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Summary. Hardware implementations of brain-inspired cognitive computing architectures are typi-
cally characterized with constraints and limitations that are significantly different from those found
in conventional processor designs. In particular, mixed-signal analog-digital neuromorphic processors
comprise populations of silicon neurons and dynamic synapses that can faithfully emulate the physics
of computation of cortical circuits. As a consequence, the computing elements in these devices are
often affected by the same limitations observed in biological neurons and synapses, i.e., low reso-
lution, slow speed, high variability and high sensitivity to noise. In this work, we propose spiking
neural network configurations that implement robust computational primitives for building complex
real-time neural information processing systems. We validate these architectures on the Dynamic
Neuromorphic Asynchronous Processor (DYNAP) device and demonstrate their cognitive computing
abilities with decision making winner-take-all circuits coupled in a relational network.

Novel brain-inspired processing algorithms and artificial neural networks are showing remarkable
results in a wide variety of data processing architectures [4]. However, implementing such algorithms on
conventional von Neumann computing systems is not ideal, as their time-multiplexing mode of operation
and memory bottleneck [1] impose very stringent requirements on their power budget. Recently a new
class of dedicated hardware devices, optimized for implementing neural network algorithms, started to
appear. Among these, the architectures that offer the highest power-savings for a given number of
operations are the ones designed to implement spiking neural networks (SNNs). While there are by now
well established design workflow and programming frameworks for specifying the structure and parameters
of rate-based artificial neural networks to solve a wide range of tasks, designing and configuring SNNs to
carry out desired functions is still an open challenge. Solving this challenge is particularly important in
dynamic autonomous agent scenarios that require real-time processing of sensory signals and production
of desired motor sequence commands. If these autonomous agents are realized as small and compact
robotic platforms or small intelligent sensors that need to transmit data to further processing stages only
when necessary (e.g., indoor autonomous drones or environmental sensors), then it is crucial that these
computational primitives are compatible and well-matched to ultra-low power and compact electronic
substrates that can implement them.

Here we present an example of a cognitive task that makes use of basic SNN computational primitives
which can be implemented using low-precision and noisy silicon neurons. The goal is to create a neural
network that can realize basic relations dynamically linking three variables (A, B, and C). The network
proposed is capable of performing cue-integration and inferring the value of any of the three variables
given the other two, a task known as omni-directional function approximaton [2]. The basic computa-
tional primitive that is used to perform this task is a spiking neural Winner-Take-All (WTA) network.
Such WTA networks have been shown to be able to implement computational primitives with both ana-
log and digital processing characteristics [3]. Furthermore, it has been demonstrated that such networks
can be successfully used to synthesize robust cognitive computing state-machines on mixed-signal neu-
romorphic devices [6]. Following up on these achievements, we demonstrate the implementation of the
proposed relational network using the Dynamic Neuromorphic Asynchronous Processor (DYNAP): a re-
cently developed mixed signal analog-digital neuromorphic processor which is among the most efficient
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Figure 1 DYNAP architecture. (a) Multi-chip and multi-core arrangement, with hierarchical routing
scheme. (b) Die photograph with highlight of single neuron block.
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Figure 2 Example of a three-way relation network encoding A + B = C. The network allows omni-
directional inference of a missing input provided the other two. Variable values are encoded by the
positions of population activation peaks in WTA networks. (a) The relation is encoded by the highlighted
connectivity patterns. Each neuron of three 1D WTA populations, A, B, and C (16 excitatory neurons
each, inhibitory neurons not shown), is bidirectionally connected to a corresponding row, column or
diagonal of neurons in a 2D WTA hidden population H (256 neurons). Connections between populations
C and H include a y-axis wrap-around to maintain symmetry of a total number of connections. (b) Raster
plot showing the spiking activity of populations A, B, and C. The experiment shows inference of C given
A and B, as they change over time. The shaded area shows a moment in time corresponding to example
values used in (a). Note the wrap-around of C after 1600 ms.

devices available in terms of number of synaptic operations per second per Watt [5]. A block diagram
and chip micro-graph of the DYNAP is shown in Fig. 1. It comprises four cores of 256 neurons each,
implemented as adaptive exponential integrate and fire neurons, with 64 dynamic synapses per neuron.
The weight resolution of a single synapse is of 2 bits, but source neurons can target multiple synapses
of the destination neuron to increase their effective resolution. A detailed description of the DYNAP is
provided in [5].

In the relational network proposed the variable values are encoded by three distinct WTA networks,
while the specific relation it implements is hard-coded in the connectivity of a hidden population (H; Fig.
2a). In spite of the noisy nature of the silicon neurons, the hardware setup is able to provide a stable
inference. Additionally, time-varying inputs produce proper inference of the free variables (see Fig. 2b).
As this network can infer its output by integrating its inputs, it can be used as higher-level computational
primitive that can be connected to other networks, to provide a modular hardware building block for
composing more complex networks, i.e. a functional node of a larger neural structure. From the cognitive
point of view, the omni-directional relation features of this network constitute the neural correlate of the
basic decision making processes which are used in neural systems to compose more complex cognitive
functions.

References

[1] J. Backus. Can programming be liberated from the von Neumann style? A functional style and its
algebra of programs. Communications of the ACM, 21(8):613–641, 1978.

[2] S. Deneve, P. Latham, and A. Pouget. Efficient computation and cue integration with noisy population
codes. Nature Neuroscience, 4(8):826–831, 2001.

[3] R. Douglas and K. Martin. Recurrent neuronal circuits in the neocortex. Current Biology,
17(13):R496–R500, 2007.

[4] Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. Nature, 521(7553):436–444, 2015.
[5] S. Moradi et al. A scalable multicore architecture with heterogeneous memory structures for dy-

namic neuromorphic asynchronous processors (DYNAPs). Biomedical Circuits and Systems, IEEE
Transactions on, pages 1–17, 2017.

[6] E. Neftci et al. Synthesizing cognition in neuromorphic electronic systems. Proceedings of the National
Academy of Sciences, 110(37):E3468–E3476, 2013.


