
Conversion of Artificial Recurrent Neural Networks to Spiking Neural Networks for
Low-power Neuromorphic Hardware

Peter U. Diehl∗1, Guido Zarrella†1, Andrew Cassidy‡, Bruno U. Pedroni§ and Emre Neftci§¶
∗Institute of Neuroinformatics

ETH Zurich and University Zurich, Switzerland
Email: peter.u.diehl@gmail.com

†The MITRE Corporation, Bedford, MA, USA
‡IBM Research Almaden, San Jose, CA, USA

§Institute for Neural Computation, UC San Diego, La Jolla, USA
¶Department of Cognitive Sciences, UC Irvine, Irvine, USA

1 Peter U. Diehl and Guido Zarrella have contributed equally to this work

Abstract—In recent years the field of neuromorphic low-power
systems gained significant momentum, spurring brain-inspired
hardware systems which operate on principles that are fun-
damentally different from standard digital computers and
thereby consume orders of magnitude less power. However,
their wider use is still hindered by the lack of algorithms that
can harness the strengths of such architectures. While neu-
romorphic adaptations of representation learning algorithms
are now emerging, the efficient processing of temporal se-
quences or variable length-inputs remains difficult, partly due
to challenges in representing and configuring the dynamics of
spiking neural networks. Recurrent neural networks (RNN)
are widely used in machine learning to solve a variety of
sequence learning tasks. In this work we present a train-and-
constrain methodology that enables the mapping of machine
learned (Elman) RNNs on a substrate of spiking neurons,
while being compatible with the capabilities of current and
near-future neuromorphic systems. This "train-and-constrain"
method consists of first training RNNs using backpropaga-
tion through time, then discretizing the weights and finally
converting them to spiking RNNs by matching the responses
of artificial neurons with those of the spiking neurons. We
demonstrate our approach by mapping a natural language
processing task (question classification), where we demonstrate
the entire mapping process of the recurrent layer of the
network on IBM’s Neurosynaptic System TrueNorth, a spike-
based digital neuromorphic hardware architecture. TrueNorth
imposes specific constraints on connectivity, neural and synap-
tic parameters. To satisfy these constraints, it was necessary
to discretize the synaptic weights to 16 levels, discretize the
neural activities to 16 levels, and to limit fan-in to 64 inputs.
Surprisingly, we find that short synaptic delays are sufficient
to implement the dynamic (temporal) aspect of the RNN
in the question classification task. Furthermore we observed
that the discretization of the neural activities is beneficial to
our train-and-constrain approach. The hardware-constrained
model achieved 74% accuracy in question classification while
using less than 0.025% of the cores on one TrueNorth chip,

resulting in an estimated power consumption of ≈ 17µW .

1. Introduction

The ever growing availability of large-scale neuromorphic
hardware systems [1], [2], [3], [4] enables large-scale simu-
lations of neural networks in real-time on an extremely low
power budget. Applications of such neuromorphic systems
involve pattern recognition tasks such as handwritten digit
recognition or natural language processing, which in the
long-term could prove useful for mobile devices or robotic
systems where energy efficiency is very important.

The best recognition performance of spiking networks on
the most widespread machine learning benchmark MNIST
(handwritten digit recognition) is based on a machine
learning technique called convolutional neural network [5].
Those networks are trained on a conventional computer
and then converted to spiking neural networks (SNN) [6].
Convolutional neural networks are generally state-of-the-
art for vision [7], [8], [9] and auditory tasks [10]). While
convolutional neural networks have proven successful for
some challenges in natural language processing [11], [12],
the sequential nature of language lends itself to solutions that
explicitly model histories of arbitrary length with complex
dependencies across time.

During the recent renaissance in machine learning neural
network (NN) research, machine learning recurrent neural
networks (RNN) have proven to be an essential tool for
learning to interpret and generate language. RNNs have been
trained to state-of-the-art performance on many challenging
NLP tasks including language translation [13], image caption
generation [14], estimation of semantic similarity [15], and
language modeling [16]. Note that despite also being called
"recurrent neural network" this type of RNN is very different
from the type of RNN typically seen in computational
neuroscience and neuromorphic engineering (see discussion
section for more details on other types of RNNs). Therefore
we will say explicitly when we refer to machine learning
RNNs.

978-1-5090-1370-8/16/$31.00 c©2016 IEEE

In this article, we extend the application of machine
learning RNNs to the neuromorphic domain by converting
them to spiking RNNs. The goal is to show how to convert
machine learning RNNs to spiking ones, for the purpose of
simulating them on power-efficient hardware while main-
taining high classification performance. Equipped with this
approach, future advances in the development of machine
learning RNNs can lead to higher performing spiking RNNs.
Our workflow for solving this conversion task consists of
first training Elman RNNs (a simple machine learning RNN)
[17] on a conventional computer and then using the trained
weights with the defined connectivity to create a spiking
equivalent. This spike-based RNN is then implemented on
IBM’s Neurosynaptic System TrueNorth.

Some of the issues that arise during the conversion of
Elman recurrent networks to spiking neural networks have
been addressed by the conversion of convolutional neural
networks and fully-connected networks, e.g. the substitution
of artificial neurons with spiking neurons by using rectified
linear units (ReLU) and replacing them with integrate-and-
fire neurons [6], [18], [19]. However, RNNs feed back
the activity of the hidden-neurons to themselves. This is
a distinguishing feature of RNNs that serves as a memory
of previous inputs. In spiking RNNs, this feedback must
be represented in a spiking fashion and presents one of the
most challenging aspects of spike-based RNNs. Surprisingly,
we find that using synaptic delays lasting only 15 time steps,
effectively corresponding to a 4 bit discretization of the
hidden-state, does not impair the functionality of the RNN.

While it already represents a challenge to design high-
performance spike-based recurrent networks, implementing
those on neuromorphic hardware adds another layer of com-
plexity. Most neuromorphic systems pose several constraints
on the types of networks that can be implemented like
limited connectivity or limited resolution of the synaptic
weights. Therefore only a few recognition systems have been
implemented on neuromorphic hardware [20], [21], [22].

2. Material & Methods

In this section we describe the chronological process
of creating a spike-based RNN. We start by explaining the
exact task and the associated dataset, then describe the pre-
processing of the data and after that the architecture of
the machine learning RNN. All parts described in these
subsections (sections 2.1 up to 2.3) are based on existing
work but are extended/adapted to fit our purpose. Subsection
2.4 contains the main contribution of this work (besides
the introduction to TrueNorth itself). We explain how the
input is converted from rates to spikes and how the spikes
are converted back to rates to calculate the output. After
that we cover the discretization of the trained weights for
use on TrueNorth. The last (and most important) part of
the TrueNorth subsection covers how the hidden state of
the recurrent layer is represented on TrueNorth. Finally, the
last subsection covers two different versions of the machine
learning RNN that are used for comparison to our TrueNorth
implementation.

2.1. Question Classification Task

We use the question classification data set presented in
[23]. The goal of this task is to classify question sentences
into one of six coarse categories and potentially into finer
grained subcategories. For example, the question: "How much
does the human adult female brain weigh ?" expects an
answer of the type "Number". In the previous example,
"Number" is the coarse category, while "fine" type is the
"weight" category. In this project we used only the coarse cat-
egories which included: Abbreviation, Description, Number,
Entity, Human, and Location. The training dataset consisted
of 5000 labeled sentences, and a evaluation (test) set that is
not used during training consisting of 500 labeled sentences.
For training and testing of the recurrent network we also
added a special End Of Sentence (EOS) word (a vector of
zeros) at the end of every input sentence.

2.2. Pre-Processing and Word Vectors

We aim to train our system to generalize from a narrow
training set to the entire universe of possible questions. It
must be robust to many forms of natural linguistic variation
that may occur. For example, if the question "How much
does the human adult female brain weigh ?" were instead
submitted as "What is the mass of an average man’s brain
?" the system would benefit from understanding that mass
and weight have similar attributes. Therefore we equip our
algorithm with a model of word semantics trained in advance
using the word2vec [24] library. Word vectors such as
these have been employed in many state-of-the-art language
processing systems in both academia and industry [25], [26].

Word2vec is an algorithm that embeds each word into a
high-dimensional space such that words with latent semantic
similarity (good, awesome) are near each other but distant
from dissimilar words (terrorist, aardvark). We used the
word2vec skipgram variant with negative sampling, which
effectively learns to model word meaning by predicting
word coocurrences from a large text corpus. Specifically,
we trained 64-dimensional word vectors using 3.4 billion
tokens from text of the English Wikipedia. The preprocessing
included removing punctuation, setting all letters to lower
case, and substituting uncommon words with an unknown
token. Our training process resulted in vector representations
for 324264 commonly occurring words. Input questions were
then transformed to the sequence of their word vectors, with
one vector for each word in the input, and with unknown
words mapped to the average word vector.

2.3. Neural Network Architecture and Training

The machine learning RNN we train as a basis for the
spiking RNN exclusively uses standard techniques from
machine learning. Besides using ReLUs there are no special
requirements for the architecture itself, which could be
extended to use convolutional features or a deeper or wider
network as desired.

Figure 1. Recurrent Neural Network model for solving the question
classification task. The network consisted of a projection layer (48 units), a
recurrent layer (16 units) and a softmax layer for classification (6 units). At
each time step, the recurrent layer takes an input from the projection layer
and the previous step of the recurrent layer. The output of the recurrent state
is also used as input to the softmax layer. The scope of our implementation
is indicated by the shaded box.

The network consists of a projection layer (48 units), a re-
current layer (16 units) and a softmax layer for classification
(6 units), see Figure 1. This combination of different types
of layers, here a so-called fully-connected (or projection)
layer, an Elman or simple recurrent layer, and a softmax
layer is common in machine learning RNNs [27]. The
dimension of the projection layer and the recurrent layer
were constrained to fit on one core of a TrueNorth chip
(see below). Furthermore, due to good performance and
to ease the mapping to TrueNorth spiking neurons, the
network utilized rectified linear units (ReLU) without biases
[28] throughout. The neural network was trained using
Backpropagation Through Time with stochastic gradient
descent [29]. This was trained using the Pylearn2 and Theano
packages [30].

Each of the 48 neurons in the projection layer receive
the 64-dimensional word vector as inputs. The output of
those 48 neurons are then used as 48-dimensional input for
each one of 16 neurons in the recurrent layer. Additionally,
each neuron in the recurrent layer receives input from all 16
neurons in the recurrent layer, hence the name recurrent. The
output of the recurrent layer neurons are then fed as input
to a softmax layer that computes the final classification.

2.4. TrueNorth Implementation

2.4.1. TrueNorth and Neuron Conversion. The IBM Neu-
rosynaptic System TrueNorth is a non-von Neumann architec-
ture that integrates 1 million programmable spiking neurons
[1]. The system consists of 4096 cores with 256 neurons per
core, and each core can accommodate up to 65536 synapses
in a crossbar fashion. Each neuron’s equations and synaptic
states are updated every millisecond, which we will call 1
tick. Note that although a continuous time neural network

0 1 2 3 0 1 2 3

G0
G1
G2
G3

G0
G1
G2
G3

G3

G0

Axons
[0,...,255]

Neurons
[0,...,255]

A
xon T

ype

D
elay =

 15

16 (64)

48 (192)

16 (64)

P
ro

je
ct

io
n

La
ye

r

Softmax

Figure 2. TrueNorth implementation of a recurrent neural network. The
feedback in the recurrent network is implemented using the synaptic delays
(delay of 15 ticks, the maximum supported on TrueNorth). The effect of
the maximum delay is to limit to 16 ticks the time window during which
the spikes are counted (15 ticks from the delay plus 1 tick for transmission).
For every connection we used 4 axons per dimension to implement 4-bit
weights, such that our 48-dimensional input used 192 axons. The input
to the recurrent neural network and the output to the softmax classifier is
computed offline on the computer. This architecture can support recurrent
neural networks that verify the condition Nin +Nhid <= 256/Ns.

is being simulated, those discrete updates are a common
way to numerically approximate the change of a continuous
system.

By using four synapses per actual input, 4-bit precision
synapses can be implemented, which leads to a fan-in of
64 per neuron. As a proof of concept, we focused on
implementing the recurrent layer on TrueNorth, see figure
2. We only used a single core since it is sufficient to
understand the conversion method and the main challenge
when converting RNNs compared to other networks like
convolutional neural networks. We chose to only convert
the recurrent layer (i.e., the part with shaded background in
Figure 1 to its TrueNorth implementation in Figure 2) and
chose not to convert the other layers since those have been
successfully implemented on TrueNorth in the past [6], [18],
[22].

Using Ns-bit weights, the dimension of the recurrent
layer is limited to Nin +Nhid ≤ 256/Ns, where Nin is the
number of inputs, Nhid is the number of (hidden) units in
the recurrent layer and Ns is the resolution of the connection
weights in bits.

To map the ReLUs onto TrueNorth, we used linear neu-
rons, whose membrane state follows the following dynamics:

V (t+ 1) = V (t) +

255∑
i=0

Aiwijs
Gi
j

if V (t) < 0 : V (t)← 0

if V (t) > T : V (t)← V (t)− T

(1)

where Ai(t) is the input spike on axon i, sGi
j is the

synaptic weight, Gi ∈ {0, 1, 2, 4} is the axon type and wij ∈
0, 1 is the synaptic connectivity between axon i and neuron
j. For the full neuron equation see [31]. The above equations

imply that, after a spike is elicited, an amount corresponding
to the firing threshold is subtracted from the membrane state.
This enables the neuron to fire a number of times that is
proportional to the synaptic input.

The model was written in MATLAB, using the integrated
programming environment for IBM’s Neurosynaptic System.
One parameter of the model is the simulation platform. By
switching this parameter between "TN" and "NSCS" the
same program can be run on a connected TrueNorth chip or
it can be run using the NSCS simulation environment. Note
that there is an exact one to one correspondence between
the results of the simulation environment and the TrueNorth
chip, which means the code can be run using either system
(given that the user has a TrueNorth chip available).

2.4.2. Input Encoding and Output Decoding. During the
training of the Elman RNN, the input to the recurrent layer
is encoded by the output of the projection layer. However,
after conversion to a spiking network, the input needs to
be provided in the form of spikes. Here we use a simple
rate code, i.e. the higher the input of the recurrent layer the
higher the number of input spikes. More specifically we use
Poisson spike trains with firing rates corresponding to the
rate of the represented input dimension of the projection
layer. Each word in an example sentence is presented for
16 ticks. This means there can be up to 16 input spikes for
each of the 48 inputs and for each input word. Therefore the
input resolution is discretized from 32 bit to 4 bit. Between
different sentences we reset the neuron and synapse state.

Similarly, we use a rate code for the output of the
recurrent layer, i.e. each of the 16 neurons can fire up to 16
spikes which again represents a discretization of the 32 bit
precision used for training to 4 bit.

2.4.3. Weight Discretization. The weight discretization
method described here is the same as described in [18].
Since each synapse on TrueNorth is either present or not but
its weight can only be one of the 4 chosen types, the weight
resolution could be interpreted as being single bit. However,
by using 4 axons for each actual input, it is possible to
achieve a 4-bit accuracy for each actual input. For example,
by choosing the 4 axon types to be {1,2,4,-8} and then
combining them appropriately any number between -8 and
7 can be represented.

To accommodate the network parameters on TrueNorth,
the weights of the machine learning RNN were bounded to
(-1, 1), scaled and discretized to 4 bit. To cancel the effect
of the scaling, the input to the recurrent layer was scaled by
1/16.

2.4.4. Hidden State Encoding. The encoding of the hidden
state represents a crucial part of this work since this is (aside
from the different training for the Elman RNN) the main
difference from fully-connected networks. The challenge is
that the hidden state in the Elman RNN is the output of the
recurrent layer for the last input word. While this is easy
to implement on traditional hardware, it is not immediately
clear how to "store" this for the next input.

time (msec)
0 20 40 60 80 100 120 140 160

N
e
u
ro

n

0

2

4

6

8

10

12

14

16
how weighbrainhumanfemalethedoesmuch ?
LOC LOC LOC DESC DESC NUM NUM NUM NUM

Figure 3. Sample Raster Plot of the TrueNorth activations of the recurrent
units. The question class for the question "How much does the female
brain weigh ?" is correctly identified as "Number" (NUM). Note that the
16 shown neurons are located in the recurrent layer and are used as input
to the output layer, which then selects a class using the output neuron with
the highest response. Blue vertical bars show the time slots of each word
(every 17 msec due to a word length of 16 msec and 1 msec end-of-word
signal). Intermediate hypotheses are shown above the plot demonstrating
how the network responds as new evidence arrives.

We represented the hidden state of the spiking RNN using
synaptic delays. Using a single connection, TrueNorth has
the ability to implement delays up to 15 ticks, i.e. the spike
will arrive 16 ticks (1 tick from transmission and 15 ticks
from delay) after the source neuron fired at the destination
neuron. Therefore, 16 ticks of the spiking RNN correspond
to one time step in the machine learning RNN. This is the
reason we use a duration of 16 ticks for each input word.

An example time course is depicted in figure 3. At ticks
1 to 16, the input spikes from the projection layer to the
recurrent layer represent the word how. There are no other
spikes arriving during those first 16 ticks. However, as soon as
one of the neurons in the recurrent layer spikes, all recurrent
neurons will receive this spike exactly 16 ticks later, e.g. the
spike fired by neuron 13 at tick 10 which means that all
neurons connected to neuron 13 will receive a spike at tick
26 (in addition to any other spikes from recurrent neurons
and input spikes from the projection layer). Note that the
spikes are not being aggregated but instead arrive with the
exact time difference in which they were fired. This is an
important difference to the machine learning RNN where
all information is aggregated before a result is calculated
and which potentially leads to decreased perfomance of the
spiking RNN compared to the machine learning RNN.

After the first word was presented, the spikes corre-
sponding to the next word much are used as input from the
projection layer during the ticks 17 to 32. Simultaneously,
the spikes that were fired by the neurons from the recurrent
layer during the first word how are arriving. Therefore the
delay lines are essentially acting as storage for the spikes
fired during the last input word.

The integration time effectively determines the discretiza-
tion of the activation function or how many spikes can be
fired for each example. Since the duration of the delay has
to be equal to the time intervals between new inputs, the
maximum delay limits the possible integration time. Note
that it is possible to increase this delay by chaining delays

of additional axons (16 more ticks per axon).

2.5. Setups for Comparison

In order to be able to better compare the performance of
the machine learning RNN with its spiking counterpart, we
used two intermediate setups. The first one is equivalent to
the original machine learning RNN but the weights are scaled
and discretized to 4 bit (since the ReLUs have no bias, the
scaling actually has no influence on the performance). The
second setup uses, in addition to the weight discretization
to 4 bit, a discretization of the hidden state to 4 bit. This
is achieved by discretizing the ReLU function such that
the activation is one of 16 different values to mimic the
TrueNorth neuron.

3. Results
For all four setups we used the question classification test

set introduced in [23]. The respective accuracy of all four
setups is shown in table 1. Training of the original ReLU NN
with floating point weights yields a classification accuracy
of 85%. When reducing the precision of the weights to 4
bit, the accuracy dropped to 72.2%. In the next step we
discretized the hidden state to 4 bit. To our surprise, this
modification increased the accuracy of the network to 78.4%.

Lastly, the network was implemented on TrueNorth
by substituting ReLUs with TrueNorth linear neurons and
converting the 48-dimensional real-valued inputs to 48
Poisson spike-trains, each with a firing-rate proportional
to the values of the corresponding input dimension. The
resulting TrueNorth network shows an accuracy of 74% on
the question classification test set.

We also embedded this TrueNorth network in an inter-
active question classification system, where a user can type
in a question and the system outputs the question type as
well as a plot of the spike-responses of the hidden neurons.
The code can be downloaded at https://github.com/nmi-
lab-ucsd/spiking_QC. Besides being able to classify more
obvious questions like where was peter born as location, it
can also deal with more ambiguous cases where the question
word does not determine the question type. For example
it classifies what city was peter born in also as a location,
what is the meaning of life as description, and what is the
company that created truenorth as entity. Since peter is a
word that often occurs in Wikipedia, it is represented in the
word space and can therefore be part of a query. On the
other hand, the word truenorth is not often mentioned in
the Wikipedia corpus and is therefore not represented in the
word space. In our interactive system we substitute such
words with the average over all word vectors to minimize
distortion.

4. Discussion

4.1. Result Interpretation

Our results demonstrate a proof-of-concept recurrent
neural network that can be trained offline and afterwards

mapped onto the highly power-efficient TrueNorth chip.
Furthermore, we show that synaptic delays are sufficient
for supporting the temporal dynamics of simple recurrent
neural networks. Using a 15 tick delay for "storing" the state
of the neurons corresponds to discretizing the state to 4 bit.
However, while the accuracy of the machine learning RNN is
comparable to reported results in the original and following
studies (84% - [23], 86.2% - [32] and 85.6% - [33]), there is
a performance gap between the machine learning RNN and
the TrueNorth network. By having a closer look at the four
different models we can understand why this gap exists.

The biggest drop in performance is due to the discretiza-
tion of the synaptic weights, as can be seen by comparing
the first and the second model in table 1. However, this
performance decrease due to discretization is expected and
has been the topic of other studies. In order to reduce
performance losses due to weight discretization, it is possible
to choose better discretization methods than simple rounding.
For example, it is possible to include discretization in the
training of the network [21] (by using rounded weights
during the forward pass of backpropagation) or by rounding
probabilistically after training [34].

The second step was to discretize the hidden state to
4 bit. Interestingly, this discretization does not decrease
the classification performance of the network but rather
increases it. While we do not assume that this holds true
in general for RNNs, the discretization might help in cases
where there is only a limited number of target labels (in
the presented example it was six). A possible explanation
is that the discretization prevents the drift between states
if not much relevant information is contained in the new
input. As an example, if a questions starts with where, it
is highly likely that the answer is a location. This location
state of the hidden neurons then needs to be maintained in
the face of irrelevant information like is or the which is
especially challenging for recurrent networks with longer
input sequences.

Lastly, the mapping and the corresponding conversion to
a spiking network caused a drop in performance of 4.4%.
While this is much less than the drop caused by the weight
discretization, it is still significant. However, other studies
that investigated the performance loss due to conversion from
ReLUs to spiking units show that degradation approaches
zero as integration times increase, see [6], [18]. This increase
in integration time is very easy to achieve in systems that
do not rely on feedback from a recurrent layer by simply
presenting each example for a longer period. When using the
delay mechanism presented here it is also necessary to be
able to use delays which are as long as the desired integration
time. One possibility would be to use multiple axons in a
chain. This would come at the expense of available axons
and it might be more useful to instead increase the size of
the network.

4.2. Comparison to Recurrent Neural Networks

We used established machine learning techniques, specifi-
cally Elman RNNs [17], and converted them to spiking neural

Configuration Accuracy
ReLUs, 32bit weights, 32bit hidden state (PC) 85%
ReLUs, scaled 4bit weights 32bit hidden state (PC) 72.2%
ReLUs, scaled 4bit weights, 4bit hidden state (PC) 78.4%
TrueNorth neurons, scaled 4bit weights, 4bit spiking hidden state (TrueNorth) 74%

TABLE 1. ACCURACY OF THE DIFFERENT NETWORKS

networks. The reason for this approach is that our goal is
to achieve competitive performance on practically relevant
tasks. The observed drop in accuracy is accompanied by an
orders of magnitude improvement in energy consumption,
as discussed in section 4.3. We also expect that larger
RNN network sizes will compensate for the reduction
in precision of the discretized spiking RNNs. This has
shown to be effective for feed forward networks [22], [35].
Similar conversion methods already have been shown to
be very effective for vision tasks [6], [19]. However, more
biologically plausible recurrent neural networks have been
used for decades [36]. In contrast to machine learning neural
networks, learning biologically plausible neural networks for
real-world pattern recognition tasks only recently started to
gain momentum [37], [38], [39], [40], [41]. Such networks
are usually trained using spike-timing-dependent plasticity
(STDP) [42] but there are also studies suggesting the usage
of morphological learning [43]. At this point however, more
realistically biological approaches are not competitive with
deep neural network to SNN conversion methods in terms
of recognition performance. Specifically, for the MNIST
machine learning benchmark, the best reported performance
using conversion methods is above 99% [6] and the best
performance using more biologically plausible networks is
95% [41].

The decision to use Elman networks instead of more
sophisticated machine learning RNNs like long short term
memory networks (LSTM) [44] or gated recurrent units
(GRU) [45] was based on the short length of the input
sequences, which allowed us to train without a significant
risk of vanishing gradients. Additionally, recently Elman
networks have been shown to match the performance of
state-of-the-art LSTMs and GRUs when using some im-
provements on the basic structure such as restricting the
recurrent connectivity matrix [46] and correctly initializing
the recurrent connectivity matrix [47]. Since we are focusing
on the conversion and not optimizing the performance of
the machine learning RNN, we did not use those methods
here. Nor did we spend significant time optimizing our word
vectors to maximize performance on this particular task.
However, the advantage of the conversion method is that
such modifications can be applied to the underlying machine
learning RNN without needing to change any parts the
conversion method. Moreover, other improvements (possibly
found in the years to come) in training procedures, weight
initialization or better loss functions are equally easy to use
in conjunction with the presented framework since also all of
them require no changes in the presented conversion method.

4.3. Summary

We showed how to implement high-performance recur-
rent neural networks on neuromorphic hardware. This offers
potential for a range of extremely low-power natural language
understanding applications. While the presented conversion
method was only tested with a question classification task,
the underlying machine learning RNN has been successfully
used in a wide variety of setups including vision, audio and
natural language processing tasks [48], [49], [50], [51]. Since
the presented conversion method is oblivious to which task
the machine learning RNN was trained on, it can be applied
to other domains and tasks. While traditional hardware on
computers such as CPU’s or GPU’s easily consume 100 W
or more, an entire TrueNorth chip consumes up to 70 mW
and contains 4096 cores [1]. Here, we only used one of
those cores, which means that our system has an estimated
power budget of only about 17 µW . Even assuming that
there is overhead in using only one core, there are orders of
magnitudes difference in power consumption between the
neuromorphic system and traditional hardware.

Considering this extremely low power-budget, such pat-
tern recognition systems can prove useful for low-power
applications like mobile devices or robotics but also for
server farms where power consumption presents a major
cost factor. In future work it would be interesting to see
how the discretization of the hidden state influences the
performance for more complex tasks, e.g. when predicting
more than one of six classes. Another point to be addressed
is to better understand the influence the discretization of the
hidden state has on the hidden state trajectory over time, i.e.
how it perturbs the occurring changes.

Acknowledgments

We thank the organizers and the participants of the
Telluride Neuromorphic Cognition Engineering Workshop
2015, and especially the natural language processing group
and Rodrigo Alvarez, John Arthur, Paul Merolla for fruitful
discussions and the stimulating working environment. We
also thank the reviewers for their very helpful comments.

Funding: PUD: SNF Grant 200021-143337 "Adaptive
Relational Networks." BUP: The Office of Naval Re-
search (ONR MURI 14-13-1-0205) and CNPQ Brazil (CsF
201174/2012-0) EN: the Office of Naval Research (ONR
MURI 14-13-1-0205) GZ: MITRE Innovation Program.
Approved for Public Release; Distribution Unlimited. Case
Number 16-0163

References

[1] P. A. Merolla, J. V. Arthur, R. Alvarez-Icaza, A. S. Cassidy, J. Sawada,
F. Akopyan, B. L. Jackson, N. Imam, C. Guo, Y. Nakamura et al., “A
million spiking-neuron integrated circuit with a scalable communica-
tion network and interface,” Science, vol. 345, no. 6197, pp. 668–673,
2014.

[2] G. Indiveri, E. Chicca, and R. Douglas, “A VLSI array of
low-power spiking neurons and bistable synapses with spike–timing
dependent plasticity,” IEEE Transactions on Neural Networks,
vol. 17, no. 1, pp. 211–221, Jan 2006. [Online]. Available:
http://ncs.ethz.ch/pubs/pdf/Indiveri_etal06.pdf

[3] M. Khan, D. Lester, L. Plana, A. Rast, X. Jin, E. Painkras, and
S. Furber, “Spinnaker: mapping neural networks onto a massively-
parallel chip multiprocessor,” in Neural Networks, 2008. IJCNN
2008.(IEEE World Congress on Computational Intelligence). IEEE
International Joint Conference on. IEEE, 2008, pp. 2849–2856.

[4] B. V. Benjamin, P. Gao, E. McQuinn, S. Choudhary, A. R. Chan-
drasekaran, J. Bussat, R. Alvarez-Icaza, J. V. Arthur, P. Merolla, and
K. Boahen, “Neurogrid: A mixed-analog-digital multichip system for
large-scale neural simulations,” Proceedings of the IEEE, vol. 102,
no. 5, pp. 699–716, 2014.

[5] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based
learning applied to document recognition,” Proceedings of the IEEE,
vol. 86, no. 11, pp. 2278–2324, 1998.

[6] P. U. Diehl, D. Neil, J. Binas, M. Cook, S.-C. Liu, and M. Pfeiffer,
“Fast-classifying, high-accuracy spiking deep networks through weight
and threshold balancing,” in International Joint Conference on Neural
Networks (IJCNN),. IEEE, 2015, pp. 1–8.

[7] D. C. Ciresan, U. Meier, L. M. Gambardella, and J. Schmidhuber,
“Deep, big, simple neural nets for handwritten digit recognition,”
Neural Computation, vol. 22, no. 12, pp. 3207–3220, 2010.

[8] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Proc. of NIPS, 2012, pp.
1097–1105.

[9] P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, and Y. LeCun,
“OverFeat: Integrated recognition, localization and detection using
convolutional networks,” arXiv preprint, vol. 312.6229, 2013.

[10] L. Deng, G. Hinton, and B. Kingsbury, “New types of deep neural
network learning for speech recognition and related applications: An
overview,” in Acoustics, Speech and Signal Processing (ICASSP), 2013
IEEE International Conference on. IEEE, 2013, pp. 8599–8603.

[11] N. Kalchbrenner, E. Grefenstette, and P. Blunsom, “A convolutional
neural network for modelling sentences,” Proceedings of the 52nd
Annual Meeting of the Association for Computational Linguistics,
June 2014. [Online]. Available: http://goo.gl/EsQCuC

[12] Y. Kim, “Convolutional neural networks for sentence classification,”
CoRR, vol. abs/1408.5882, 2014. [Online]. Available: http://arxiv.org/
abs/1408.5882

[13] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by
jointly learning to align and translate,” CoRR, vol. abs/1409.0473,
2014. [Online]. Available: http://arxiv.org/abs/1409.0473

[14] O. Vinyals, A. Toshev, S. Bengio, and D. Erhan, “Show and tell: A
neural image caption generator,” in The IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), June 2015.

[15] G. Zarrella, J. Henderson, E. M. Merkhofer, and L. Strickhart, “Mitre:
Seven systems for semantic similarity in tweets,” Proceedings of
SemEval, 2015.

[16] Y. Kim, Y. Jernite, D. Sontag, and A. M. Rush, “Character-aware
neural language models,” CoRR, vol. abs/1508.06615, 2015. [Online].
Available: http://arxiv.org/abs/1508.06615

[17] J. L. Elman, “Finding structure in time,” Cognitive science, vol. 14,
no. 2, pp. 179–211, 1990.

[18] P. U. Diehl, B. Pedroni, A. Cassidy, P. Merolla, E. Neftci, and
G. Zarrella, “Truehappiness: Sentiment analysis on truenorth,” arXiv,
2016.

[19] Y. Cao, Y. Chen, and D. Khosla, “Spiking deep convolutional neural
networks for energy-efficient object recognition,” International Journal
of Computer Vision, pp. 1–13, 2014.

[20] D. Neil and S.-C. Liu, “Minitaur, an event-driven fpga-based spiking
network accelerator,” Very Large Scale Integration (VLSI) Systems,
IEEE Transactions on, vol. 22, no. 12, pp. 2621–2628, 2014.

[21] E. Stromatias, D. Neil, M. Pfeiffer, F. Galluppi, S. B. Furber, and
S.-C. Liu, “Robustness of spiking deep belief networks to noise and
reduced bit precision of neuro-inspired hardware platforms,” Frontiers
in neuroscience, vol. 9, 2015.

[22] S. K. Esser, R. Appuswamy, P. Merolla, J. V. Arthur, and D. S. Modha,
“Backpropagation for energy-efficient neuromorphic computing,” in
Advances in Neural Information Processing Systems, 2015, pp. 1117–
1125.

[23] X. Li and D. Roth, “Learning question classifiers,” in Proceedings of
the 19th international conference on Computational linguistics-Volume
1. Association for Computational Linguistics, 2002, pp. 1–7.

[24] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of
word representations in vector space,” arXiv preprint arXiv:1301.3781,
2013.

[25] O. Levy and Y. Goldberg, “Neural word embedding as implicit matrix
factorization,” in Advances in Neural Information Processing Systems,
2014, pp. 2177–2185.

[26] Y. Li, L. Xu, F. Tian, L. Jiang, X. Zhong, and E. Chen, “Word
embedding revisited: A new representation learning and explicit matrix
factorization perspective,” 2015.

[27] J. Schmidhuber, “Deep learning in neural networks: An overview,”
Neural Networks, vol. 61, pp. 85–117, 2015.

[28] M. D. Zeiler, M. Ranzato, R. Monga, M. Mao, K. Yang, Q. V. Le,
P. Nguyen, A. Senior, V. Vanhoucke, J. Dean et al., “On rectified
linear units for speech processing,” in Acoustics, Speech and Signal
Processing (ICASSP), 2013 IEEE International Conference on. IEEE,
2013, pp. 3517–3521.

[29] P. J. Werbos, “Backpropagation through time: what it does and how
to do it,” Proceedings of the IEEE, vol. 78, no. 10, pp. 1550–1560,
1990.

[30] J. Bergstra, O. Breuleux, F. Bastien, P. Lamblin, R. Pascanu, G. Des-
jardins, J. Turian, D. Warde-Farley, and Y. Bengio, “Theano: a CPU
and GPU math expression compiler,” in Proceedings of the Python
for Scientific Computing Conference (SciPy), vol. 4, 2010.

[31] A. S. Cassidy, P. Merolla, J. V. Arthur, S. K. Esser, B. Jackson,
R. Alvarez-icaza, P. Datta, J. Sawada, T. M. Wong, V. Feldman,
A. Amir, D. B. dayan Rubin, E. Mcquinn, W. P. Risk, and D. S.
Modha, “Cognitive computing building block: A versatile and efficient
digital neuron model for neurosynaptic cores,” in in International Joint
Conference on Neural Networks (IJCNN). IEEE, 2013.

[32] V. Krishnan, S. Das, and S. Chakrabarti, “Enhanced answer type infer-
ence from questions using sequential models,” in Proceedings of the
conference on Human Language Technology and Empirical Methods
in Natural Language Processing. Association for Computational
Linguistics, 2005, pp. 315–322.

[33] Z. Huang, M. Thint, and Z. Qin, “Question classification using head
words and their hypernyms,” in Proceedings of the Conference on
Empirical Methods in Natural Language Processing. Association
for Computational Linguistics, 2008, pp. 927–936.

[34] L. K. Muller and G. Indiveri, “Rounding methods for neural
networks with low resolution synaptic weights,” arXiv preprint
arXiv:1504.05767, 2015.

[35] S. Esser, P. Merolla, J. Arthur, A. Cassidy, R. Appuswamy, A. An-
dreopoulos, D. Berg, J. McKinstry, T. Melano, D. Barch, and et al.,
“Convolutional networks for fast, energy-efficient neuromorphic com-
puting,” arXiv preprint arXiv:1603.08270, 2015.

[36] H. Wilson and J. Cowan, “Excitatory and inhibitory interactions in
localized populations of model neurons,” Biophysical Journal, vol. 12,
pp. 1–23, 1972.

[37] S. Habenschuss, Z. Jonke, and W. Maass, “Stochastic computations
in cortical microcircuit models,” PLoS computational biology, vol. 9,
no. 11, p. e1003311, 2013.

[38] D. Kappel, B. Nessler, and W. Maass, “Stdp installs in winner-take-all
circuits an online approximation to hidden markov model learning,”
PLoS computational biology, vol. 10, no. 3, p. e1003511, 2014.

[39] E. Neftci, S. Das, B. Pedroni, K. Kreutz-Delgado, and G. Cauwen-
berghs, “Restricted boltzmann machines and continuous-time con-
trastive divergence in spiking neuromorphic systems,” May 2013.

[40] E. Neftci, C. Posch, and E. Chicca, Neuromorphic Engineering.
UNESCO Encyclopedia of Life Support Systems, 2014, ch. 23, (in
press).

[41] P. U. Diehl and M. Cook, “Unsupervised learning of digit recognition
using spike-timing-dependent plasticity,” Frontiers in Computational
Neuroscience, vol. 9, p. 99, 2015.

[42] L. Abbott and S. Song, “Asymmetric hebbian learning, spike timing
and neural response variability,” in Advances in Neural Information
Processing Systems, vol. 11, 1999, pp. 69–75.

[43] S. Hussain, A. Basu, R. M. Wang, and T. J. Hamilton, “Delay learning
architectures for memory and classification,” Neurocomputing, vol.
138, pp. 14–26, 2014.

[44] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[45] K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares,
H. Schwenk, and Y. Bengio, “Learning phrase representations using
rnn encoder-decoder for statistical machine translation,” arXiv preprint
arXiv:1406.1078, 2014.

[46] T. Mikolov, A. Joulin, S. Chopra, M. Mathieu, and M. Ranzato,
“Learning longer memory in recurrent neural networks,” arXiv preprint
arXiv:1412.7753, 2014.

[47] Q. V. Le, N. Jaitly, and G. E. Hinton, “A simple way to ini-
tialize recurrent networks of rectified linear units,” arXiv preprint
arXiv:1504.00941, 2015.

[48] V. Mnih, N. Heess, A. Graves et al., “Recurrent models of visual
attention,” in Advances in Neural Information Processing Systems,
2014, pp. 2204–2212.

[49] A. Graves, A.-r. Mohamed, and G. Hinton, “Speech recognition with
deep recurrent neural networks,” in Acoustics, Speech and Signal
Processing (ICASSP), 2013 IEEE International Conference on. IEEE,
2013, pp. 6645–6649.

[50] N. Boulanger-Lewandowski, Y. Bengio, and P. Vincent, “Audio chord
recognition with recurrent neural networks.” in ISMIR, 2013, pp. 335–
340.

[51] T. Mikolov and G. Zweig, “Context dependent recurrent neural network
language model.” in SLT, 2012, pp. 234–239.

