a 1cm2
chip. This would be

equivalent to digital non-volatile memory of 2.5TB, working very tightly with

CMOS computing fabric, faster than an L1 cache memory does today.

Bibliography

[1] S. Furber, F. Galluppi, S. Temple, and L. Plana, “The SpiNNaker project,”

Proceedings of the IEEE, vol. 102, no. 5, pp. 652–665, May 2014.

[2] M. Davies, N. Srinivasa, T. H. Lin, et al., “Loihi: A neuromorphicmanycore

processor with on-chip learning,” IEEE Micro, vol. 38, no. 1, pp. 82–99,
Jan. 2018.

[3] P. A. Merolla, J. V. Arthur, R. Alvarez-Icaza, et al., “A million spiking-

neuron integrated circuit with a scalable communication network and

interface,” Science, vol. 345, no. 6197, pp. 668–673, Aug. 2014, issn: 0036-

8075, 1095-9203.

[4] J. Schemmel, D. Bruderle, A. Grubl, et al., “A wafer-scale neuromorphic

hardware system for large-scale neural modeling,” in Circuits and Systems
(ISCAS), Proceedings of 2010 IEEE International Symposium on, IEEE, 2010,
pp. 1947–1950.

[5] E. Chicca, F. Stefanini, C. Bartolozzi, and G. Indiveri, “Neuromorphic elec-

tronic circuits for building autonomous cognitive systems,” Proceedings
of the IEEE, vol. 102, no. 9, pp. 1367–1388, Sep. 2014, issn: 0018-9219.

[6] N. Qiao, H. Mostafa, F. Corradi, et al., “A reconfigurable on-line learning

spiking neuromorphic processor comprising 256 neurons and 128k

synapses,” Frontiers in Neuroscience, vol. 9, no. 141, pp. 1–17, 2015.
[7] S. Moradi, N. Qiao, F. Stefanini, and G. Indiveri, “A scalable multicore

architecture with heterogeneous memory structures for dynamic neuro-

morphic asynchronous processors (DYNAPs),” Biomedical Circuits and
Systems, IEEE Transactions on, vol. 12, no. 1, pp. 106–122, Feb. 2018.

[8] G. Indiveri, B. Linares-Barranco, R. Legenstein, G. Deligeorgis, and T.

Prodromakis, “Integration of nanoscale memristor synapses in neuromor-

phic computing architectures,” Nanotechnology, vol. 24, no. 38, p. 384 010,
2013.

[9] M. Payvand, M. Nair, L. Müller, and G. Indiveri, “A neuromorphic

systems approach to in-memory computing with non-ideal memristive

devices: From mitigation to exploitation,” Faraday Discussions, pp. 1–13,
2018.

[10] S.-C. Liu and T. Delbruck, “Neuromorphic sensory systems,” Current
Opinion in Neurobiology, vol. 20, no. 3, pp. 288–295, 2010.

[11] E. Neftci, J. Binas, U. Rutishauser, et al., “Synthesizing cognition in

neuromorphic electronic systems,” Proceedings of the National Academy of
Sciences, vol. 110, no. 37, E3468–E3476, 2013.

19

20 BIBLIOGRAPHY

[12] J. Backus, “Can programming be liberated from the von neumann style?:

A functional style and its algebra of programs,” Communications of the
ACM, vol. 21, no. 8, pp. 613–641, 1978.

[13] G. Indiveri and S.-C. Liu, “Memory and information processing in

neuromorphic systems,” Proceedings of the IEEE, vol. 103, no. 8, pp. 1379–
1397, 2015.

[14] S. Habenschuss, Z. Jonke, and W. Maass, “Stochastic computations in

cortical microcircuit models,” PLoS computational biology, vol. 9, no. 11,
e1003311, 2013.

[15] W. Maass, “Noise as a resource for computation and learning in networks

of spiking neurons,” Proceedings of the IEEE, vol. 102, no. 5, pp. 860–880,
May 2014, issn: 0018-9219.

[16] S. Deiss, R. Douglas, and A. Whatley, “A pulse-coded communications

infrastructure for neuromorphic systems,” in Pulsed Neural Networks, W.

Maass and C. Bishop, Eds., MIT Press, 1998, ch. 6, pp. 157–78.

[17] K. Boahen, “Point-to-point connectivity between neuromorphic chips

using address-events,” IEEE Transactions on Circuits and Systems II, vol. 47,
no. 5, pp. 416–34, 2000.

[18] P. Merolla, J. Arthur, B. Shi, and K. Boahen, “Expandable networks for

neuromorphic chips,” IEEE Transactions on Circuits and Systems I, vol. 54,
no. 2, pp. 301–311, Feb. 2007.

[19] E. Chicca, A. Whatley, P. Lichtsteiner, et al., “A multi-chip pulse-based

neuromorphic infrastructure and its application to a model of orientation

selectivity,” IEEE Transactions on Circuits and Systems I, vol. 5, no. 54,
pp. 981–993, 2007.

[20] P. Dayan and L. Abbott, Theoretical Neuroscience: Computational and Math-
ematical Modeling of Neural Systems. Cambridge, MA, USA: MIT Press,

2001, isbn: 9780262541855.

[21] M. Prezioso, F. Merrikh-Bayat, B. Hoskins, et al., “Training and oper-

ation of an integrated neuromorphic network based on metal-oxide

memristors,” Nature, vol. 521, no. 7550, pp. 61–64, 2015.
[22] S. H. Jo, T. Chang, I. Ebong, et al., “Nanoscalememristor device as synapse

in neuromorphic systems,”Nano letters, vol. 10, no. 4, pp. 1297–1301, 2010.
[23] M. Zidan, H. Omran, R. Naous, et al., “Single-readout high-density

memristor crossbar,” Scientific reports, vol. 6, p. 18 863, 2016.
[24] I. Boybat, M. L. Gallo, T. Moraitis, et al., “Neuromorphic computing with

multi-memristive synapses,” Nature communications, vol. 9, p. 2514, 2018.
[25] M. V. Nair and G. Indiveri, A differential memristive current-mode circuit,

European patent application EP 17183461.7, Filed 27.07.2017, Jul. 2017.

[26] S. Nease and E. Chicca, “Floating-gate-based intrinsic plasticity with low-

voltage rate control,” in International Symposium on Circuits and Systems
ISCAS 2016, IEEE, 2016, pp. 2507–2510.

[27] F. L. M. Huayaney, S. Nease, and E. Chicca, “Learning in silicon beyond

STDP: A neuromorphic implementation ofmulti-factor synaptic plasticity

with calcium-based dynamics,” IEEE Transactions on Circuits and Systems
I: Regular Papers, vol. 63, no. 12, pp. 2189–2199, 2016.

BIBLIOGRAPHY 21

[28] S. Schmitt, J. Klähn, G. Bellec, et al., “Neuromorphic hardware in the

loop: Training a deep spiking network on the BrainScaleS wafer-scale

system,” in 2017 International Joint Conference on Neural Networks (ĲCNN),
May 2017, pp. 2227–2234.

[29] G.-Q. Bi andM.-M. Poo, “Synapticmodifications in cultured hippocampal

neurons: Dependence on spike timing, synaptic strength, and postsynap-

tic cell type,” Journal of Neuroscience, vol. 18, no. 24, pp. 10 464–10 472,
1998.

[30] W. Gerstner, R. Kempter, J. L. van Hemmen, and H. Wagner, “A neuronal

learning rule for sub-millisecond temporal coding,” Nature, vol. 383,
no. 6595, p. 76, 1996.

[31] T. Masquelier, R. Guyonneau, and S. Thorpe, “Spike timing dependent

plasticity finds the start of repeating patterns in continuous spike trains,”

PLoS ONE, vol. 3, no. 1, e1377, Jan. 2008.
[32] H. Markram, J. Lübke, M. Frotscher, and B. Sakmann, “Regulation of

synaptic efficacy by coincidence of postsynaptic APs and EPSPs,” Science,
vol. 275, pp. 213–215, 1997.

[33] H. Markram, W. Gerstner, and P. Sjöström, “Spike-timing-dependent

plasticity: A comprehensive overview,” Frontiers in Synaptic Neuroscience,
vol. 4, no. 2, pp. 1–3, 2012.

[34] P. Werbos, The roots of backpropagation: from ordered derivatives to neural
networks and political forecasting. Wiley. com, 1994, vol. 1.

[35] D. E. Rumelhart, G. E. Hintont, and R. J. Williams, “Learning representa-

tions by back-propagating errors,” Nature, vol. 323, no. 6088, pp. 533–536,
1986.

[36] S. Saighi, C. Mayr, B. Linares-Barranco, et al., “Plasticity in memristive

devices,” Frontiers in Neuroscience, vol. 9, no. 51, 2015.
[37] G. Indiveri, E. Chicca, and R. Douglas, “A VLSI array of low-power

spiking neurons and bistable synapses with spike–timing dependent

plasticity,” IEEE Transactions on Neural Networks, vol. 17, no. 1, pp. 211–221,
Jan. 2006.

[38] M. R. Azghadi, N. Iannella, S. Al-Sarawi, G. Indiveri, and D. Abbott,

“Spike-based synaptic plasticity in silicon: Design, implementation, appli-

cation, and challenges,” Proceedings of the IEEE, vol. 102, no. 5, pp. 717–737,
May 2014, issn: 0018-9219.

[39] T. Serrano-Gotarredona, T. Masquelier, T. Prodromakis, G. Indiveri, and

B. Linares-Barranco, “STDP and STDP variations with memristors for

spiking neuromorphic learning systems,” Frontiers in Neuroscience, vol. 7,
no. 2, 2013, issn: 1662-453X.

[40] S. Kim, C. Du, P. Sheridan, et al., “Experimental demonstration of a

second-order memristor and its ability to biorealistically implement

synaptic plasticity,” Nano letters, vol. 15, no. 3, pp. 2203–2211, 2015.
[41] J. M. Brader,W. Senn, and S. Fusi, “Learning real-world stimuli in a neural

network with spike-driven synaptic dynamics,” Neural Computation,
vol. 19, no. 11, pp. 2881–2912, 2007.

22 BIBLIOGRAPHY

[42] S. Fusi, M. Annunziato, D. Badoni, A. Salamon, and D. Amit, “Spike–

driven synaptic plasticity: Theory, simulation, VLSI implementation,”

Neural Computation, vol. 12, pp. 2227–58, 2000.
[43] H. Mostafa, A. Khiat, A. Serb, et al., “Implementation of a spike-based per-

ceptron learning rule using TiO2-x memristors,” Frontiers in Neuroscience,
vol. 9, no. 357, 2015.

[44] P. Sjöström, G. Turrigiano, and S. Nelson, “Rate, Timing, and Cooperativ-

ity Jointly Determine Cortical Synaptic Plasticity,” Neuron, vol. 32, no. 6,
pp. 1149–1164, Dec. 2001.

[45] S. Gaba, P. Sheridan, J. Zhou, S. Choi, and W. Lu, “Stochastic memristive

devices for computing and neuromorphic applications,” Nanoscale, vol. 5,
no. 13, pp. 5872–5878, 2013.

[46] S. Ambrogio, S. Balatti, V. Milo, et al., “Neuromorphic learning and

recognition with one-transistor-one-resistor synapses and bistable metal

oxideRRAM,” IEEETransactions on ElectronDevices, vol. 63, no. 4, pp. 1508–
1515, 2016.

[47] J. J. Yang, D. B. Strukov, and D. R. Stewart, “Memristive devices for

computing,” Nature nanotechnology, vol. 8, no. 1, pp. 13–24, 2013.
[48] J. Woo, K. Moon, J. Song, et al., “Improved synaptic behavior under

identical pulses using AlOx/HfO2 bilayer RRAM array for neuromorphic

systems,” IEEE Electron Device Letters, vol. 37, no. 8, pp. 994–997, 2016.
[49] M. Payvand, L. K. Muller, and G. Indiveri, “Event-based circuits for

controlling stochastic learning with memristive devices in neuromorphic

architectures,” in Circuits and Systems (ISCAS), 2018 IEEE International
Symposium on, IEEE, 2018, pp. 1–5.

[50] B. Widrow and M. Hoff, “Adaptive Switching Circuits,” in 1960 IRE
WESCON Convention Record, Part 4, New York: IRE, 1960, pp. 96–104.

[51] J. Hertz, A. Krogh, and R. Palmer, Introduction to the Theory of Neural
Computation. Reading, MA: Addison-Wesley, 1991.

[52] T. Dalgaty, M. Payvand, B. De Salvo, et al., “Hybrid cmos-rram neurons

with intrinsic plasticit,” in International Symposium on Circuits and Systems
(ISCAS), 2019, IEEE, 2019.

[53] The MNIST database of handwritten digits, Yann LeCun’s web-site, May

2012.

[54] A. Yousefzadeh, E. Stromatias, M. Soto, T. Serrano-Gotarredona, and

B. Linares-Barranco, “On practical issues for stochastic stdp hardware

with 1-bit synaptic weights,” Frontiers in neuroscience, vol. 12, 2018.
[55] R. Kreiser, T. Moraitis, Y. Sandamirskaya, and G. Indiveri, “On-chip

unsupervised learning in winner-take-all networks of spiking neurons,”

in Biomedical Circuits and Systems Conference, (BioCAS), 2017, IEEE, Oct.

2017, pp. 424–427.

[56] J. Sacramento, R. P. Costa, Y. Bengio, and W. Senn, “Dendritic error back-

propagation indeep corticalmicrocircuits,” arXiv preprint arXiv:1801.00062,
2017.

BIBLIOGRAPHY 23

[57] E. O. Neftci, C. Augustine, S. Paul, and G. Detorakis, “Event-driven ran-

domback-propagation: Enabling neuromorphic deep learningmachines,”

Frontiers in Neuroscience, vol. 11, p. 324, 2017, issn: 1662-453X.

[58] S. Stathopoulos, A.Khiat,M. Trapatseli, et al., “Multibitmemory operation

ofmetal-oxide bi-layermemristors,” Scientific reports, vol. 7, no. 1, p. 17 532,
2017.

[59] M. Payvand andG. Indiveri, “Spike-based plasticity circuits for always-on

on-line learning in neuromorphic systems,” in International Symposium
on Circuits and Systems (ISCAS), 2019, IEEE, 2019.

[60] M. Stemmler and C. Koch, “How voltage-dependent conductances can

adapt to maximize the information encoded by neuronal firing rate,”

Nature Neuroscience, vol. 2, pp. 521–527, 1999.
[61] J. Triesch, “Synergies between intrinsic and synaptic plasticity mecha-

nisms,” Neural Computation, vol. 19, pp. 885–909, 2007.
[62] T.Delbruck, R. Berner, P. Lichtsteiner, andC.Dualibe, “32-bit configurable

bias current generator with sub-off-current capability,” in International
Symposium on Circuits and Systems, (ISCAS), 2010, IEEE, Paris, France:
IEEE, 2010, pp. 1647–1650.

[63] D. Ielmini andR.Waser,Resistive Switching: FromFundamentals ofNanoionic
Redox Processes to Memristive Device Applications. John Wiley & Sons, 2015.

[64] Z.Wang, S. Joshi, S. E. Savel’ev, et al., “Memristorswithdiffusivedynamics

as synaptic emulators for neuromorphic computing,” Nature materials,
vol. 16, no. 1, p. 101, 2017.

	System-level integration in neuromorphic co-processors
	Neuromorphic computing
	Integrating memristive devices as synapses in neuromorphic computing architectures
	Spike-based learning mechanisms for hybrid memristive-CMOS neuromorphic synapses
	Spike-based implementation of the neuronal intrinsic plasticity
	Scalable mixed memristive-CMOS multi-core neuromorphic computing systems
	Conclusions and discussion

	Bibliography

