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Abstract—The use of spiking neuromorphic sensors with state-
of-art deep networks is currently an active area of research.
Still relatively unexplored are the pre-processing steps needed
to transform spikes from these sensors and the types of network
architectures that can produce high-accuracy performance using
these sensors. This paper discusses several methods for pre-
processing the spiking data from these sensors for use with
various deep network architectures. The outputs of these pre-
processing methods are evaluated using different networks in-
cluding a deep fusion network composed of Convolutional Neural
Networks and Recurrent Neural Networks, to jointly solve a
recognition task using the MNIST (visual) and TIDIGITS (audio)
benchmark datasets. With only 1000 visual input spikes from
a spiking hardware retina, the classification accuracy of 64.5%
achieved by a particular trained fusion network increases to
98.31% when combined with inputs from a spiking hardware
cochlea.

Keywords—Event-Driven Sensors, Deep Networks, Recurrent
Neural Networks, Dynamic Vision Sensor, Sensor Fusion.

I. INTRODUCTION

In recent years, increasing work has gone towards inter-
facing event-based sensors, in particular the Dynamic Vision
Sensor (DVS) [1], to deep networks such as Deep Belief Net-
works (DBNs) and Convolutional Neural Networks (CNNs).
The benefits of these networks including robustness to noise,
bit precision of the hardware platform, and efficient processing,
have been demonstrated in some studies [2], [3]. Although
deep networks are used heavily in the machine learning
community [4], their use in the neuromorphic field is still in
the early stages due to the dramatic differences in the nature
of the continuous-time event-driven input data and the frame-
based data that machine learning typically uses.

The combination of spiking deep networks together with
event-based sensors has been considered in previous stud-
ies, for a example, through a spiking CNN receiving DVS
spikes [5], [6]. Spiking deep networks have also been im-
plemented in hardware, for example, a spiking DBN was
implemented on a hardware platform and interfaced to a
DVS [7], [8].

Because of recent spiking network conversion methods
that show how frame-based deep networks such as CNNs and
fully-connected networks can be trained so that the converted
spiking network has a classification performance that is almost
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equivalent to that of the analog network [9], the performance of
spiking networks together with spiking inputs can be compared
more easily to the performance of the trained networks using
frame-based input.

What is still relatively unexplored are the pre-processing
steps that are useful for the outputs of the event-based sensors,
in particular the audio sensor; and other new deep network ar-
chitectures such as RNNs which are better suited for temporal
sequences.

This work extends the previous contributions in three ways.
First, it presents several methods for preprocessing spiking
data from event-based sensors for use with state-of-the-art
deep network architectures. Second, it demonstrates the use
of architectures such as deep CNNs [4] and deep RNNs [10]
as powerful classifiers for event input streams. Third, the
accuracy of a sensor fusion deep network is quantitatively
evaluated. Multimodal fusion with deep neural networks have
been demonstrated with event-based sensors, for e.g. a spiking
DBN was successfully used to fuse visual spikes from a DVS
together with audio spikes from a Dynamic Audio Sensor
(DAS) cochlea [3], [11]. However, the audio stimuli consisted
of pure tones and a quantification of the network classification
accuracy using the sensors was not performed in the first study.

This work focuses only on CNNs for processing the visual
event stream because they currently produce state-of-the-art
performance in visual tasks [12]. The audio input is processed
by either CNNs or RNNs, both which are currently used in
audio classification tasks. The performance of these networks
is tested on two standard benchmark datasets: the MNIST
handwritten digit recognition dataset and the TIDIGITS au-
dio dataset. In addition, the corresponding spike databases
consisting of recordings through the DVS on MNIST (N-
MNIST) [13], and recordings through the DAS cochlea on
TIDIGITS [14] are used in the evaluation of the networks.
Section II describes the data processing methods for the event-
based sensors as well as the deep network architectures used.
Section III presents classification results using visual and audio
input representations and Section IV discusses the findings.

II. METHODS

A. Input data processing methods

The primary goal of the data processing methods is to
produce a frame-based representation of the event stream from
the spiking sensors compatible with the input format needed
for training deep networks and allowing the subsequently
trained networks to be tested with non-framed event streams.
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Fig. 1. (Top) Cochleagram representation of a spoken digit from [14].
(Bottom) MFCC representation of a spoken digit, with first and second
derivatives as well as power.

In machine learning, the deep network architectures and their
training methods have been developed on the assumption that
the data is primarily static. This scenario differs from the
field of event-based research where huge databases are not
yet available and the data is always dynamic and event-driven
in nature.

1) Audio Network Input: Single digits (“oh” and zero
through nine) from the TIDIGITs database are used in our
study with a total of 2464 digits in the training set and 2486
digits in the test set.

Spikes are pre-recorded from the DAS cochlea system [15]
in response to the digits in this database. The DAS system
holds a custom AEREAR2 binaural silicon cochlea chip. Each
cochlea consists of a 64-stage cascaded second-order filter
bank (frequency channels) followed by a half-wave rectifier
modeling the inner hair cell, and an integrate-and-fire neuron
which models spiral ganglion cells. The 64 frequency channels
have individual characteristic frequency selectivity ranging
from 100 Hz to about 10 kHz on a log frequency scale. By
binning the DAS channel spike outputs into 5 ms time bins,
the resulting 2D histogram of frequency channels versus time
bins (cochleagram) can be interpreted as an image for a CNN,
or read time slice-by-time-slice into a RNN. An example can
be seen in Fig. 1.

Mel-Frequency Cepstral Coefficient (MFCC) features are
often used in state-of-the-art audio processing networks, and
are used as a comparison here. Each audio digit waveform
is preprocessed using a 25 ms window, 10 ms frame shift,
and 20 filterbank channels to produce 12 cepstral coefficients
which are concatenated with the overall power and the first and
second derivatives to form a 39-dimensional feature vector.

2) Visual Network Input: The benchmark MNIST dataset
consisting of 60,000 28x28 handwritten digits in greyscale and
a test set of 10,000 digits, is used in the visual classification
task. In previous investigations [3], [7], [9], the original image
is treated as a rate-based approximation of the visual sensor
event stream during training. During the testing phase, spikes
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Fig. 2. Visual transformations on MNIST. (Upper Left) Original image.
(Upper Right) Same digit after Canny filtering. (Lower Left) Raw, unsta-
bilized N-MNIST dataset (100 events). (Lower Right) Stabilized N-MNIST
dataset (full dataset).

are drawn from the image with a probability proportional to
the intensity of the pixel. With an increasing number of spikes,
binning them produces an image similar to the original input.

However, the event stream from the DVS is produced by
changes in the temporal contrast at each pixel, which does not
have the same statistics as the spikes generated according to
the intensity value. The approach taken in collecting the N-
MNIST dataset [13] was to present each digit to a DVS while
moving the image sensor in a controlled way. The N-MNIST
dataset includes a script to counter the movement of the image
sensor so that the triggered events can also be centered in the
original image position. In this work, both the unstabilized and
stabilized spike data versions are considered. The unstabilized
version is more relevant for real-world stimuli where the events
cannot easily be back-projected to counter the movement of the
sensor, while the stabilized version is more similar to standard
machine learning inputs.

Since the binned unstabilized N-MINST digit spikes in Fig.
2, lower left, resembles an edge-filtered image, the Canny edge
filter [16] was applied to the static images before training to
see if this filtering would improve recognition performance.
See Fig. 2, upper right, for an example of a filtered image.

B. Deep network architectures for event-based sensors

The network architectures used in this work are presented
in Fig. 3. These networks were trained using the Keras [17]
Python and Theano-based deep learning software. The code
to train and test these networks is available online.1 The
networks constructed as shown in Fig. 3, were trained using the
Adam [18] stochastic optimization method for 15-20 epochs.

1) Convolutional Neural Networks: Convolutional Neural
Networks (CNNs) are used here to process both visual and
audio inputs (see Fig. 3). For the visual input, the N-MNIST
image size of 36x36 was not resized; instead, inputs that fall

1https://github.com/dannyneil/sensor fusion iscas 2016
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Fig. 3. Network types. (a) CNN for visual input. (b) CNN for MFCC audio
inputs. The stacked layers are the same as in (a), collapsed here for readability.
(c) CNN for cochleagram audio inputs. (d) Deep RNN for audio classification
on MFCCs. (e) Deep RNN for audio classification on cochleagrams. (f) Fusion
architecture, which fuses the feature vector layers (highlighted in green) to
produce a joint classification.

outside of the 28x28 region were ignored as this method gave
the best results.

Because CNNs expect a fixed-size input, each audio digit’s
features had to be pre-padded with zeros to equalize their
lengths. Because the MFCC time length (10 ms shifts) of a
digit was shorter than the time dimension of the cochleagram
(5 ms bins), the network architectures using MFCC inputs and
the cochleagram differ slightly. The network that processes
the cochleagram includes an additional layer of convolution,
activation, and pooling, to decrease the hidden layer dimen-
sionality before the last fully-connected layers. These convolu-
tional networks were trained using the method described in [9]
to produce networks capable of being converted to spiking
networks, although they were used in their nonspiking form.

2) Recurrent Neural Networks: The deep RNNs are com-
posed of gated recurrent units as introduced in [10]. At
each time step, an input feature (either the MFCC or the
cochleagram) as computed over a time window was used as the
input to the RNN. Note that this input presentation is purely
causal, unlike bidirectional RNN models that operate forward
and backward on the input data at the same time. This causal
presentation was chosen to ensure compatibility with the real-
time implementation in which the binned spikes are summed
and propagated to a RNN in an online setting.

C. Architecture of Fusion Network

The architecture of the fusion network in Fig. 3(f) includes
a visual feature input layer from the network in (a) and an
audio feature input layer from one of the networks in (b) to (e).
These feature layers are highlighted in green in the different
networks. The rate-based continuous-valued outputs of these
layers go to two non-spiking fully-connected layers. Each
neuron in the first fully-connected layer can connect to either

TABLE I. NETWORK PERFORMANCE SUMMARY, TRAIN AND TEST
FRAME-BASED

Network Type Classification Accuracy

Visual CNN (Intensity) 99.26%
Visual CNN (Canny) 97.52%
Visual CNN (N-MNIST) 98.30%
Audio MFCC CNN 95.86%
Audio MFCC RNN 96.10%
Audio Cochlea CNN 87.65%
Audio Cochlea RNN 82.82%

modality or to both, and performs a nonlinear combination of
the features produced from each modality.

III. RESULTS

A. Individual Network Performance

The classification accuracy of the different non-spiking
networks which are both trained and tested on frame-based
inputs, can be found in Table I. Their accuracies are viewed
as the ideal target accuracies for the spiking networks. The
first three networks are trained on visual data of three corre-
sponding different input types: 1) a network trained to identify
spikes drawn from the intensity of the pixels (“Intensity”), 2) a
network trained to identify spikes from edges (“Canny”), and
3) a network trained on the summed spikes over the duration
of the test from the real N-MNIST data (“N-MNIST”). These
three networks all achieve high accuracy in their own test clas-
sification. The next four networks were trained on audio input.
The first two networks were trained on MFCC features, and the
remaining two were trained on cochleagrams generated from
spikes of the DAS sensor. The network accuracies show that
processing the cochlear spikes is more challenging than using
the MFCCs of the audio, but overall classification accuracy
is still quite high. Indeed the recognition accuracy of many of
these networks (Intensity, Canny, N-MNIST, and Cochleagram
CNN) establishes a new state-of-the-art benchmark ([9], [13]).

B. Approximation Methods for Visual Input

In the second set of experiments, the frame-based networks
were converted to spiking networks as described in [9] and
these networks were then tested on spiking inputs. Table II
compares the performance of these networks (columns) on
spike inputs generated in different ways (rows). The “N-
MNIST (uncentered, 1k)” row refers to uncentered N-MNIST
data using the first thousand events; “N-MNIST (centered,
1k)” refers to the centered N-MNIST data using the first
thousand events; and “N-MNIST (centered, full)” refers to the
full centered N-MNIST dataset. The intensity-trained model
performed well on the event-based intensity data, but suffered
significant losses when using the realistic N-MNIST DVS data.
Surprisingly, the use of the Canny-filtered data during training
only slightly improved the recognition accuracy on the N-
MNIST (1k) dataset and performed worse on the N-MNIST
(full) dataset; using an N-MNIST-trained network was best.

C. Performance of the Fusion Network

In the third experiment, the visual and audio inputs were
fused using the networks in Fig. 3 to produce the results in Ta-
ble III. Even with relatively low individual sensor classification



TABLE II. COMPARISON OF VISUAL SPIKING METHODS

Trained Networks
Intensity Canny N-MNIST

Spiking inputs from: (99.26%) (97.52%) (98.30%)

Intensity 99.17% – –
Canny 82.51% 96.60% –
N-MNIST (uncentered, 1k) 22.88% 23.17% 47.50%
N-MNIST (centered, 1k) 42.74% 43.51% 64.50%
N-MNIST (centered, full) 74.79% 57.71% 95.72%

TABLE III. SUMMARY OF FUSION PERFORMANCE

CNN N-MNIST N-MNIST
1k Spikes Full

(99.26%) (64.50%) (95.72%)

MFCC CNN (95.86%) 99.96% 99.19% 99.88%
MFCC RNN (96.10%) 99.94% 99.40% 99.83%

Cochlea CNN (87.65%) 99.67% 97.40% 99.64%
Cochlea RNN (82.82%) 99.86% 98.31% 99.66%

accuracies, fusing streams from multiple modalities increased
accuracy dramatically. In all combinations of visual and audio
inputs, accuracy improved when both modalities were used.
The joint score of a CNN trained on N-MNIST with an RNN
trained on cochleagrams yielded an impressive 99.66% classifi-
cation accuracy. Moreover, while a brief thousand input visual
spikes caused the network to achieve a poor 64.5% accuracy,
when combined with audio, this same network always achieved
performance greater than 97%.

IV. DISCUSSION

This work examined data preprocessing methods and deep
networks for fusing multimodal spiking sensor inputs. It es-
tablishes new state-of-the-art classification accuracy numbers
on event-based sensor datasets, and proposes architectures as
starting points for future work. For audio, the novel use of
deep RNNs and CNNs improved the classification accuracies
significantly for the spiking audio sensor.

For visual inputs, training with Canny-filtered images only
modestly improved the classification accuracy on the N-
MNIST dataset, although preliminary work suggests that it
may help greatly on alternative datasets especially in conjunc-
tion with further data augmentation such as translation, scaling,
and rotation. Visual networks face a tradeoff; additional input
spikes create new output spikes, but too many input spikes
smear the input image over time as in the case of the N-
MNIST (full) dataset. In this case, the smeared binned spike
image led to a lower accuracy number (see Table II) for the
Canny-filtered trained network versus the Intensity network.

Finally, fusion network architectures like those presented in
Fig. 3(f) demonstrate how networks can overcome limitations
in input modalities to achieve extremely accurate performance.
As no single modality is ideal and free of noise, a network
trained to fuse a representation from different modalities is
inherently robust. If the error sources themselves are de-
correlated, then the joint probability of an error in both
streams is the product of the two error rates. This dramatically
decreases the number of errors, as shown by the results in
Table III, and permits extremely accurate classification even
with very noisy input streams.
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