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Endowed Chair of Highly-Parallel VLSI-Systems and Neural Microelectronics, Institute of Circuits and Systems, Faculty of Electrical Engineering and Information Technology,

University of Technology Dresden, 01062 Dresden, Germany
a r t i c l e i n f o

Article history:

Received 7 December 2010

Received in revised form

24 May 2011

Accepted 24 May 2011
Available online 1 June 2011

Keywords:

Gigaevent packet-based AER

Configuration over AER

Low-voltage-differential-signaling

Serial data transmission

Clock-to-data alignment
60/$ - see front matter & 2011 Elsevier B.V. A

016/j.vlsi.2011.05.003

esponding author. Tel.: þ49 351 463 34943.

ail address: Christian.Mayr@tu-dresden.de (C
a b s t r a c t

State-of-the-art large-scale neuromorphic systems require a sophisticated, high-bandwidth commu-

nication infrastructure for the exchange of spike events between units of the neural network. These

communication infrastructures are usually built around custom-designed FPGA systems. However, the

overall bandwidth requirements and the integration density of very large neuromorphic systems

necessitate a significantly more targeted approach, i.e. the development of dedicated integrated

circuits. We present a VLSI realization of a neuromorphic communication system-on-chip (SoC) with

a cumulative throughput of 32 GBit/s in 0:18 mm CMOS, employing state-of-the-art circuit blocks.

Several of these circuits exhibit improved performance compared to current literature, e.g. a priority

queue with a speed of 31 Mkeys/s at 1.3 mW, or a 1 GHz PLL at 5 mW. The SoC contains additional

neuromorphic functionality, such as configurable event delays and event ordering. The complete

configuration of the neuromorphic system is also handled by the spike communication channels, in

contrast to the separate channels required in the majority of current systems. At 865 Mevent/s, the SoC

delivers at least a factor of eight more bandwidth than other current neuromorphic communication

infrastructures.

& 2011 Elsevier B.V. All rights reserved.
1. Introduction

Neuromorphic ICs implement mathematical abstractions of
brain functions in order to realize novel cognition-derived com-
putational functions [1,2]. The last years have seen a steady
increase in the size of neuromorphic systems in order to handle
more advanced cognitive tasks. These large-scale hardware
systems for spiking neural networks require high-speed commu-
nication for transmitting so-called spike events between the
different units of the neural network. Neuromorphic hardware
systems commonly employ the address event representation
(AER) protocol for pulse transmission [3,4]. Based on this, several
routing/interface boards have been developed in recent years
[4,5], usually employing a reconfigurable device such as an FPGA
for greater flexibility. Those designs were predominantly opti-
mized for asynchronous operation and low latency, whereas
demands on integration density and bandwidth were relatively
relaxed. Also, at least part of the configuration of the neuro-
morphic chips was usually performed by separate, proprietary
interfaces.
ll rights reserved.
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However, requirements on integration and speed change
profoundly when moving to a large-scale hardware system, such
as the waferscale neuromorphic hardware developed in the
FACETS and BrainScaleS projects [6], depicted in Fig. 1. This
system employs waferscale integration technology to gain a high
connection density. Furthermore, it is designed for operating at a
speed-up factor of 104 compared to biological real time, which
increases simulation speed and integration density of the analog
neuron and synapse circuits at the same time [7].

We have developed a communication infrastructure [8] for
this waferscale neuromorphic system centered around an appli-
cation-specific digital communication IC, called digital network
chip (DNC). In contrast to conventional parallel asynchronous AER
interfaces, the DNC employs a significantly more versatile
synchronous high-speed serial packet communication of time-
stamped spike events. The resulting packet network is advanta-
geous for spike transmission, because it efficiently copes with the
large number of sources and targets of the waferscale system,
exploiting the limited bandwidth of the single transmission
channels and offering flexible configuration of the connectivity
between the units. Transmission of conventional digital data
packets also enables the system to embed the complete config-
uration information for the neuromorphic wafer in the regular
data stream. The DNC employs various building blocks from
conventional high-speed SoC design, adapting and advancing
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Fig. 1. Overview of one wafer module of the FACETS/BrainScaleS waferscale

system [6].

Fig. 2. Logical structure of the off-wafer packet-based network and the on-wafer

routing grid.
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them for this specialized task. Section 2 gives an overview of the
waferscale system and derives the specifications for the DNC
based on the overall system constraints. In Section 3, the design of
the DNC is detailed, with Section 3.2 focussed on the functional
aspects and Section 3.3 giving the circuit design. Measurements of
single building blocks are distributed in the text, while the overall
performance figures are given in Section 4.
2. System overview

2.1. The waferscale neuromorphic system

The FACETS/BrainScaleS waferscale neuromorphic system con-
sists of several of the wafer modules as depicted in Fig. 1. It has
been designed for integrating a maximum of neurons and
synapses at sufficient flexibility for connectivity and model
parametrization. As a consequence of the high integration
density, all neuron and synapse circuits are accelerated by a
factor of 104 compared to biological time. On the one hand, this
prevents the system from being used in a real-time operating and
learning setup, i.e. it cannot interact directly with the environ-
ment; on the other hand, stand-alone simulations of neural
networks can be accelerated immensely.

The pulse frequencies resulting from the speed-up factor call
for dedicated, high-speed pulse communication. This is achieved
by a two-layer approach: On the wafer, individual synapse-and-
neuron blocks, called high input count analog neural networks
(HICANNs) [6], are connected by post-processed metal interlinks
on top of the wafer, forming a high-density pulse routing grid
[9,6]. This pulse routing grid covers the pulse communication
inside a single wafer module. This intra-wafer communication is
complemented by a packet-based network, connecting the wafer
to the surrounding system (i.e. the stimulating host PCs and other
wafer modules). The main building blocks of this packet-based
network are the DNCs, which are situated on a PCB physically
linking the wafer to the outside. As the packet-based network is
the only communication link to/from the wafer, it has to provide
pulse stimulation and monitoring as well as control and config-
uration of all the circuits on the wafer via the same links.

This packet-based off-wafer communication is hierarchically
organized as shown in Fig. 2. Eight of the HICANNs are placed on
one reticle on the wafer. Communication streams from eight
HICANNs are bundled in one DNC. In turn, four DNCs communicate
with one custom-designed FPGA–AER board [8]. This tree-like
structure enables one FPGA to control 32 HICANNs on the wafer.
Overall, a single wafer module requires 12 FPGA–AER boards [6].
Since the packet-based network is tasked with the inter-wafer (i.e.
FPGA–FPGA) communication, the hierarchy is always fully traversed
for the pulse packets, i.e. a modular connection scheme operating in
several stages of the hierarchy such as in [10] is not necessary.

2.2. Constraints

The architecture of the off-wafer routing network was chosen
for two reasons: bandwidth distribution and geometrical restric-
tions. Thereby, the spike traffic constitutes the critical case,
because spike event transmission cannot be slowed down, since
the analog neuron and synapse circuits on the wafer cannot be
suspended. To extract an estimate of the required throughput, we
assume a reasonable mean spike rate of 10 Hz [11] per neuron.
The only spike sources that send from the wafer are the neuron
circuits on the HICANNs. With 512 such neurons [6] and a speed-
up factor of 104, a total of 51.2 Mevent/s need to be transmitted
from a single HICANN. For a whole wafer with 352 HICANNs [6],
this adds up to 1:8� 105 spike sources with 18 Gevent/s total
rate. For a symmetric design, the same bandwidth is assumed for
the connections to the wafer. With 24 Bit pulse packets, a
throughput of 1.2 GBit/s is thus needed per DNC–HICANN
connection, not taking into account packet overhead.

Besides the spike rate of a neural connection, its transmission
delay is a crucial property that can significantly influence proces-
sing and adaptation behavior [12]. This delay is commonly
assumed to be constant and in the order of several milliseconds
[13]. With the introduced speed-up factor, this translates to some
100 ns in the system time domain, so that delay and jitter of the
routing network have to be taken into account. Therefore, pulse
event packets contain a 15 Bit timestamp in order to buffer them
at the DNC until a target delay is reached [14]. This is in contrast
to real-time hardware systems, where transmission delays are
neglected [4] or handled by a discretized system update [15]. At
the same time, this offers the possibility of configuring individual
delays based on the time stamp, a feature which is especially
useful in dynamical neuromorphic computation [16,17]. For
details of this functionality, see Section 3.2.1.
3. The digital network chip

3.1. Toplevel overview

As described in Section 2.1, the DNC provides communication
between the FPGA and up to eight HICANNs. Due to the high
integration density, the number of physical wires between
the HICANNs on the wafer and the outside is limited. Therefore,
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low-voltage-differential-signaling (LVDS) transmission of one
clock line and one data line is employed, forming a minimal
communication interface between a HICANN and a DNC. For this
interface, a raw data rate of 1.2 GBit/s is required, as detailed in
Section 2.2. Incorporating some overhead for packet handling, a
raw data rate of 2 GBit/s is realized at a clock frequency of 1 GHz
for each HICANN–DNC connection, using double data rate (DDR)
transmission. Furthermore, a fall-back mode is implemented with
1 GBit/s bandwidth at 500 MHz clock frequency. The serial commu-
nication is source-synchronous, i.e. the physical connection consists
of two differential lines (clock and data) for each direction of a DNC-
HICANN connection. All HICANNs together thus produce data with a
Fig. 3. Block diagram of the DNC with its eight H

Fig. 4. Various communication packets of (a) the HI
maximum rate of 16 GBit/s per direction across the DNC.
A matching 16 GBit/s data rate is provided by the DNC–FPGA
connection, combining 16 LVDS data lines with one LVDS clock line
running at a frequency of 500 MHz.

The system overview of the DNC is depicted in Fig. 3. Each
connection consists of the corresponding LVDS transceiver, the
serializer and deserializer circuits, responsible for the parallel to
serial conversion, and the link packet control that implements a
packet protocol for the different types of data with error detection
and correction mechanisms. The various transmission packets of
the DNC, which differ in size depending on the target device and
the packet data, are shown in Fig. 4. The FPGA connection uses a
ICANN interfaces and the FPGA connection.

CANN connection and (b) the FPGA connection.



Fig. 5. Flow of pulse events in the waferscale packet network.
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single packet structure for different contents, while the HICANN
connection implements several specialized packet formats. The
content of the packets, i.e. the pulse events and the configuration
data, is processed in each of the eight HICANN connection
modules. Pulse events towards the HICANN need to be reordered
based on their timestamps to compensate for the variable-delay
packet routing (see Section 3.2.1). Events from the HICANN are
modified in their timestamps, realizing configurable event delays.

Configuration packets may contain settings for the DNCs or for
the different HICANN components, as well as current readout
values of neural building blocks, like synapse weights or neural
pulse release statistics. These packets have lower priority than
pulse events. All packets include a CRC checksum to identify
corrupted data. A phase-locked-loop (PLL) supplies the digital
and analog environment with specialized clock signals and an
on-chip-bias circuit with external reference resistor provides
reference currents for the custom circuit blocks. Low-level test
access is provided by a JTAG interface. The main components and
functionalities are explained in detail in the following sections, as
well as their contribution to the neural packet-based event
routing.

3.2. Functional design

General design. The DNC needs to supply several mechanisms
for handling the different packet types and for implementing the
timestamp-based event routing. Thereby, low transmission
latency needs to be ensured, especially for the pulse events,
which need to be delivered within a biologically realistic time
window (cf. Section 2.2). The latency crucially depends on the
architecture of the packet flow. As there are nine possible sources
for neural events and configuration packets, one strongly active
channel could block the other channels. This effect can be
circumvented by keeping all channels independent in their packet
handling as much as possible.

On the DNC–FPGA link, up to four pulse events or one
configuration packet can be transmitted in parallel in each packet
per direction, requiring two clock cycles of the 250 MHz system
clock of the communication system. Two HICANN channels share
one pulse event slot of an FPGA packet, so only scheduling
between two channels is required for pulses. Packets arriving
from the FPGA are forwarded directly to the targeted HICANN
channel and stored there in local FIFO buffers for further proces-
sing. From this point, all HICANN channels are identical and
operate independently from each other. Each HICANN channel
generates packets for the connected DNC–HICANN link with
either one configuration segment or up to two neural events.

The packet handling in the system is done with source-based
address routing and timestamp-based prioritization. The packet is
routed through the network by using the source identifier. At
each network node a look up table (LUT) is used to identify the
links that the packet needs to be forwarded to. By this mechan-
ism, packets can be duplicated at each node, allowing for a tree-
like routing of the event to the different connection targets. This
minimizes the total network traffic.

The stages of the routing are detailed in Fig. 5. Pulse prior-
itization in the network employs the target time of the pulse
event, which is contained in each pulse packet. Pulses are sorted
according to this value and events with the lowest timestamp are
sent first. Initially, the target time is calculated in the DNC for
each pulse coming from a HICANN, adding a source-specific delay
to the sender time generated in the HICANN. When packets are
duplicated at a network node, the new packets get a modified
timestamp by adding a delta time. With the 250 MHz system
clock of the communication system, the resolution of the time-
stamps equals 4 ns, corresponding to 40 ms in biological time.
Thus, the entire 15 Bit timestamp corresponds to 1.31 s in
biological time. Downstream to the HICANN, this represents the
main delay that can be sorted in the priority queue before events
become non-unique. This should be sufficient, as any larger
delays can be handled by the FPGA board. Upstream to the host
PC, these 15 Bit timestamps can easily be extended using the
FPGA clock/counter to cover arbitrarily long timespans.

Upstream transmission. Neural events are initially generated in
one of the HICANNs, consisting of a 9 Bit identifier and a snapshot
of the current 15 Bit system time counter representing the sender
time (label 1 in Fig. 5). Incoming packets from the HICANN are
processed in the DNC by adding a delay value to the sender time,
which can be configured individually for each source address
(label 2). After correction of the timestamp the event is forwarded
to the FPGA. If two event packets arrive at the same time, the
second one is delayed until the first packet is modified and then
processed itself.

In the FPGA, the source address is extended by HICANN and
DNC identifiers to a 14 Bit label. This value is then used to
designate the next target communication channels, again employ-
ing a LUT (label 3). If the packet is duplicated, the LUT entry also
contains delay delta values for each copy, which are added to the
original target timestamp. By this mechanism, different connec-
tion targets of a source address can be configured for individual
transmission delays. Because the timestamp deltas are always
positive, connection delays in the duplicates are always increased.
Thus, it has to be ensured by the system configuration that a pulse
packet always contains the target timestamp corresponding to
the target with the smallest delay.

Downstream transmission. When a pulse packet is sent from the
FPGA to a DNC, the identifier of the packet is modified, containing
the target HICANN and the target neuron address of the event
(label 4 in Fig. 5). Thus, no further address conversion is needed in
the DNC.

In the DNC, all incoming events are ordered and buffered by their
target timestamp (label 5). This reordering is done using a custom
developed priority queue memory (see Section 3.2.1), always
providing the event with the minimum target time. This event’s
timestamp is constantly compared with the current system time
and released to the HICANN if the difference of both is smaller than
a preconfigured limit value. This combination of buffering and
scheduling reduces the demand on buffering capabilities on the
wafer, maximizing silicon area for the neuromorphic circuits. The
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limit for releasing accounts for the link delay down to the HICANN,
which is dependent on the link traffic. It can be set in increments of
32 clock cycles. Up to eight priority queue memories are filled in
parallel per HICANN channel, reducing sorting latency and utilizing
the full bandwidth of the DNC–HICANN channel. In the HICANN the
events are released at the system time represented by the target
timestamp, employing parallel buffers (label 6).

The configuration packets in contrast do not require complex
routing information. They are forwarded from the host control to
the FPGA, the DNC and the HICANN directly, with lower priority
than the timing-critical pulse packets. The host control provides
the configuration data to the FPGA together with the target
address for the addressed device. Each communication channel
includes a buffering FIFO memory for the configuration data to
hold it back until it can be submitted. These mechanisms are the
same for all components in both directions towards and from the
HICANN.
3.2.1. Priority queue

The priority queue block depicted in Fig. 6 handles the ordered
release of the pulse events down to the HICANN based on their
timestamp. It is based on a weakly sorted binary heap [18], which
centers on finding the next closest event in time. The binary heap
structure has been chosen as it offers very low hardware effort and a
significantly faster insertion of new entries compared to a sorted
array [19], since no search operation is carried out for an entire list
at each insertion step [20]. Instead, the weak ordering of the heap
allows continuous streaming where incoming packets are inserted
while the closest pending event is released at the same time. The
binary heap offers logarithmic-time insertion and removal of entries
at a constant number of comparators [21]. The algorithm and its
implementation are described in detail in [14]. The applied SRAM
memory blocks offer 64 entries of 24 Bit each and have a dual port
interface. The latter significantly reduces the clock cycles needed per
Fig. 6. Block diagram of the pulse event reordering unit for one HICANN channel,

using custom priority queuing.

Table 1
Comparison of a single priority queue with current state-of-the-art. The numbers in

specifications [14].

Reference Technology Gate count Power fclock

[20] FPGA 2784 Slices 1.8 W 133

[19] – 26,964 – –

[22] 0:13 mm 1,604,261(25,066) 71 mW 143

[23] 0:18 mm 78 k – 200

This design 0:18 mm 593 1.3 mW 250
algorithm loop, with the core loop of the retrieve operation requir-
ing only two clock cycles [14]. Each HICANN channel has eight
priority queues operating in parallel, i.e. a single SRAM block and its
surrounding digital circuitry correspond to one 64�24 Bit priority
queue and its control (see also Fig. 6).

A comparison of a single priority queue with three sorting
implementations in current literature is given in Table 1. Since
there is a lot of variation especially with respect to number of
keys and key size, the numbers in brackets give the approximate
comparison values when adjusting the implementations found in
literature to the priority queue specifications. When assuming
that a single FPGA slice is at least equivalent to five gates, our
implementation is significantly less complex than [20]. When
adjusting the throughput of [20] for the higher keysize and
architectural differences of our implementation, an equivalent
throughput of approx. 50 Mkeys/s can be estimated. The serial
architecture of [19] carries out a full sort on the input keys, rather
than the weak sort of our priority queue. However, a comparison
is still justified as it is used for the same purpose, i.e. a streaming
prioritized key release. With key size and number of keys
identical, this serial architecture requires many more gates and
is significantly slower. The large-scale parallel implementation of
[22] has to be adjusted for the smaller number of keys but higher
key size of our design to enable a comparison. After adjustment,
[22] would have ca. 50% more throughput rate and gate count 64
times less than stated in Table 1. However, the gate count is still a
factor of 42 higher than our design. The power consumption of
[22] in the adjusted version should be similar to our implementa-
tion. The parallel design of [23] achieves a significantly higher
throughput at a slightly lower clock frequency, but also at the cost
of increased complexity.

In general, parallel designs enable higher throughput at the
cost of a fragmented memory and separate, area-consuming
control stages at each heap level. In contrast, the design target
for the presented implementation was not maximum throughput,
but minimal area/power at the throughput required by the
application. As can be seen, this is best served by a parsimonious
serial implementation. Overall, the proposed priority queue
combines a competitive throughput with one of the lowest
complexities and the lowest power dissipation. It is both less
complex and faster than previous serial sort implementations
[19]. It is somewhat worse in terms of throughput compared to
serial/parallel [20] or tree-parallel [22] algorithms, but exhibits a
factor 20–40 less gate count.
3.2.2. Initialization

The communication between all components is established
with a hierarchical initialization order. It follows the system
structure from the FPGA via the DNC down to the HICANN. It is
master–slave based, this means the FPGA controls the initializa-
tion as a master and the DNC reacts as a slave. After successful
start up of the 16 GBit/s connection, the DNC starts the initializa-
tion of the HICANN interfaces, taking the master’s role of these
brackets give the approximate comparison values adjusted to the priority queue

Throughput #Cycles Keysize (Bit) #Keys

MHz 133(50) Mkeys/s 128 8 128

– 190 16 64

MHz 35.8(54) Mkeys/s – 12 4096

MHz 100 Mkeys/s 2 18 64

MHz 31 Mkeys/s 2–14 15 64
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connections. As both connections are based on the same system
concept, the initialization process is identical for both links.

The initialization algorithm for each data line is an adaptation
of the application note of Xilinx for Virtex-V FPGAs [24] to stay
compatible with the communication interface of the connected
FPGA. It runs entirely in the semi-custom part of the chip with the
system clock of 250 MHz for the HICANN connections and
125 MHz for the FPGA connection. The components control the
different required settings for the configurable delay of the data
(Section 3.3.2) and the word alignment mechanism of the deser-
ializer (Section 3.3.3). As the system clock is much slower than
the transmission clock, the algorithm needs to operate with the
parallelized data from the deserializer. By delaying the serial data
stream, the algorithm searches for two subsequent data edges.
Afterwards, the data delay is set such that the clock captures
directly in the middle between these two transitions. We use
shifting of the data instead of the clock signal due to power saving
issues, because the clock is an alternating signal that permanently
causes the delay cells to switch levels. The different steps of the
algorithm are depicted in Fig. 7.

Fig. 7(a) shows the transmitted signals coming from the LVDS
pads. Due to DDR transmission, the data Bits have a length of
500 ps at a clock frequency of 1 GHz. They are captured into a
serial shift register chain alternately on both edges of the clock. To
capture valid data, the clock-to-data phase needs to be 901 and
this delay needs to be established independently of temperature,
process corner, power supply distribution and transmission
frequency. For finding an optimal clock-to-data phase, we use
the fact that at the phase values 01 and 1801 a data transition
occurs, so that the 8 Bit parallel data vector changes its value.

The algorithm starts by continuously increasing the delay of
the data (Fig. 7(b)), while monitoring the output vector. When the
parallel vector changes, the start of the first transition is found
(Fig. 7(c)). To find the end of the transition region, the algorithm
adds more delay until the received vector stays constant over 128
system clock cycles (Fig. 7(d)). The delay setting at this point is
stored as first delay value. Afterwards, the algorithm increases the
delay until the data vector changes again, denoting the beginning
of the next transition (Fig. 7(e)). The corresponding delay value is
averaged with the value for the first transition, resulting in the
desired clock-to-data phase of 901 (Fig. 7(e)).

The most important requirement to get the best final position
is a monotonously increasing controllable delay. The smaller the
Fig. 7. Different phases of the data eye-search algorithm. Only the data is delayed.
single steps of the delay are, the better is the final relation
between clock and data near 901. The longest required combined
delay length is the period of the clock. When the algorithm starts
and the clock lies right behind a transition, it is required to delay
the data nearly half of a period to reach the first recordable
transition. At this point another half of the period is required to
capture the second data transition safely. So depending on the
transmission frequency, different maximum delay lengths are
required, implemented with different numbers of small equal-
step delay elements. In our implementation, there are 32 delay
elements available for a transmission with 2 GBit/s mode at 1 GHz
and 64 delay elements for 1 GBit/s mode at 500 MHz.

Having found an optimum clock-to-data alignment, the Byte
words of sender and receiver need to be aligned at the receiving
side. The correspondingly required Bitwise shifting of the data is
provided in the deserializer (see Section 3.3.3). The corresponding
alignment algorithm shifts the selected tap until the word align-
ment is established. The selected initialization pattern for this
detection is 0x2C which allows only one valid alignment config-
uration. Fig. 8 shows the structure of the shifted data stream. The
deserializer realizes 15 alignment positions, realized via eight flip
flop registers on the positive edge and seven registers on negative
edge. This offers eight different possibilities to capture the
initialization pattern, enough for a Byte-wise alignment.

The initialization of the HICANN channel is finished at this
point and the channel can start normal operation. In contrast, the
FPGA channel consists of 16 of these LVDS connections, so here all
single channels need to be initialized independently and after-
wards combined to one large communication channel with a
parallel data width of 128 Bit.

The figured algorithm differs significantly from solutions in
literature [25–27] by avoiding the use of a special DLL/PLL with
multiple clock phases to capture the different data eye sections or
clock-data recovery, which reclaims the clock frequency and clock
phase out of the data stream. Furthermore, it is completely
synthesizable. It runs once automatically in the initialization
phase, thus optimizing power consumption. Our realization does
not realign the clock-data-phase while communication is estab-
lished itself, because it is not possible to measure the complete
data eye again, without influencing the current transfers.
However, a completely new realignment of the edges can option-
ally be started if a certain level of communication errors is
detected by the CRC error check.

The proposed algorithm offers a large flexibility for different
environments. Primarily, it compensates different LVDS signal
runtimes, as the system PCB (see Fig. 1) has limitations in trace
length compensations due to sparse available routing space. The
PCB needs to supply the whole wafer with different power
domains and signals, but the FPGA–AER boards are located only
at the corners of the wafer. This results in varying distances
between the communication partners and also in unequal lengths
of different LVDS traces. Furthermore, the DNC is used for
characterization of single HICANN prototype chips in other
measurement setups. Thus, we are also able to compensate trace
offset of data word in serial stream

Fig. 8. Word alignment in serialized data stream.



Fig. 9. PLL block level schematic.

Fig. 10. VCO schematic.
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Fig. 11. VCO tuning characteristics at room temperature and 1.8 V supply voltage,

measurement and post-layout corner simulation results (TT: both NMOS and

PMOS transistors typical; SS: PMOS slow, NMOS slow; FF: both fast; FNSP: NMOS

fast, PMOS slow; SNFP: NMOS slow, PMOS fast).

Table 2
Performance comparison of PLL clock generators.

Reference Technology Area (lm2) fout (GHz)

[29] 0:18 mm 240,000 (2 PLLs) 0.125–1.250

[30] 0:15 mm 67,600 0.25–2.0

[31] 0:18 mm 160,000 0.1–0.5

[32] 0:18 mm 150,000 0.5–2.5

This design 0:18 mm 23,900 1.0, 0.5, 0.25
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properties of commercial FPGA development boards which inter-
face the various prototype measurement setups.
3.3. Custom circuit components

3.3.1. PLL clock generator

The PLL provides a 1 GHz clock for the serial high-speed LVDS
I/O, a 500 MHz clock for the FPGA interface and a 250 MHz core
logic clock from a 50 MHz system reference clock. A standard
integer-N charge pump PLL architecture [28] is used here. Fig. 9
shows the block level schematic of the PLL. The output signal of a
voltage controlled oscillator (VCO) is divided using a frequency
divider and compared with a reference signal using a phase-
frequency-detector (PFD). If there is a phase or frequency devia-
tion detected, the charge pump (CP) adds or removes charge from
the loop filter capacitors and therefore adjusts the VCO oscillation
frequency. If the PLL is locked, the output frequency is N times the
reference frequency. Here it is fVCO ¼ 2 GHz, fref ¼ 50 MHz and
N¼20. The outputs of the first divide-by-2 stages are directly
used as clock signals for the high-speed LVDS I/Os which operate
at 1 GHz or 500 MHz. This ensures a good clock duty cycle close to
50% which is mandatory for the targeted source-synchronous
data transmission with DDR. The CMOS frequency divider pro-
vides the 250 MHz core clock.

The VCO is a two-stage differential ring oscillator with positive
feedback within the cells as presented in [33]. Fig. 10 shows its
schematic. Each delay stage with a cross-coupled PMOS pair
provides 901 phase shift. The signal inversion by crossing the
differential wires in the feedback path provides additional 1801
phase shift, leading to 3601 for fulfillment of the oscillation
criterion. It is sized for operation at 2 GHz oscillation frequency
for all relevant process, voltage and temperature corners. Fig. 11
shows the simulated and measured VCO tuning characteristics.
The frequency divider is built up using fast current-mode-logic
(CML) cells for the first two divide-by-2 stages and static CMOS
logic for the slower divide-by-2 and divide-by-5 stages in Fig. 9.
The PFD is a standard implementation [28] using static CMOS
gates. It determines if the rising edge of the reference clock signal
or the divider output is leading and generates a corresponding up/
down control signal for the charge pump. The charge pump is
designed for good matching between pump-up and pump-down
currents and low parasitic charge injection into the loop filter to
reduce ripple on the VCO control voltage and therefore jitter in
the PLL output signals. Its nominal current that is steered to or
from the loop filter node is derived from the reference current
bias circuitry. Thus, the charge pump current is adjustable by the
current bank for compensation of process variations which might
affect the closed loop PLL dynamics. The low-pass filter consists of
a second order passive loop filter that is completely integrated on
chip, i.e. no external components like resistors or capacitors are
used which reduces pin count and the number of discrete devices
on the PCB. Therefore the capacitor values are limited by the
available chip size of the PLL. A total capacitance of 50 pF is
implemented on chip using MOS capacitances. The capacitance
P (mW) Peak-peak jitter (ps) RMS jitter (ps)

90 – 7.2 (at 1.25 GHz)

7.6 (at 2 GHz) – 4.3 (at 1.2 GHz)

24.3 32 (at 0.27 GHz) 4 (at 0.27 GHz)

25 – 3.29

5.0 55.0 (at 0.5 GHz) 7.7 (at 0.5 GHz)
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ratio C1=C2 of Fig. 9 is � 10. The resistor R� 2 kO is sized to
achieve a phase margin of at least 601 of the closed PLL control
loop. An analytical, linear small signal model (see [34]) is used for
this design purpose. A first order passive spur filter is added to
reduce VCO control voltage ripple caused by the switching of the
charge pump which additionally reduces jitter of the PLL output
signal. Its bandwidth is much higher than the PLL closed loop
bandwidth and therefore it is not degrading the PLL dynamics in
terms of phase margin and closed loop bandwidth. Furthermore, a
time domain noise and jitter model has been developed [35]
which is used to predict timing jitter from simulated phase noise
characteristics of the PLL components to estimate and improve
the overall jitter performance of the frequency synthesizer early
in the design phase.
Fig. 12. Layout of PLL clock generator.

Fig. 13. Measured 500 MHz PLL clock signal at LVDS TX pad.

Fig. 14. LVDS transmitter overview with diff
Fig. 13 shows the measured 500 MHz output clock signal at
the LVDS TX pad output. Table 2 summarizes measured perfor-
mances of the PLL clock generator and compares it to previously
published ring-oscillator based PLLs in similar CMOS technology
nodes and output frequency ranges. Our design exhibits low
power consumption and small chip area at some cost of jitter
performance. This is achieved by reducing the power consump-
tion of the VCO as main contributor to total power at cost of jitter
due to VCO noise. Incorporating minimal loop filter capacitances
leads to significant area reduction as these capacitances are the
main contributors to chip area. This leads to slightly increased
jitter due to reference clock noise and feedthrough. Thus, this
design optimizes power and area for the given jitter design target,
i.e. sufficient jitter performance for the source-synchronous serial
data transmission scheme. The proposed clock generator requires
only a small chip area and fits in the I/O padframe of the DNC.
Fig. 12 shows the layout of the PLL.
3.3.2. LVDS transceiver

LVDS is a standardized high-speed link [36]. In the implemen-
tation discussed here, two wires are used for data transmission
which are differentially current driven based on the approach
presented in [37]. The logic level of transmitted data is defined by
the direction of the current flow through the wires. The current
direction is read out via the voltage drop over the transmission
line termination resistor.

LVDS transmitter. The block level diagram of the LVDS transmitter
is shown in Fig. 14. The transmitter first shifts the voltage level of
the input signal from 1.8 V core-domain to 3.3 V I/O-domain which
is necessary to realize the I/O voltage levels of the LVDS standard
[36]. Following the level shifter a buffer amplifies the signal strength
to be suitable to drive the current bridge. Thereafter a switchable
current bridge (Fig. 15) is employed to determine the current flow
direction. It feeds a current up to 7 mA through both ends of the
transmission line. Either M1 and M4 or M2 and M3 are conducting
erent voltage/signal domains indicated.

Fig. 15. Transmitter current bridge.



Fig. 16. LVDS receiver overview with different voltage/signal domains indicated.

Fig. 17. LVDS receiver amplifier.

Fig. 18. Eye pattern diagram of the LVDS transmitter at 2 GBit/s data rate,

measured after 10 cm differential transmission line on FR4 PCB.

Table 3
LVDS TX and RX design comparison.

Reference Technology
(lm)

Data rate
(GBit/s)

Power TX/RX
(mW)

Area (lm2)

[38] 0.18 1.8 19/9 87,000

[39] 0.18 2.5 4.8–9.3/– 67,000

[40] 0.18 1.6 35/6 420,000

[37] 0.18 1.2 23/– 22,000

This design 0.18 2.0 24/4 (þ28

delay line)

42,000

(TX and RX)

Fig. 19. Layouts of TX and RX cells.
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at a time. The common mode output voltage is compared to a
reference by the differential pairs M5&M6 and M7&M8, which
controls the PMOS current source M11.

An integrated termination resistor is employed to match the
transmission line impedance of 100 O, avoiding signal reflections
at the end of the transmission line.

LVDS receiver. The block level diagram of the LVDS receiver is
shown in Fig. 16. It consists of the transmission line termination
resistor, the input amplifier, a variable-delay line and a compara-
tor. The voltage drop over the transmission line termination
resistor, caused by the current flow through the transmission
line, is employed to feed the receiver amplifier.

The receiver amplifier is shown in Fig. 17. To allow wide input
common mode range, a folded topology is used here. Due to an
I/O-voltage domain of 3.3 V and an input common mode voltage
range of 2.5 V [36] no rail-to-rail input is needed because low
threshold voltage input transistor devices (M1, M2) are used. This
keeps the input stage simple. The differential PMOS pair (M1, M2)
converts the input voltage difference to a current difference
which is mirrored (M3 to M6) to a resistor pair (R1, R2) to be
converted to a voltage difference again. Hereby also the supply
voltage domain crossing from 3.3 V I/O supply to 1.8 V core
supply is realized. Two differential amplifier stages amplify the
voltage signal and limit its swing to Ibias � R. This allows to
generate an output signal with well defined swing for a wide
range of input signal amplitudes, which can be used directly as
input for the delay line.

Each LVDS TX or RX cell including its termination resistors and
ESD protection requires a chip area of 88:2 mm� 235:6 mm, which
fits into the pad ring of the DNC. The layout of the cells is shown
in Fig. 19. They consume a typical power of 24 mW (TX) and
32 mW (RX) (thereof 28 mW integrated delay line). Data rates up
to 2 GBit/s per channel can be transmitted via the transmission
line over the distance necessary to connect the waferscale system.
Fig. 18 shows an eye pattern diagram measured after 10 cm FR4
PCB transmission line. Table 3 compares previously published
LVDS designs with the proposed one. The power consumption of
the presented design is comparable to current literature, while
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Fig. 23. Delay line component schematics. (a) Delay cell. (b) Multiplexer.

S. Scholze et al. / INTEGRATION, the VLSI journal 45 (2012) 61–7570
the achieved data rate is among the highest. The presented TX and
RX cells require the smallest chip area when taking into account
that for [37], only the size of the TX cell is shown.

Delay line. The received LVDS signals have to be delayed by td

to allow alignment of clock and data signals using the eye-search
algorithm explained in Section 3.2.2. Therefore the delay range
must be td,max2td,min41 ns at 2 GBit/s data rate and td,max2

td,min42 ns at 1 GBit/s data rate respectively. The absolute delay
value td is not critical because the alignment relies on the relative
delay between the clock and data signals td,clk2td,data. The delay
step Dtd must be significantly smaller than 500 ps to allow a fine
resolution of the eye-search algorithm at 2 GBit/s data rate.
Finally, the delay line must not degrade the signal quality by
addition of timing jitter due to inter symbol interference (ISI).
This would reduce the data eye opening and might cause
malfunction in the deserializer.

There exist different approaches for controlled delay lines.
First, the delays of single logic stages can be modified by either
adjusting their drive strength [41] or their load capacitance [42].
This approach is often used in applications where a fine delay
resolution is required for accurate frequency or phase generation
in digitally controlled PLLs or DLLs. The drawback is the limited
tuning range. In a second approach cells with fixed delays are
used which are connected in a chain whose length can be
configured digitally [43]. Although the delay step cannot
be smaller than the delay of one element, the tuning range can
be extended arbitrarily by simply adding more delay cells to the
signal chain. This approach is well suited for this application
where a wide tuning range is required for the eye-search algo-
rithm. Fig. 20 shows the block level schematic of the delay line.
The signal enters the line at its input and based on the binary
multiplexer settings the output after n cells is selected. The delay
step corresponds to the delay of one element.

Fig. 21 shows a first order RC model of a delay element, which
is valid for static CMOS cells [44] as well as for current-mode-
logic (CML) implementations [45], where R models the cell
driving resistance and C the load capacitance. If the delay cell is
settled (e.g. after a long time of static input) and a pulse with
width T is applied at the input, the corresponding output pulse
exhibits a delay td and a reduced pulse width of k � T (0rkr1).
Fig. 20. Delay line schematic with 64 delay cells and 6 binary multiplexer stages.

Fig. 21. Delay cell first order RC model and waveform.
There exists a relationship between td and the pulse width
reduction factor k which can be derived by solving the first order
differential equation of the RC network in Fig. 21 analytically.

k
td

T

� �
¼ 1�2 �

td

T
� ln2�ln 2�2 � e�Tln2=2td

� �h i
ð1Þ

Fig. 22 shows this relation. At td=T ¼ 0:1 we obtain
kð0:1Þ ¼ 0:9936. Based on this result and the required eye-search
resolution, the delay of one element is targeted to be smaller than
0:1 � 500 ps, where this and the constraints mentioned above
must be fulfilled for all relevant process, voltage and temperature
(PVT) corners. Thus, for the 2 GBit/s operation 32 delay cells are
used for a delay range larger than 1 ns as shown in Fig. 20,
resulting in a worst-case pulse width reduction of kworst,2GBit=s4
kð0:1Þ32

¼ 0:81. For 1 GBit/s data rate 64 cells are used and we
obtain kworst,1GBit=s4kð0:05Þ64

¼ 0:99.
The delay cell timing constraints cannot be realized using

static CMOS logic cells in the given 0:18 mm CMOS technology,
because the sensitivity of a CMOS delay with respect to PVT
corners is too high. Therefore CML cells are used here. Fig. 23
shows the schematics of the delay element and the multiplexer.
In the delay cell shown in Fig. 23(a) an NMOS transistor Mt acts as
current source with Ibias. This current is steered to one of the
PMOS loads M2a/b by the differential NMOS pair M1a/b based on
its input voltage difference. The PMOS load devices are operated
in linear region with a drain source resistance of RM2 and generate
the output voltage difference. The output high voltage is VDD and
the low voltage is

VDD�Ibias � RM2 ¼ VDD�Vswing ð2Þ

The multiplexer shown in Fig. 23(b) consists of two basic CML
stages which operate on a common differential output node and
can be activated by the select signals S0 and S1 respectively.
A CML to full swing CMOS level converter is used at the output of
the multiplexer to interface with the deserializer logic.

Fig. 24 shows the circuit that is used to generate the bias voltages
for the CML cells. The voltage Vbiasn is generated using a diode
connected NMOS device Md with a reference current Iref . Thus this
device forms simple current mirrors with the CML devices Mt.



Fig. 24. Active bias circuit for current-mode-logic delay and multiplexer cells.
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The voltage Vbiasp is generated using an active replica biasing circuit
similar to the technique presented in [46,47]. A half cell replica of
the CML gate is biased in its logic on state and the output low
voltage swing VDD�Vswing is sensed by an operational transconduc-
tance amplifier (OTA) and compared to a voltage reference Vref

which is derived from the supply voltage by a resistive voltage
divider. In this closed loop Vbiasp is adjusted by the OTA such that

Vswing ¼ VDD�Vref ð3Þ

The effective resistance RM2 reads

RM2 ¼
Vswing

Ibias
¼ const ð4Þ

and therefore is defined only by the reference values and does not
depend on process and temperature variations. Thus the output
time constant is

t¼ RM2 � Cload ð5Þ

which determines the cell delay (see Fig. 21) which is a constant
delay over process and temperature variations in a first order
approach. This is mandatory to keep the clock-to-data alignment
with respect to temperature variations during circuit operation
without the need for re-calibration.

Fig. 25 shows the measured delay line characteristics. The
delay time is monotonic with respect to its control signal. The
average step size is � 60 ps and there are at least eight steps
within a 500 ps delay time window. Therefore the requirements
for 2 GBit/s data eye-search operation are fulfilled. The total
power consumption of the delay line is 28 mW.
3.3.3. Serializer/deserializer

Serializer/deserializer circuits are used to generate serial GBit
data and clock stream from a parallel data stream and vice versa.
The blocks also translate between the system clock and the
transmission clock domain.

Both circuits contain interface blocks which operate in the
system clock domain. They are designed using Verilog HDL, and
synthesized/placed using standard place and route tools. In
contrast, the components in the transmission clock domain
operate up to 2 GHz nominal and are designed using specialized
high-speed cells together with manual placement and routing.
The main components are flip-flops consisting of dynamic latch
cells, which are used in shift and control registers.

Serializer. The main components of the serializer are the digital
interface block, two banks of shift registers and a control engine
as shown in Fig. 26.

The interface block buffers incoming parallel data words
(8 Bit), and enables the control engine. After synchronizing the
enable signal, the control engine starts the transmission by
copying the buffered data from the interface block to the serial-
ization registers. The two shift register banks use four transmis-
sion clock cycles to transmit the eight data Bit, generating from
those Bits the DDR data signal and the associated clock signal. As
the shift register banks operate on contrary clock phases, also the
associated control signals are generated for each phase separately.
In contrast to [48], this ensures setup and hold time of a full
clock cycle.

In order to allow arbitrary ratios of digital and transmission
clock, the serializer control engine utilizes a dedicated 2 Bit
counter. The counter is realized as Gray code counter with signals
Y0, Y1, and also generates a LR (LoadRegister) signal which
controls the data initialization of the serialization registers using
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the following Boolean functions:

Y0¼ Y1 � Y0þY1 � E¼ ðY1 � Y0Þ � ðY1 � EÞ ð6Þ

Y1¼ Y0 ð7Þ

LR¼ Y0þY1¼ Y0 � Y1 ð8Þ

To maintain functionality at all process, temperature and
supply corners, further logic modification is necessary. The use
of logic NAND functions is in general preferable over NOR, as the
latter requires comparably large PMOS devices to guarantee the
required output resistance, which on the other hand is imprac-
tical regarding the capacitive load on the input side. In the target
application, the nominal delay of a single Boolean element is
almost half of the available clock cycle. Thus, it is not possible to
realize the equation Y0 in the naive way (Fig. 27(a)). The applied
solution is to merge one logical NAND function with the dynamic
latch (Fig. 27(b)).

Additionally, all internal signals requiring fanout are buffered
as shown in Fig. 27(b), since the dynamic latch cells are sensitive
to load.

Parallel to the LR output signal of the counter, a LR signal is
generated separately for the contrary clock phase by using the
inner signals of the counter flip-flops. The timing diagram with
the representative signals is shown in Fig. 28. Here also the
functionality of the counter is depicted, which allows an arbitrary
start and ensures the complete execution of the transmission.

To drive the eight serialization registers, additional four fanout
latches (two per phase) are implemented to reduce the signal
load. This also relaxes the timing constraint at the serialization
flip-flops by adding an additional clock cycle to their hold time.

Deserializer. The function of the deserializer is to receive the
serialized data and transmission clock signals from the LVDS pads
and to extract data words of 8 Bit from the serial Bit stream. To be
able to select the correct word boundary, 15 Bit of the stream are
sampled. This allows the data word selection in the slower system
clock domain, significantly reducing custom logic in the transmis-
sion clock domain. A block schematic is shown in Fig. 29.

The deserializer receives differential data and transmission
clock signals from the LVDS pads. The signals are buffered by
input amplifiers and the transmission clock is further buffered
102.50u

u

gisters Full Custom Design

alizer/deserializer.
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with six clock drivers. Four of these clocks are used to operate the
15 data shift registers, one is divided by 4 to be used as system
clock and the last is used to synchronize the system clock back to
the transmission clock domain.

The data signal is captured by two shift register banks
consisting of 15 dynamic flip-flops, of which eight operate on
the rising and seven on the falling edge of the transmission clock,
similar to [49]. At the rising edge of the system clock (at every
4 transmission clock cycles), the data in the shift registers is
transferred in parallel to 15 shadow registers, from which the
digital control then selects the transferred data word. The correct
word boundary is determined from the initialization pattern at
the startup phase of the communication link (Fig. 8). In Fig. 30 the
layout view is presented, showing the mixture of full-custom and
semi-custom design elements.
Table 4
Characteristics of the presented neuromorphic communication

chip (DNC).

Technology UMC 0:18 mm

1P6 M

Chip area 5n10 mm2

Clock frequency (system) 250 MHz

Clock frequency (LVDS) 1 GHz/500 MHz

Number of birectional LVDS channels plus

clock channels

33

Overall number of gates 4,158,162

Power consumption 6.6 W

Fig. 31. Chip photograph of the digital network chip, realized in 5 mm �10 mm

chip area.

Table 5
AER (i.e. spike transmission) performance figures of the presented DNC and comparable

standardized interfaces such as USB has been implemented, but no error detection ex

derived from the USB-AER board.

Ref. Interfaces: event rate, pulse event size and type Su

in

Host/PC Inter-board Neuro. chip

DNC 625 kevent/sa 500 Mevent/s, 24 Bit, LVDS

serial link

364 Mevent/s, 24 Bit,

LVDS serial link

86

[5] 6 Mevent/s,

16 Bit, USB2.0

25 Mevent/s, 16 Bit, parallel 25 Mevent/s, 16 Bit,

parallel

56

[3] Not implemented 41.7 Mevent/s, 20 Bit,

MultiGBit transceiver

41.7 Mevent/s, 16 Bit,

parallel

83

[4] 5 Mevent/s,

64 Bit, USB2.0

78 Mevent/s, 32 Bit, serial

ATA

30 Mevent/s, 16 Bit,

parallel

11

a The entry for host communication for the DNC denotes the performance achie

bandwidth is equal to the inter-board bandwidth, i.e. the DNC is connected to a PC via
4. System results

Table 4 sums up the characteristics of the DNC. Fig. 31 shows a
chip photograph with the main building blocks as detailed in the
previous sections.

Table 5 gives a comparison with other AER system solutions.
All of them are based on FPGAs for implementing their commu-
nication protocols and neuromorphic functionality. Their inter-
faces are either parallel asynchronous AER [5] or a variety of
adapted commercial standards. In terms of speed, the systems of
[3,4] come closest to our implementation, but are still (even for
the planned speed-up of [3]) a factor of 4 slower. The presented
implementation is currently the only one offering transmission of
the complete configuration data over the same interface and at
the full bandwidth as the pulse packets. It is also the only system
where transmission integrity over all interfaces is ensured. This is
especially important with respect to, e.g. pulse-based learning,
which could be negatively influenced by erroneous pulse packets.
5. Discussion

A digital network system-on-chip (DNC) as part of a neuro-
morphic waferscale system [6] has been presented. It implements
a communication infrastructure for packet-based address event
representation (AER) transmission of neuron events (i.e. pulses).
The DNC employs state-of-the-art full-custom circuitry for clock
generation, high-speed data serialization and deserialization and
off-chip data transmission using a low-voltage-differential-sig-
nalling (LVDS) scheme. Combined with digitally implemented
algorithms for clock-to-data eye timing alignment, up to 2 GBit/s
data rates per differential transmission line have been achieved,
leading to a cumulative throughput of 32 GBit/s.

The DNC includes a sorting algorithm which can be employed
to achieve configurable event delays, as required for various types
of dynamical neuromorphic processing [16,17]. The measured
performance of this priority queue algorithm achieves a compe-
titive compromise between the different solutions in literature,
combining low latency and high throughput required for the
pulse routing application with the power and size reduction
needed for a high integration density of the complete system
(see Table 1). The clock generator supplying the DNC exhibits very
low power consumption and requires significantly less chip area
compared to similar solutions from literature (see Table 2). The
jitter performance is somewhat worse than previously reported,
but entirely sufficient for the transmission requirements. The
power consumption of the presented LVDS transmitter and
implementations. ‘Partially’ in the 6th column means that error detection as part of

ists for the customized (e.g. serial) communication links. The entries for [5] are

m of all

terfaces

Event error

detection

Config.

over AER

Topol.

remap.

Additional functionality

5 Mevent/s Yes Yes No Event sorting, configurable

delays

Mevent/s Partially ? Yes Video to/from event

transform

Mevent/s No Planned No Speed scaling possible to ca.

200 Mevent/s

3 Mevent/s partially Partially Yes Asynchronous flow control

vable via a backup JTAG configuration interface. In standard operation, the host

an FPGA implementing the inter-board interface [8].
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receiver cells is comparable to current literature, while the
achieved data rate is among the highest (see Table 3). Also, the
chip area required compares favorably to other similar LVDS
implementations.

With respect to the overall waferscale neuromorphic system,
the DNC-based communication infrastructure provides pulse
stimulation and monitoring as well as full control and configura-
tion of all the circuits on the wafer via the same links. This is in
contrast to most classical AER implementations that are restricted
to pulse transmission [50] or only offer partial configuration [4].
This feature is crucial since the DNC constitutes the sole interface
between the neuromorphic wafer and the outside. Compared to
other recent solutions, the full bandwidth of high-speed serial
communications covers the entire chain from host PC via FPGA,
DNCs down to the neuromorphic chips (HICANNs), avoiding a
parallel AER bottleneck [4,3]. As Table 5 shows, the DNC SoC
achieves a speed increase by an order of magnitude compared to
the state-of-the-art.
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