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Abstract—Recent years have seen an increasing interest in
the development of artificial intelligence circuits and systems
for cloud-less edge computing applications. In an effort to
reduce power consumption even further, we propose beyond von-
Neumann in-memory computing architectures that can process
the signals at the sensor side using ultra-low power mixed-signal
analog/digital circuits which have properly matched dynamics
and time-constants. In this paper, we propose one of the main
computing elements of such architectures, namely the silicon neu-
ron, designed using analog circuits in an advanced FDSOI 22 nm
node. Here we optimize the design of an Adaptive Exponential
Integrate and Fire (AdExp IF) neuron model for producing
neural dynamics with biologically plausible time constants. We
explore the options of the 22 nm FDSOI technology to address
the analog design issues that arise from advanced scaling (such
as leakage) and minimize power consumption by using a novel
current comparator circuit with current-driven positive feedback.
We present circuit simulation results which reproduce biolog-
ically plausible responses and compare the circuit energy per
spike with state-of-the-art architectures. The proposed neuron
design consumes one order of magnitude less power compared
to the state-of-the-art and two orders of magnitude less compared
to a pure digital implementation.

Index Terms—Neuromorphic edge computing, Silicon neurons,
FDSOI, Ultra-low power processing

I. INTRODUCTION

As the amount of data generated by the connected de-
vices are ever more increasing, the power consumption for
processing them is becoming more and more relevant. Local
edge computing is gaining considerable attention because it
promises to bring significant power savings by avoiding data
transfer to remote (cloud) computing systems. In an effort
to reduce power consumption even further, we propose to
endow edge-computing sensory devices with ultra-low power
processing circuits that can continuously monitor the data-
streams directly on the sensing node, extract relevant in-
formation, and activate more powerful (and power hungry)
computing or communication systems only when necessary.
Recurrent spiking neural networks (SNNs) have been shown
to be an ideal model for implementing such type of pro-
cessing, provided their time constants are well matched to
those of the signals of interest [1]. Mixed-signal event-driven
neuromorphic circuits are natural candidates for implementing
such SNN architectures and integrating them directly into IoT
sensor nodes [2]. These SoC embedded sensory-processing
systems can then run SNN artificial intelligence learning and
inference algorithms in real-time on the sensed signals and
dramatically reduce the bandwidth of their output signals. We

denote this approach as “extreme-edge neuromorphic intelli-
gence”. Such hardware is also suited for emerging memory
technologies (e.g. memristors) and for the implementation of
machine learning algorithms based on neural networks [3],
[4]. However, mixed analog-digital design with deep sub-
micron technology is challenging as a result of the increased
leakage current that in advanced complementary metal-oxide-
semiconductor processes becomes a significant portion of
transistor’s ON current, leading to an increase in power
consumption. Finally, as the technology node scales down
and the transistor’s channel length decreases, its parameter
variations (e.g. the threshold voltage) increase, and device
mismatch increases even further.

In this paper, we present a sub-threshold neuron circuit
that has been designed to implement large-scale multi-neuron
multi-core neuromorphic computing architectures using a
22 nm Fully-Depleted Silicon on Insulator (FDSOI) process.
We show how it is possible to implement bio-physically
complex neural dynamics using ultra-low power compact
analog circuits in advanced scaled processes, by analyzing the
features of the 22 nm FDSOI technology and addressing the
analog design issues that arise from the advanced scaling. To
highlight the sub-parts of the 22 nm FDSOI silicon neuron
circuits that are more sensitive to mismatch, we present Monte
Carlo analysis results. Furthermore, we show how the use of
an optimized current comparator with current-driven positive
feedback significantly reduces power consumption.

II. MATERIALS AND METHODS

In 180 nm or even larger processes, transistors in sub-
threshold regime usually operate with currents in the range of a
few pico-Amperes to tens of nano-Amperes. In more advanced
processes minimum-size transistors have considerably larger
leakage currents. Therefore, to maintain the desired range
of low currents, we performed circuit simulations of single
transistors and determined their proper geometrical size. The
devices available in the 22 nm FDSOI technology differ on the
threshold voltage (Vth) value and hence on the Ioff as the two
parameters are inversely proportional. Since our constraints are
slow dynamics and low leakage, we considered the devices
with high Vth, namely Ultra Low Leakage High Threshold
Voltage Transistors (UHVT). As is illustrated in Fig. 1, by
sweeping the width (80 nm - 600 nm) of both UHVT n-type
and p-type with maximum length (36 nm), we determined the
desired values of Ioff . Based on these results, we designed an
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Fig. 1. 22 nm FDSOI transistor geometrical analysis: (a) UHVT nfet Ids
vs Vgs sweeps for different widths and maximum length, (b) left analogous
sweeps for a UHVT pfet device.

Adaptive Exponential Integrate-and-Fire (AdExp IF) neuron
circuit using UHVT MOSFETs provided by the 22 nm FDSOI
technology. The circuit (Fig. 2) comprises an input Differential
Pair Integrator (DPI) [5], [6] filter (P1 - N4), a current-based
positive feedback module (P7 - N10), a current comparator
(CC) block (P15 - N17), a spike reset circuit with refractory
period functionality (P13 - N21), a spike generation inverter
(P12 - N22) and a spike-frequency adaptation mechanism
implemented with an additional DPI filter (see Fig.2(b)).
The input DPI models the neurons leak conductance, pro-
ducing exponential sub-threshold dynamics in response to
constant input currents. The integrating capacitance Cmem

(1 pF) represents the neurons membrane capacitance. The CC
compares Imem with Ithr, set by an external bias, which sets
the neuron’s spiking threshold. The positive feedback circuit
models both sodium channel activation and inactivation dy-
namics, while the reset and refractory period circuit represents
the potassium conductance functionality. The spike-frequency
adaptation DPI models the neurons calcium conductance, and
produces an after-hyperpolarization current (Ien adp) propor-
tional to the neurons mean firing rate. The neuron and the
spike-frequency adaptation circuits are connected by a pulse
extender which extends the spike duration.
To limit the Early effect, we used pseudo-cascode split-
transistor sub-threshold technique, as done in [7]. This tech-
nique allows to generate bias currents on the order of pico-
Amperes, necessary to have large time constants, while keep-
ing the size of the capacitors to a minimum. For example,
the diode-connected transistors N1-N2 in Fig. 2(a) and 2(b)
are added to reduce the Vds of the transistors P3 and P4
respectively.
We used the same split-transistor sub-threshold technique for
the bias current-mirrors, in order to compensate for mismatch,
and to enhance current mirror operation to have precise control
of small currents. Similarly, all the circuit parameters that
require currents on the order of a few pico-Amperes have been
implemented using transistors in series.
All capacitors are implemented using the Alternate Polarity
Metal On Metal (APMOM) option. The value of the capaci-
tance and the size are shown in Table I.

TABLE I
CAPACITANCE VALUES AND SIZES USED IN THE DESIGN

Cmem Cahp Cref Cpex

Value 1 pF 2 pF 700 fF 600 fF
Width 20µm 28µm 16µm 15µm
Length 20µm 30µm 19µm 17µm

(a)

(b) (c)

Fig. 2. 22 nm FDSOI AdExp IF neuron schematic: (a) Neuron circuit
schematic with sub-parts: DPI input filter (light blue), Positive feedback
(magenta), Current comparator (green), Refractory period circuitry (yellow)
and spike-generation inverter (grey). (b) Spike-frequency adaptation circuit
schematic (AHP). (c) Pulse extender schematic (PEX).

III. RESULTS AND DISCUSSION

A. Circuit simulations

We optimized the design of the AdExp IF neuron for
producing biologically plausible neural dynamics, with time
constants matched to those of natural signals, such as speech
or bio-signals.
Simulation results demonstrating examples of biologically
plausible behaviors are shown in Fig. 3. Figure 3(a) shows
the neuron spiking frequency versus input current (F-I curve),
for different settings of the Igain bias. As expected, increases
in Igain result in the increase of the neuron’s firing rate.



Figure 3(b) shows the neuron’s F-I curve for different Iref
bias settings. As the Iref increases, the refractory period is
shorter and hence the neuron’s maximum spiking frequency
increases. Figure 4 demonstrates the spike-frequency adapta-
tion behavior, obtained by appropriately tuning the relevant
parameters in the AHP block of Fig. 2 and stimulating the
neuron with a constant injection current.
The time constant of the spike-frequency adaptation circuit

(a) (b)

Fig. 3. Spiking frequency vs Input current sweeping two neuron biases: Igain
(a) and Iref (b) to evaluate whether the neuron is able to simulate a biological
response

(63ms) is twice the time constant of the neuron circuit (31ms)
since the capacitance Cahp (2 pF) is twice Cmem (1 pF) using
both Ileak and Itau adp equal to 1 pA.

(a) (b)

(c)

Fig. 4. Biologically plausible behaviour: (a) Membrane current Imem shape
over time. (b) and (c) Spike-frequency adaptation: (b) Imem and Iadp trace
over time, (c) Vadp trace over time

B. Energy per spike
Once proven that the design is able to reproduce a bi-

ologically plausible behaviour, we evaluated whether it can
implement massively parallel large-scale neuromorphic pro-
cessors. We compare the energy per spike of the neuron

proposed in this work with previously proposed state-of-the-
art neuromorphic processors in Table II.
The neuron designed in this work consumes one order of

TABLE II
ENERGY PER SPIKE COMPARISON WITH PREVIOUS WORKS

Work [8] [9] [10] [11] This work

Techn. 180 nm 28 nm 180 nm 28 nm 22 nm
Type Mixed Mixed Mixed Digital Mixed
Vdd 1.8V 0.7V-1V 1.8V 0.775V 0.8V
En./spike 883 pJ 2.3 nJ-30 nJ 10 pJ 800 pJ 990 fJ

magnitude less compared to the most recent silicon neuron
circuit design, the Sigma-Delta neuron proposed in [10].

C. Monte Carlo Analysis

We ran Monte Carlo simulations to evaluate the sensitivity
of the circuit to mismatch. We performed this analysis with
500 runs for this neuron circuit, with DC current injected
through P2 in Fig. 2, and with bias currents set to obtain
a firing rate of approximately 65Hz while switching off the
spike-frequency adaptation circuit.
The Monte Carlo simulation produces a bi-modal distribution

Fig. 5. Monte Carlo simulation distribution of the neuron circuit

(see Fig. 5). The first mode gives a Gaussian distribution
around the expected frequency value, 65Hz. The second mode,
shows that the neuron can fire at higher frequencies, around
180Hz - 200Hz. One possible reason for this could be that
some parts of the circuit are faster than the refractory period
part and make the neuron fire at higher frequencies exceeding
the maximum value. In fact, the refractory period circuitry
limits the neuron to fire with a maximum frequency of 100 Hz.
If another part of the circuit is stronger than the refractory
period, the node Vmem does not reset completely staying at
a higher voltage value. In this way, the neuron reaches the
spiking threshold faster leading to higher spiking frequencies.
We performed further Monte Carlo analysis to understand
which specific transistors give this bi-modal distribution.
Firstly, taking into account the mismatch sensitivity of the
single neuron circuit. Secondly, considering also the sensitivity
of the bias current mirrors. The result is reported in Fig. 6: In
red the transistors that show sensitivity to mismatch by sim-
ulating the circuit without including the bias current mirrors
and in orange the additional transistors that show sensitivity
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Fig. 6. Monte Carlo analysis: (a) Neuron circuit with transistors more
sensitive to mismatch highlighted: In red/orange are the transistors with
more sensitivity to mismatch from the Monte Carlo analysis of the circuit
without/with considering the bias current mirrors. (b) Sensitivity distribution
of the input DPI filter. (c) Sensitivity distribution of the refractory period part

when including the current mirrors. Therefore, to optimize the
circuit, transistors in series and in parallel must be added in
order to decrease the variability caused by mismatch. This
modification can be done just for the more sensitive sub-parts
of the circuit highlighted with this analysis (Fig. 6).

IV. CONCLUSION

We determined process and circuit parameters in order to
implement efficient (low power and low mismatch) analog
neuron circuits using an advanced scaled 22 nm FDSOI pro-
cess. The neuron circuit presented has an energy per spike
of the order of 10−13 - 10−12, which is considerably lower

compared to an analogous neuron design implemented in a
180 nm CMOS process [8]. Furthermore analysis has shown
how the proposed 22 nm implementation of the analog/digital
IF AdExp neuron consumes two orders of magnitude less per
spike than fully digital implementations.
We studied with Monte Carlo analysis the mismatch sensitivity
of the neuron circuit and highlighted the parts of the circuit that
are most critical to be optimized for variations. In particular,
we showed how the more sensitive sub-parts of the silicon
neuron circuit are the input DPI filter, the first part of the CC,
and the refractory period part. To minimize the effect of device
mismatch we set the length and width of the most sensitive
transistors to larger values.
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