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Abstract—Stochastic computing has shown promising results
for low-power area-efficient hardware implementations of neural
networks. In particular, probabilistic methods are being actively
explored in models of spiking neural processing systems for
enabling noisy and low-precision hardware neuromorphic com-
puting architectures to implement state-of-the-art recognition and
inference systems. It is therefore important to develop suitable
sources of stochastic behavior for these neural processing systems
that will allow them to maintain their compact and low-power
benefits. Here we present a mixed-mode analog-digital circuit
that can be used to control the amount of variability produced
by event-based spiking neural networks, which exploits the
inherent device-mismatch properties of the analog circuits used
in combination with the spiking nature of the neural network.
We characterize the properties of the circuit presented and
demonstrate its applicability in a neuromorphic processor device
comprising 256 adaptive integrate and fire neurons and 256×256
dynamic synapses.

I. INTRODUCTION

Neuromorphic Very Large-Scale Integration (VLSI) is a
technology that aims to reproduce biophysical principles of
computation that are observed in biological synapses and
neurons in compact, low-power hardware [1]. One of its goals
is to mimic principles of information processing in biological
neural systems, such as neural computation, long-term and
short-term plasticity, as well as recognition, classification, and
inference. Inference neural network models can be used both
for understanding the basic principles of computation used by
the brain [2]–[4], and for solving practical machine learning
tasks [5], [6]. However, in order to enable networks of spiking
neurons to carry out probabilistic inference, it is necessary to
provide a source of stochasticity that can be exploited by the
neuromorphic VLSI circuits, and that does not require large
amounts of silicon real-estate, or large amounts of power.

Similarly, ensemble methods in neural networks, such as
“random forests” [7] or other bagging and boosting meth-
ods [8], are among the state-of-the-art methods for imple-
menting robust classification and recognition systems. These
machine learning algorithms have in common with compu-
tational neuroscience mixed-selectivity models [9] the need
for a source of randomness. Also in this case, to implement
such methods in neuromorphic technology efficiently (i.e.,
using low power and compact circuits), it is necessary to
provide a source of variability that can be directly interfaced

to the circuits being used to implement the neural networks.
Here an ensemble of T weak classifiers produce individual
hypotheses ht ; t ∈{1, ..,T} on a distribution of labeled training
data Dt of the overall data with an prediction error εt with
respect to Dt . The global classification is comprised of the
weighted sum of weak hypotheses ht , where the choice of Dt
influences the weight of the hypothesis in an adaptive fashion,
detailed in [20]. The introduction of tunable spatial variability
in the firing behavior of the silicon neurons proposed in
this work will increase the variability in the hypotheses ht ,
reducing the overall classification error over the training data
as demonstrated in [20].

In this paper we propose a compact mixed-signal ana-
log/digital circuit that can be used for this purpose, and that is
compatible with event-based spiking neural network circuits.
Although mixed-mode analog-digital, this circuit is compatible
with both mixed-signal neuromorphic approaches [1], and pure
digital ones [10]. The aim of this work is to investigate the
effects of this circuit on the networks of spiking neurons that it
is embedded in, as a step towards the exploitation and control
of induced stochasticity.

In Section II we describe the principles of operation of
the circuit, and the neuromorphic architecture in which we
embedded it; in Section III we present experimental results to
characterize its properties, and in Section IV we discuss how
the results obtained can be used to implement and possibly
control stochastic behavior in networks of spiking neurons.

II. METHODS

Here we first present the circuit and explain its principle
of operation, and then show how it can be embedded in
large-scale neuromorphic architectures to implement a tunable
source of variability, potentially useful for implementing bag-
ging or stochastic neural network models.

A. The pulse-extender synaptic circuit

The circuit we propose is a mixed-signal pulse exten-
der/synapse as shown in Fig. 1. It’s principle of operation
is based on the assumption that the efficacy of the synapse
on the afferent neuron depends on both the duration of the
pulse stimulating the synapse, and its synaptic weight, which
sets the output current amplitude. The circuit uses two distinct
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Fig. 1: Circuit diagram of a synapse pulse extender circuit. Fast input
address-event pulses are fed into a starved inverter, which converts
them into a waveform that is first reset and slowly recovers. The
length of this recovery, and of the digital pulse generated by the
subsequent inverter is controlled by the voltage Bias L. The output
of the synapse is represented by a current IW whose amplitude
depends on the Bias voltage W . Output currents of multiple synapses
can be summed together and fed into neuromorphic circuits for
implementing synapse and neural dynamics.

parameters to control these two properties: a voltage bias L for
controlling the duration of the pulse, and a voltage Bias W for
setting the weight. It is therefore possible to drive the afferent
neuron is the same way by either using short pulses with large
weights, or long pulses with small weights. The key intuition
though lies on the fact that we can use large transistors for
controlling the weight (i.e., large MW ) and minimum size
transistors for controlling the pulse duration (i.e., small ML).
This will affect the amount of device mismatch present across
multiple instances of these synapses in different ways: short
pulses with high weights will have significantly less mismatch
than long pulses with small weights.

Device mismatch is a phenomenon that affects transistors
in different ways, depending on their operating domain. In
particular, transistors operated in the sub-threshold domain
have significantly larger mismatch than transistors operated
above threshold [11], [12]. Setting a sub-threshold Bias for
ML will produce mismatched currents that will integrate their
differences over time to reset the input pulse, leading to a very
large amount of variability in the net effect of the synapses Bi-
ased in this way. Conversely, by operating ML above threshold,
(and compensating the Bias of MW to maintain the net synaptic
drive We f f ), the neurons driven by these synapses will show
much less variability. In Section III we quantify this variability
across the neurons belonging to a Reconfigurable On-Line
Learning Spiking (ROLLS) neuromorphic processor [13].

B. The ROLLS neuromorphic processor

The ROLLS chip was fabricated using a standard 6-metal
180 nm CMOS process. It occupies an area of 51.4 mm2

and has approximately 12.2 million transistors. It comprises
256 neurons and 133,120 synapses. The synapse circuits
are divided into arrays of short-term plasticity (STP) and
long-term plasticity (LTP) elements. Both sets of synapses
comprise analog circuits, that can reproduce bio-physically
realistic (short-term and long-term) synaptic dynamics, as
well as digital circuits that can set and change registers
which control for example network configuration settings or
programmable weights (see [13] for a through description and

Fig. 2: Micrograph of a spike-based neuromorphic processor chip
(ROLLS) that comprises the tunable mismatch pulse-with synapse
circuits.
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Fig. 3: Voltage output of the synapse circuit measured in response to
pulses with three different lengths, for a constant weight bias setting
IW = 0.125 µA.

characterization of these circuits). The silicon neuron circuits
implement a model of the adaptive exponential integrate-and-
fire neuron [14] that has been shown to be able to accurately
reproduce electrophysiological recordings of real neurons [15],
[16]. All synaptic currents are integrated by low-power log-
domain pulse integrator filters [17] that can reproduce synaptic
dynamics with time constants that can range from fractions
of micro-seconds to hundreds of milliseconds. All analog
parameters of synapses and neurons can be configured via
a temperature compensated programmable current-mode bias
generator [18]. Peripheral asynchronous IO logic circuits are
used for receiving input spikes and transmitting output spikes,
using the Address-Event-Representation (AER) communica-
tion protocol [19].

Stimulation via the AER protocol is performed automati-
cally using an FPGA device, following a predefined protocol
that specifies type, target location and frequency of the input
stimulus. In order to evaluate the precise timing of the neuron
spikes we time-stamped the spikes as they were being mea-
sured by the FPGA device, using a timer of 40 ns resolution,
and transmitted address and time-stamp of the event measured
to a host PC for data logging via a USB link.

III. RESULTS

To determine to what extent it is possible to modulate
the effect of device mismatch in the ROLLS neuromorphic
processor, we stimulated one synapse per neuron and measured
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Fig. 4: Silicon neuron membrane potential measured in response to
the three pulses plotted in Fig. 3, and for a constant weight bias
setting IW = 0.125 µA.

the variability of the response across different neurons. As
mentioned in Section II-B, the current produced by the mixed-
mode pulse extender synapse is integrated by a first-order
current mode linear filter. The final synaptic current sent to
the neuron can be described by:

τ
d
dt

Isyn + Isyn = αIW (1)

where τ is a time constant directly proportional to the filter
circuit capacitance and inversely proportional to a user pro-
grammable bias current. Similarly, α is a gain term, tunable
by additional user programmable bias currents (see [13] for
a detailed explanation of the circuit details). The change in
synaptic current ∆Isyn is therefore directly proportional to Iw
and to the pulse duration ∆T (∆Isyn ∝ Iw ·∆T ). However, while
IW can be directly programmed by the on-chip current-mode
bias generator (which produces the corresponding voltage bias
W to apply to MW of Fig. 1), the pulse duration ∆T can only
be controlled indirectly, by programming different values of IL
(i.e., the current flowing through ML of Fig. 1). In the particular
implementation of the proposed circuit in the ROLLS chip, a
capacitor Cpw of 500 f F was used.

In Fig. 3 we plot the voltage output of the log-domain
pulse integrator in response to pulses extended by different
values of IL. As expected, smaller bias currents produce longer
pulse durations. To show that longer pulse durations effectively
increase the total synaptic current, we plot also the neuron’s
response to these pulses, for a constant IW bias, in Fig. 4.
As the total synaptic current integrated by the silicon neuron
circuit is larger for longer pulse durations, smaller settings
of IL produce output spikes earlier: neuron response times to
input pulses with large ∆T are shorter than response times to
input pulses with short ∆T .

In order to collect statistics and perform large sets of quanti-
tative measurements on the variability of the neurons response
times, we interfaced the ROLLS chip to an FPGA device
and stimulated it using the AER communication protocol.
We measured the time-stamps of the Address-Events both
in input to the ROLLS (to stimulate the synapses) and in
output (to measure the neuron response times). To evaluate
the precise timing of the response-spikes relative timestamps
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Fig. 5: Standard Deviation σ of the neuron response times measured
across the 256 neurons on the chip, for different settings of IL bias.
Note that the neuron response times are kept approximately constant,
by compensating for the changes in pulse duration with changes in
synaptic weights. Inset is the same data, plotted over 1

IL
as it is

proportional to ∆T .

of 40 ns resolution were attached to Address-Events produced
by the chip. All communication and routing of events is
managed in real-time by a soft processor implemented within
the programmable logic fabric of the FPGA. The FPGA device
then transmits the data to a host PC, via a USB link, for further
processing and analysis.

After the initialization of the ROLLS neuromorphic proces-
sor circuits with a proper set of analog biases, we configured
the setup to stimulate a single synapse per neuron, in all 256
neurons in parallel. This can be achieved by broadcasting a
single address-event across all rows of the synaptic array on
the chip. We configured the synapses and neurons to produce
an output spike in response to a single input address-event. At
the onset of the experiment, the FPGA resets its time-stamp
generator, and immediately after transmits the input address-
event to the ROLLS chip. Neuron response times are measured
over a time window of 1.5 s, and corresponding pairs of output
neuron address and time-stamp relative to stimulation onset are
measured. The experiment is repeated for different values of
IL ranging from 0.25 nA to 5.99 nA. To compensate for the
change in pulse duration, we also adjust the value of IW such
that the neuron mean response time lies around 31 ms although
the pulsewidth changes with IL.

Figure 5 shows the standard deviation of the spiking output
time of the neuron, in response to a single synaptic input,
measured across the population of neurons on the chip, and
repeated for different values of the leak current IL, which is
inversely proportional to the synaptic input pulse width. As
expected, larger pulse widths (smaller IL settings) increase
the variability across neuron responses, while smaller pulse
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Fig. 6: Standard deviation of spike times ∆T produced by the
population of neurons with IL = 2.01nA, measured across the 256
synapses afferent to each neuron.

widths give rise to less variability, despite the fact that the
neuron response times are approximately the same (thanks to
the larger synaptic weights settings IW used to compensate for
the shorter pulse widths).

Figure 6 shows the same measurement made for all 256
synapses, for the bias setting IW = 0.33 µA and IL = 2.01nA.

IV. CONCLUSION

It has been shown that in recurrent networks of spiking
neurons the ability to control stochasticity in the network
dynamics allows to extend the network’s learning features
and memory storage-time [22]. Furthermore, manipulating the
amount of stochasticity allows to adapt the system to the
frequency at which patterns are presented [23]. The system we
proposed exploits device mismatch to introduce stochasticity
in the neurons firing response, by combining the use of
minimum-size transistors for time dependent signals with the
use of larger geometries for transistors that control the synaptic
weights. We characterized how the amount of variability can
be modulated by changing circuit configuration and biases,
while maintaining the neuron’s overall response properties
constant. The developed set of tools used in this work, includ-
ing the FPGA setup, provides a fast and reliable infrastructure
for quantifying the variability present in the device under
test through the measurement of the spike response times in
response to single stimuli. We can now use this framework to
investigate how the tunable variability of the neuron response
times in the neuromorphic processor can be used to implement
efficient random forest and bagging techniques for improving
their classification accuracy, and to give rise to Stochastic
behaviors in recurrent networks for implementing probabilistic
neural models of computation and building networks able to
carry out inference on their input data.
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