
Analog weight updates with compliance current
modulation of binary ReRAMs for on-chip learning

Melika Payvand1*, Yigit Demirag1, Thomas Dalgaty2, Elisa Vianello2 and Giacomo Indiveri1
1 Institute of Neuroinformatics, University of Zurich and ETH Zurich, Switzerland

2 CEA Leti, Grenoble, France

Abstract—Many edge computing and IoT applications require
adaptive and on-line learning architectures for fast and low-
power processing of locally sensed signals. A promising class
of architectures to solve this problem is that of in-memory
computing ones, based on event-based hybrid memristive-CMOS
devices. In this work, we present an example of such systems that
supports always-on on-line learning. To overcome the problems of
variability and limited resolution of ReRAM memristive devices
used to store synaptic weights, we propose to use only their High
Conductive State (HCS) and control their desired conductance by
modulating their programming Compliance Current (ICC ). We
describe the spike-based learning CMOS circuits that are used to
modulate the synaptic weights and demonstrate the relationship
between the synaptic weight, the device conductance, and the ICC

used to set its weight, with experimental measurements from a
4kb array of HfO2-based devices. To validate the approach and
the circuits presented, we present circuit simulation results for
a standard CMOS 180 nm process and system-level behavioral
simulations for classifying hand-written digits from the MNIST
data-set with classification accuracy of 92.68% on the test set.

I. INTRODUCTION

While deep learning has been demonstrating impressive
results on computing systems that are not resource constrained
(e.g. in terms of power, memory, or resolution), the problem
of learning on low power computing hardware still remains
unsolved. Many edge devices will benefit (or even require)
online learning, to adapt to the changes of the input sig-
nals, fine-tune pre-trained networks, or to implement semi-
supervised learning algorithms on the field. A promising class
of ultra-low power architectures that offers online learning
is that of the hybrid memristive-CMOS ones implementing
Spiking Neural Network (SNN) [1], [2]. Here we propose
novel learning circuits for SNN and 1T1R arrays, that allow
analog weight updates on synaptic binary ReRAM devices by
controlling their SET operation ICC . In addition to increasing
the bit precision of the synaptic weights in online learning, the
proposed strategy allows compact, fast, and scalable event-
based learning scheme compatible with the Address-Event
Representation (AER) [3]. There have been significant efforts
from multiple fronts to increase the bit precision of memristive
devices for online learning applications, both with research and
development on the single device level, and on the architecture.

Material Optimization: Previously, several groups re-
ported TiO2-based [4]–[6] and HfO2-based [7] ReRAM de-
vices with up to 8 bits of precision. However, in all these

works, the analog behavior is traded off with the lower
available ON/OFF ratio. While the analog behavior is an
important concern for training neural networks, cycle-to-cycle
and device-to-device variability harms the effective number of
bits further when ON/OFF ratio is small. Also, tuning the
precise memory state is not always easily achievable in a
real-time manner, requiring recursively tuning with an active
feedback scheme [7], [8]. Furthermore, some efforts have been
focused on carefully designing a barrier level using exhaustive
experimental search over a range of materials [4], [5] which
makes it difficult to fabricate.

Architecture Optimization: Increasing the “effective” bit
resolution has also been done with an architectural opti-
mization. An example of this approach involves using n
binary switches to emulate an n-bit synapse as is reported
in [9]. Another scheme involving binary devices shows that
by using their stochastic switching properties, it is possible to
reproduce effective analog-like synaptic adaptation [10], [11].
Alternatively, IBM has used a capacitor next to two devices
(in the form of Phase Change Memory (PCM)) which acts
as an analog volatile memory, integrating the weight updates
and thus increasing the combined capacitor+PCM bit precision
while learning [12]. This approach suffers from the large area
overhead of the capacitor that is needed per synapse. Also,
a mixed-precision approach has been employed to train the
networks using a computer for weight update accumulation
and transferring the weights to the PCM devices [13]. This
solution is applicable for inference-only and not for online-
learning applications.

In summary, both device and architecture optimization
strategies have not yet led to optimal online learning mech-
anisms that fully resolve the problems related to low bit
precision of memristors. It has been reported and analyzed
in [14] that after a SET operation, the resistance value of
the memristors, R, follows a linear relationship with the ICC

in a log-log scale. ICC provides control over the size of the
filament tuning the value of the set resistance. This implies
that tuning the ICC can control the resistance of the device.

To minimize the effect of variability, in this work we
follow a co-design approach by restricting the devices to
stay only in their HCS and controlling their conductance
by modulating their programming ICC . Specifically, for the
online learning application, we calculate the weight update
using the Delta rule learning algorithm [15] and map it onto
the current compliance used for setting the device. We derive a
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Fig. 1: Mean and STD of the device conductance as a function
of the ICCs. The inset shows the samples from the fitted mean
and STD used for the simulations.

technologically plausible learning algorithm which makes use
of the programming conditions of the memristive devices.

This kind of algorithm-device co-design provides the oppor-
tunity to (i) relax the fabrication constraints that is required for
multi-bit devices and (ii) provide more state stability compared
to the multi-bit approaches by practically using 2 levels per
device and only changing the value of the levels.

II. RERAM MEASUREMENTS

To find the average relationship between the mean of the
cycle-to-cycle distribution of the HCS and the SET program-
ming ICC , we performed measurements on a 16 × 256 (4kb)
array of HfO2-based ReRAM devices integrated onto a 130 nm
CMOS process between metal layers 4 and 5 [16]. Each
device is connected in series to the drain of an n-type selector
transistor which allows the SET programming ICC to be
controlled based on the voltage applied to its gate. The 1T1R
structure allows a single device to be selected for reading or
programming by applying appropriate voltages to a pair of
Source/Bit Lines (SL/BL) and a single Word Line (WL).

All 4kb devices were initially formed in a raster scan fashion
by applying a large voltage (4V typical) between the SL and
BL to induce a soft breakdown in the oxide layer and introduce
conductive oxygen vacancies. After forming, each device was
subject to sets of 100 RESET/SET cycles over a range of SET
ICCs between 10µA and 400µA, where the resistance of each
device was recorded after each SET operation. The mean of
all devices’ median resistances over the 100 cycles, at a single
ICC , gives the average relationship between HCS median and
SET ICC as in Fig. 1. The relationship is seen to follow a
line in the log-log plot (power law) and over this ICC range,
it allows precise control of the conductance median of the
cycle-to-cycle distribution between 50kΩ and 2kΩ.

III. TECHNOLOGICALLY PLAUSIBLE LEARNING
ALGORITHM

The learning algorithm is based on the Delta rule, the sim-
plest form of the gradient descent for single-layer networks.

In our implementation, the objective function is defined
as the difference between the desired target output signal y

Algorithm 1: Delta Rule implementation with dual-
memristors
wji1 = rand(), wji2 = rand();
while t < simDuration do

δj = |ŷ − y|;
if @Pre and δj > δth then

forall wji do
Iji1, Iji2 = READ(wji1, wji2);
I1 = Iji1 ∗ scale const;
I2 = Iji2 ∗ scale const;
if (ŷ − y) > 0 then

S1 = I1 + ηδj ;
ICCji1 = S1 ∗ scale const2;
S2 = I2 − ηδj ;
ICCji2 = S2 ∗ scale const2;

else
S1 = I1 − ηδj ;
ICCji1 = S1 ∗ scale const2;
S2 = I2 + ηδj ;
ICCji2 = S2 ∗ scale const2;

end
RESET (wji1, wji2);
SET (wji1, wji2);

end
end

end

and the network prediction signal ŷ, for a given set of input
patterns signals x, weighted by the synaptic weight parameters
w. Then the Delta rule can be used to calculate the change
of the weights connecting a neuron i in the input layer and a
neuron j at the output layer as follows:

∆wji = η(yj − ŷj)xi = ηδj xi, (1)

where δj is the error, and η is the learning rate. To imple-
ment this using memristive synaptic architecture, we represent
each synaptic weight w, by the combined conductance of two
memristors, wji1 and wji2, arranged in a push-pull differential
configuration. This scheme extends the effective dynamic
range of a single synapse to capture the negative values.

During the network operation, the target and the prediction
signals are compared continuously to generate the error signal.
With the arrival of a pre-synaptic event, if the error signal is
larger than a small error threshold, the weight update process
is initiated. The small error threshold that creates the ”stop-
learning” regime has been proposed to help the convergence
of the neural networks with stochastic weight updates [17].

The implementation of the synaptic plasticity consists of
three phases (Alg. 1). First, a READ operation is performed
on every excitatory and inhibitory memristor to determine their
conductance. Then the resulting current values (Iji1 and Iji2)
are scaled to the level of the error signal. Second, the current
value proportional to the amount of the weight change ηδjxi
is summed up with the scaled READ current to represent
the desired conductance strength to be programmed. Finally,
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Fig. 2: Event-based neuromorphic architecture using on-line learning in a 1T1R array (a), and the asynchronous state machine
used as the switch controller applying the appropriate voltages on the BL, SL and WL of the array for online learning.

these currents are further scaled to a valid ICC range. To
provide a larger dynamic range per synapse, the conductance
of both memristors are updated with a push-pull mechanism
considering the sign of the error (i.e. if the conductance of one
memristor increased, the conductance of the complementary
memristor is decreased, and vice-versa).

IV. LEARNING CIRCUITS AND ARCHITECTURE

Neuromorphic Architecture: Figure 2a illustrates the
event-based neuromorphic architecture encompassing the
learning algorithm. It consists of a 1T1R array, a Switch Con-
troller, Leaky Integrate and Fire (I&F) neurons and a learning
block (LB). Every neuron receives excitatory and inhibitory
currents from two rows of the 1T1R array respectively.

With the arrival of every event through the AER interface
(not shown), two consecutive READ and WRITE signals are
generated [2]. Based on these signals, the asynchronous state
machine in Fig. 2b controls the sequence so that the SLs, BLs
and the WLs of the array are driven by the appropriate voltages
such that: device is read, its value is integrated by the I&F
neuron; the error value is updated through the learning block
(LB), generating ICC1 and ICC2 (section III); Based on these
values, the excitatory and inhibitory devices are programmed.

Learning Circuits: Based on Alg. 1 and data from Fig. 1,
we have designed circuits that generate the appropriate ICC ,
based on the firing rate distance between the neuron and its
target. Figure 3 presents these circuits. The spikes from the
neurons and the target are integrated using subthreshold Gm-C
filters highlighted in red generating VN and VT . These voltages
are subtracted from one another using a subthreshold ”Bump”
(subBump) circuit [18] highlighted in green, and an above-
threshold ”Bump” circuit (abvBump) in orange.

subBump circuit compares VN and VT giving rise to the
error currents when neuron and the target frequencies are far
apart and generates the STOP signal when the error is small
and in the stop-learning range (δth) [17], [19]. STOP signal
gates the tail current of all the above-threshold circuits and
thus substantially reduce the power consumption when the
learning is stopped. Moreover, input events are also used as
another gating mechanism. abvBump circuit subtracts VN and
VT and scales it to Iscale, equal to the maximum ICC required
based on Fig. 1. Based on the error sign (UP), the scaled error
current is summed with or subtracted from the scaled device

current generating the desired ICC (Alg. 1). This circuit is
highlighted in purple.

Circuit Simulations Results: Figure 4 depicts the positive
and negative error currents, STOP-learning signal, and the
ICC1 and ICC2 currents. The error currents follow a Sigmoid
which can be approximated by a line for error values between
-1 and 1. As is explained in Alg. 1, for positive errors,
ICC2 (ICC1) follows the summation (subtraction) of the error
current with the scaled device current, while for the negative
errors, it is the opposite. Figure 5 illustrates the dependence
of the ICC on the current value of the devices which shifts
the error current curve up or down.

V. SYSTEM-LEVEL SIMULATIONS

We performed SNN simulations with BRIAN2 [20] to test
the performance of the presented update scheme using the
fitted device data in Fig. 1 with stochastic weight changes.
Our goal was to have a comparable test accuracy with the
artificial neural networks classically trained using 32b floating
point precision on the digital hardware. We tested our network
on the MNIST handwritten digits dataset [21] using the first
five classes, which is composed of 30596 training and 5139
testing images of 28×28 pixels. We trained a fully-connected
single-layer network with 784 input LIF neurons in the first
layer and 5 LIF neurons at the output layer.

Each input image is presented to the network for 100 ms.
We encoded the input pixel intensity as [0, 200] Hz Poisson
spikes. At the output layer, spikes are counted per neuron
during each stimulus, and the neuron with the maximum firing
rate is selected as the network prediction. The error signal is
calculated as the difference between low-pass filtered network
output spikes and low-pass filtered target spikes, which is
encoded as Poisson spikes with a rate of 40 kHz.

The cycle-to-cycle variability of ICC dependent GLRS con-
ductance follows a Gaussian distribution with ICC dependent
mean and standard deviation (std) (Sec. II). This relationship is
modeled using the power-law y = AxB for both mean and the
std. This device variability model is assigned to all synaptic
devices in the simulation. After training three epochs on five
classes, a test accuracy of 92.68% is achieved.

VI. DISCUSSION

There is a significant effort in developing learning algo-
rithms for SNNs given their potential for highly-parallel and
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low-power processing. However, there is a large gap between
these algorithms and the feasibility of their implementation
on hardware given the noise, variability and the available bit

precision. This gap calls for the importance of technologi-
cally plausible learning algorithms developed from the device
physics/measurements [22]. This paper proposes a step in this
direction exploiting the ICC of ReRAMs for weight updates.
Some important factors to consider are:

Power consumption and Scalability: As the LB generates
up to 100s of µAs of ICC for large errors, design consider-
ations must be given such as our event and STOP-learning
signal gating, to reduce the average power consumption. Each
LB has a peak current between 1 to 600 µA depending on the
network error. Thanks to the Poisson distribution of the events
(due to thermal noise), we can assume that at each instance
only the devices in one column are programmed, and thus,
the peak power grows slower than linearly with the number
of neurons (linear in the worst case). Hence, the scalability is
not mainly limited by the power consumption. However, with
Poisson distributed input events and a maximum frequency for
each input channel, an upper bound for the array size exists
which can be calculated based on the pulse width of the events,
and the tolerance to missing events [11].

The non-linear effect: The power-law nature of ICC →
GLRS transformation in Fig. 1 non-linearly maps the updated
weights to the actual updates. This introduces a slight bias
in the weight update deviating from the optimal weights
calculated by Delta rule.

VII. CONCLUSIONS

Here, we proposed a technologically plausible learning
algorithm that takes advantage of the compliance current of
binary ReRAMs to effectively generate variable, multi-level
conductance changes. We have presented a complete co-design
approach within multiple levels of abstractions, ranging from
device measurements, algorithm, architecture and circuits. We
argue that this work takes a significant step toward building
always-on on-chip learning systems.
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