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Abstract—This paper describes the software and FPGA 

implementation of a Retinal Ganglion Cell model which detects 
moving objects. It is shown how this processing, in conjunction 
with a Dynamic Vision Sensor as its input, can be used to 
extrapolate information about object position. Software-wise, a 
system based on an array of these of RGCs has been developed in 
order to obtain up to two trackers. These can track objects in a 
scene, from a still observer, and get inhibited when saccadic 
camera motion happens. The entire processing takes on average 
1000 ns/event. A simplified version of this mechanism, with a mean 
latency of 330 ns/event, at 50 MHz, has also been implemented in 
a Spartan6 FPGA. 

I. INTRODUCTION 

To increase power efficiency, decrease data rate and latency, 
neuromorphic sensors have been developed over the last 30 
years. The Dynamic Vision Sensor (DVS) [1] is an example of 
such category of devices which draws inspiration from the real 
functioning of the retina. This vision sensor outputs temporal 
contrast of logarithmic intensity, asynchronously, through 
Address Event Representation (AER). The AER protocol 
encodes the x-y address of where the change happened, to which 
a microsecond timestamp is added. The in-pixel processing 
imitates the inherent processing of the Retinal Ganglion Cells 
(RGC) in biological retinas with microsecond resolution, 
allowing tasks such as high-speed tracking [2]. Therefore, to 
investigate further the efficient processing of visual information 
of the brain, this work tries to mimic further the pre-processing 
intrinsic to the retina, computed by a specific type of RGC, 
described in [3]. The Object Motion Cell (OMC) detects local 
motion by getting excited by small moving objects and being 
inhibited by large synchronous global motions of the scene 
(saccades). This feature can be used to extract basic information 
about motion of a target object. A simulation of an analog 
imager based on the OMC was previously attempted in [4] but 
was centered around a different model and technology. 

II. THE CIRCUIT MODEL 

A. The observed neural mechanism 

The mechanism of the OMC is possible due to its excitatory-
inhibitory center-surround morphology. Although the 
Receptive Field (RF) of the cell is in practice more like a two-
dimensional (2D) Laplacian function, it can be simplified to a 
2D top-hat function, with positive weight in its center and 
negative on its outside. The basic algorithm on which this cell 
is based is summarized in Fig. 1 and is reported in the following 

steps. The RF of the cell is composed of subunits of similar 
sizes: these represent the single bipolar cells of the retina. The 
central subunits are excitatory while all the other subunits are 
inhibitory. Since the bipolar cells are not inhibitory themselves, 
their inhibition is theorized to be mediated by fast amacrine 
cells [3]. When a change in brightness is detected somewhere 
in the RF of the cell by a hyperpolarizing cone, the membrane 
potential of the bipolar cell connected to it is increased linearly. 
Then, a non-linear rectifying transformation is applied to it. 
While the subunits are integrating they also decay due to an 
ionic leakage, adapting to the present visual situation. The RGC 
contacting the bipolar cells of the exciting center and the 
inhibiting amacrine cells then integrates the net synaptic input 
(the difference between excitation and inhibition) on its own 
membrane. If this is higher than its response threshold, the cell 
fires. The cell works such that if there is a perfectly synchronous 
motion in the inhibitory surround, the center excitation is 
cancelled. Otherwise if the excitatory subunits are triggered and 
not compensated for, the cell spikes. 

 
Fig. 1 Object motion cell’s simplified computation. 

B. Single jAER OMC implementation  

To mimic the behavior of a simple OMC, an algorithm has 
been developed in jAER, the software which processes the 
events of the DVS neuromorphic sensor [5]. To create the 
subunits of the OMC, these are set by subsampling the address 
of the incoming events, making it possible to scale the size of 
the single subunits by a power of two, to better fit the size of 
the object to be detected. Then all subunits are set to be 
inhibitory apart from the central four which are excitatory. 
When an event is received at a particular x, y coordinate within 
a subunit, its membrane potential is increased linearly by one 
unit and its non-linearity is calculated. This non-linear 
rectification can be set to be, in the developed model, of 
exponential type of any order or of exponential tangent type. In 
the first case, a clipping is artificially placed on the membrane 
potential of the single subunit, so that if too much activity is 
registered, a single subunit cannot constantly dominate over 
other weak subunits. In the second case, the natural saturation 
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of the exponential tangent already inherently performs this 
operation. To model the ionic leakage which makes the 
subunit’s membrane potential decay if no further activity is 
detected in its RF, an adjustable exponential decay with time 
constant ߬௦ is computed at every event timestamp received and 
applied to the subunit. 

For the whole array of subunits, the total surround inhibition 
is computed by adding the non-linearized membrane potentials 
of each subunit and by normalizing. The same is done for the 
center excitation. The excitation can be scaled by a synaptic 
weight	ߙ. This empirically ensures stability and allows the 
OMC to be adjusted to different visual scenes. The final 
membrane potential of the RGC is computed by integrating the 
net synaptic input and, if larger than the adjustable threshold, 
the cell fires, signaling object motion detection. The RGC’s 
membrane potential is also decayed exponentially with time 
constant	߬௡. If the exponential tangent non-linearity is chosen 
then the computation of the OMC can be modelled as: 
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Where ௠ܸ is the integrated membrane potential of the OMC 
expressed in equation (2), ݐ is the timestamp time, ூܸி is the 
Integrate and Fire (IF) threshold to be overcome to spike. 
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Where ߙ is the weight of the excitation, ௘ܸ௫௜ and ୧ܸ୬௜are the ith 
excitatory and inhibitory subunit membrane voltages 
respectively and ݇  is the total number of subunits. As an option, 
the total inhibition (or excitation) can be computed, not only by 
the membrane potential but by its difference to the neighboring 
subunits. This local normalization removes the problem of 
global dimming, which could trigger the RGC response. 

  
Fig. 2 jAER output showing the DVS camera output events (ON in white, OFF 
in black). Left: saccade inhibiting the OMC. Right: single object movement 
exciting it. The green disks represent the activation of the inhibitive subunits 
and the red ones represent the excitation. The bars on the side compare the 
normalized activities. The positions of the subunits are highlighted by a grid.  

The simple OMC was initially tested in jAER with 8 x 8 
subunits. The algorithm works for different natural visual 
stimuli such as the ones shown in Fig. 2. On the left image, the 
DVS camera output shows a saccade view of the office. On the 
right side, only a person moves in the scene. As it can be seen, 
when the camera is moved in a saccade, the inhibition subunits 
are maximally active (green disks) and compensate for the 

excitatory input (red disks). If the local motion at the center of 
the RF is instead not compensated, then the cell fires. This can 
be seen in the graph of Fig. 3, which illustrates a plot of center 
excitation and surround inhibition with a second order non-
linearity added to each subunit.  

 
Fig. 3 Plot of surround inhibition versus center excitation for the video of Fig. 
2 in arbitrary units. The non-circled parts correspond to global motion 
(excitation smaller than inhibition). The circled part corresponds instead to 
local motion (excitation larger than inhibition).  

III. MULTIPLE OMC TRACKER JAER IMPLEMENTATION 

A. Multiple  jAER OMCs implementation  

To make use of the OMC for tracking, it is important not to 
just detect the object’s presence but also its direction. To 
achieve this goal, an array of 16 x 16 subunits was set up in 
jAER. By sliding the 2 x 2 excitation center of the OMC across 
all subunits with unity stride, 15 x 15 OMCs (this number is 
dictated by the size of the target) can be constructed. To speed 
up computation, all subunits are regarded as the inhibiting 
surround, including the central ones, so that the total inhibition 
can be computed just once for all OMCs with minimal error. 
This would mean that the term ݇ െ 4 in the right hand side of 
equation (2) simplifies to	݇. The final result is that now all these 
overlapping cells respond to object motions at specific 
locations. To make the algorithm more robust, the average 
event rate is used. For the DVS128 sensor, if this is lower for 
example, than 500 ev/s (events/second), then the IF threshold 
of the RGC can be set to a high value. This is because for such 
low event rates the pixels producing a response constitute 
mostly random activity due to leakage in the reset transistor of 
the DVS pixel [1]. Increasing the threshold prevents the cell 
from firing for no relevant activity. An upper threshold can also 
be set if the activity is too high: in such case it is likely that the 
sensor either moves very close to a high contrast wall or that the 
target is too close and covers the entire field of view. In this 
case, tracking is not necessary and can be suppressed. Any 
event rate in between these boundaries can be associated with a 
moving object. The event rate numbers used in this design have 
been obtained empirically by placing a 128 x 128 DVS sensor 
on a moving robotic platform following another robot. 

B. Tracking 

    The single OMCs spiking in the presence of a moving object 
can be easily clustered, so as to obtain the position of the 
moving object by correlation. A tracking scheme was 
implemented to draw a containing box around the last 3 spiking 
cells close in time and space, and to find its center of mass by 
geometry. If some OMCs spike due to a second object moving 
in the scene, therefore beyond the reach of the first tracker, then 
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these outputs can be associated to a second tracker. Double 
tracking is shown in the left image of Fig. 4, for a still camera 
staring at the scene where two objects are moving 
independently. The trackers reset automatically when no OMC 
near them spikes within an adjustable amount of time, and 
reappear at another location where an object seems to be 
moving. This way the tracker can be reused once the first object 
stops moving and the reset event can trigger the memorization 
of its last known position. 

  
Fig. 4 15 x 15 array of OMCs: on the left, two objects activate both the trackers 
(yellow and blue with respective blue and red center of mass), on the right the 
moving object can still be tracked while the camera is moving in the scene 
thanks to excitation weight adjustment. The position of the center of mass with 
respect to the 9 red quadrants can be used by a robot to plan its next action. 

By dividing the field of view in 9 quadrants and knowing 
the position of the center of mass of the tracker within one of 
them, it is possible for the robot carrying the sensor to plan its 
next move and follow, or just shoot, the target. The size of the 
target can also be roughly estimated with a very simplified 
inverse pinhole camera model in the x direction knowing the 
width of the target object and ignoring lenses’ distortion. The 
numbers need to be heavily low-pass filtered in order to obtain 
a reliable measurement, but the order of magnitude of the result 
is at least consistent with the ground truth. 

Since the algorithm works in such a way that the OMC gets 
inhibited in the case of global motion, the same happens when 
the observer is moving and tracking gets suppressed. To still 
allow the OMCs to fire and continue tracking even while the 
observer is moving at moderate speed, parameters need to 
adapt. An approach to solve this problem effectively is to 
increase the weight of excitation ߙ by a fixed amount when a 
certain activity, indicating apparent scene motion, is detected. 
This way the firm movement of an object can still cause the 
OMCs to fire even though inhibition is stronger. 
This algorithm works however only if the apparent motion of 
the scene is slower than the one of the target object. Also, if 
corners or high-contrast features suddenly appear in the field of 
view, these might be detected as objects to be tracked. Only the 
temporal and spatial correlation of the OMCs spiking which are 
part of the tracker can guarantee that the correct object is still 
followed. This can be seen in the right image of Fig. 4. 

IV. FPGA IMPLEMENTATION 

A. Hardware used and multiple OMC FPGA implementation 

    The FPGA design was approached to explore the possibilities 
of implementing complex cell types in logic to exploit 

parallelism. The OMC mechanism was prototyped in the 
Spartan6 XC6S1500FXT Xilinx FPGA board developed in [6], 
called AERNode board. The design of this platform allows 
multi-board communication with conventional parallel-
handshake-AER chips, serial Low-Voltage Differential 
Signaling (LVDS) connections or robots with the adequate 
motor interfaces. A daughter board based on an OpalKelly 
module, called OKAERTool, is used for monitoring, or 
sequencing, and logging, or playing, events from and to the 
AERNode board. It is in fact able to sequence events from its 
on board DDR2 128MB SDRAM to the AERNode board and 
to monitor its output through USB2.0 in jAER. OKAERTool is 
fundamental for debugging the design implemented in FPGA. 
    Due to the limited number of resources of the FPGA 
available (gates and memory), the OMC implementation 
strategy was changed into a much more simplified one. Five 
OMCs’ centers were fitted in the center of each quarter of the 
field of view and in its center to obtain the most basic directions 
of a moving object. Every OMC center consists of 2 x 2 
subunits. The design consists of two levels: a Mother Cell (MC) 
which deals with the four-phase AER handshake protocol 
(request and acknowledge) with the outside neighboring blocks 
and five inner Daughter Cells (DC) which, in parallel, each 
calculate the excitation of a particular OMC. The MC calculates 
the inhibition (set to be the entire field of view, as in the jAER 
model) and feeds it along with the incoming request to the DCs 
if the input event falls within their excitation center. The MC 
also manages the global high-priority decay of the subunits by 
a counter. The DCs then propagate their request, in case of 
firing, to the following stage through the MC. Since the cells all 
work in parallel and store their firing in a one-hot coded output 
vector, the processing delay does not scale with the number of 
DCs active. The active low requests are anded so that the 
request to the next stage is active for at least one DC active. 
    The algorithm of each single DC follows the most basic 
jAER implementation, however, to reduce the use of resources 
variables are restricted to 16 bit values and every operation is 
simplified. Since divisions (for normalization of inhibition and 
excitation) are performed by even numbers, these are done by 
multiples of 2 by bit-shifting. The same bit-shift operation 
substitutes the non-linearity and a saturation is achieved with a 
comparator when a certain value is attained. The global decay 
is also achieved with bit-shifts and it is adjustable by the 
counter’s limit. Finally, only one multiplication is present, the 
one for the integration of the single daughter OMCs’ membrane 
potential. Three parameters can be set via Serial Peripheral 
Interface (SPI) through the OKAERTool. These are the IF 
threshold, the decay counter’s limit and the excitation weight	ߙ. 

B. System integration and hardware 

The system of OMCs, enclosed by the MC, was integrated with 
a pre-existing system architecture. This was achieved by 
creating a separate, parallel processing branch through a splitter 
and a merging element. This can be seen in Fig. 5. The input 
request and parallel data which the OMC receives are the same 
that the cascade of filter elements receives (in this case the Hot 
Pixel Filter, which filters out addresses of pixels with high spike 
rate). In case of firing, the OMC sends its request further to a 



merging arbiter along with its output data (the one-hot-coded 
firing DC’s address). The arbiter decides randomly which 
branch will be serviced first and acknowledges it after reading 
its data. The acknowledge signals of both branches propagate 
back to a Muller C-element latch which combines them into a 
single one which is then sent back to the event source (the DVS 
or the event sequencer). 

 
Fig. 5 Integration of the OMC with the existing architecture of [7]. 

A problem which was encountered during design was that if 
both branches would be requesting at the same time, the arbiter 
would be waiting for the request withdrawal of the branch 
requesting first, before servicing the second branch. The request 
withdrawal cannot happen until the acknowledge signal of the 
branch is propagated back to the event source. Since, due to the 
C-element, this cannot happen until both acknowledge signals 
are received, the system effectively deadlocks. To overcome 
this problem caused by the dependency of the merger from the 
splitter, a feature of collision detection was added to the arbiter: 
the latter can in fact now acknowledge the two branches one 
after the other even though the request of the first is not yet de-
activated. The implementation of Fig. 5 for 5 DCs uses 4% of 
the slice registers, 11% of the slice Look-Up Tables (LUT) and 
occupies 16% of the available slices. For 9 DCs, the resource 
consumption changes to 5%, 12% and 19% respectively. 

V. RESULTS 

A. Latency and power consumption comparison 

To estimate the delay of the OMC tracker in both jAER and 
FPGA, the time taken for an input event to be processed was 
measured. For the jAER OMC tracker, the nanoTime() method 
of class System was used to measure the processing time for 3 
different numbers of OMCs (though the difference between 5 
and 9 cells is irrelevant). It should be noted, however, that this 
delay increases by 25-30% if the input events are not being read 
directly from the hard disk (as it is the case for the reported 
numbers) but if they are obtained in real-time from the DVS 
sensor. This is because events are processed at a higher speed (at 
the maximum of the system’s capabilities) if read from a logged 
file rather than if the data is obtained from the real world. For 
the FPGA performance, the numbers were obtained using the 
Xilinx ChipScope tool, since the processing delay was below the 
microsecond event timestamping resolution. The results are 
summarized in TABLE I. The OMC in FPGA takes 22 and 11 
clock cycles, depending if the incoming event falls in one of the 
DC’s RF, to process an input event and complete the AER 
handshake with a 50 MHz clock. As regards the power 
consumption comparison, the FPGA has a factor of at least 100 

of advantage over even the small embedded Intel Next Unit of 
Computing (NUC). 

VI. CONCLUSION 

This paper offers two implementations of the OMC model 
for the purpose of object detection and tracking: one software-
based and FPGA-based. A comparison study is presented 
between these two systems and highlights the power 
consumption and latency advantages of the FPGA. Due to its 
parallelism, the nanosecond latency does not scale with the 
number of OMCs implemented. This paper however does not 
yet present the next step: the recreation of the 15 x 15 OMCs 
tracker of jAER into FPGA. This is because the resources of the 
Spartan6 constrain for the moment the OMC array size. 
Knowing that the number of occupied slices for the 5 OMCs 
design is 16% and for the 9 OMCs design this is 19%, it can be 
approximately estimated that at most another 108 OMCs, each 
taking 0.75% of the resources, can be fitted into the current 
design (still 117 below the desired 225). The work to come will 
therefore focus on further reducing the size of the DCs and on 
the optimization in the integration with the existing 
architecture. At the moment, the output of the OMCs is already 
used to choose the location where to initialize the trackers of [7] 
and to validate their operation: the object tracker which is active 
can now only exist if its center of mass location falls within the 
RF of a DC firing. 

TABLE I.           SPECIFICATION TABLE OF THE FPGA OMC 
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Specification Table 
jAER	ሺ64‐bit	Intel	
NUC,	4 GB	RAM,	i5‐
4250U,	1.30	GHzሻ

jAER	ሺ64‐bit	PC,	16	
GB	RAM,	i7‐4770K,	

3.50	GHzሻ	

FPGA	ሺXilinx	
Spartan6,	50	

MHzሻ
Latency	
of	5x and	
9x	OMCs

~500 ns/ev at	0.2	
Mev/s,	at	CPU	load	

൏	5%

~250	ns/ev	at	0.2	
Mev/s	,	at	CPU	load	

൏	2%	

220	or	440	
ns/ev at	any	
event	rate

Latency	
of	 15x15	
OMCs

~1000	ns/ev at	0.2	
Mev/s	,	at	CPU	load	

൏	5%

~500	ns/ev	at	0.2	
Mev/s	,	at	CPU	load	

൏	2%	
NA

Power	

6.2	W	static	൅	6.2	
W	for	running	jAER
൅	2.48	W	for	5/9x	
OMCs or 3.72	W	for	

15x15	OMCs

A	few	hundreds	of	
Watts	

0.775	W	
static	൅	0.05	
W	for	5/9x	
OMCs


