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Abstract— The computational function of neural networks is
thought to depend primarily on the learning/plasticity function
carried out at the synapse. Neuromorphic circuit realizations have
taken this into account by implementing a variety of synaptical
processing functions, with most recent synapse circuits replicating
some form of Spike Time Dependent Plasticity (STDP). However,
STDP is being challenged by older rate-dependent learning rules
as well as by biological experiments exhibiting more complex
timing rules (e.g. spike triplets) as well as simultaneous rate- and
timing dependent plasticity. In this paper, we present a circuit
realization of a plasticity rule based on the postsynaptic neuron
potential as well as the transmission profile of the presynaptic
spike [1]. To the best of our knowledge, this is the first circuit
realization of synaptical behaviour which moves significantly
beyond STDP, replicating the triplet experiments of Froemke and
Dan [2], the combined timing and rate experiments of Sjoestroem
et al. [3], as well as conventional BCM behaviour [4].

I. INTRODUCTION

Based on experimental results, various mathematical expres-
sions of the synaptical learning function have been proposed
in literature, such as the Bienenstock-Cooper-Munroe (BCM)
rule [4], STDP [5], or more involved spike timing [2] and
membrane voltage [3] dependent rules. Several of those have
been implemented in neuromorphic hardware to replicate their
learning functions and/or computational properties [6], [7],
[8], [9]. In this paper, the circuit implementation of a novel
learning rule [1] based on local synaptic state variables in a
UMC 130nm CMOS technology is presented. This rule can
reproduce a variety of recent experimental results and is simple
to implement, since it derives most of its dynamics from the
neuron and the reconstruction of the incoming pulse, so the
synapse complexity itself can be kept to a minimum. In Sec.
II, the learning rule is introduced, with circuit realizations
of the waveforms necessary for its implementation given in
Sec. III-A. The synaptical circuit realizing the computation
of the learning function is described in Sec. III-B. Sec. IV
details results obtained when simulating the complete circuit
realization using various major experimental protocols.

II. THE BCM PLASTICITY RULE

Our circuit implementation is based on a BCM plasticity
rule [1] that combines the well-established BCM formulation
[4] with spike-based plasticity mechanisms. Thereby, presy-
naptic spikes are detected by a conductance variable g(t),
which is representative of the postsynaptic current (PSC)
evoked by a presynaptic spike arriving at the synapse. Postsy-
naptic spikes are read out via the neuron’s membrane potential
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Fig. 1. (a) progress of the weight induced by a sample spike train (circuit
time); (b) weight change produced by the circuit for spike pairings, simulated
at typical and corner cases (biological time).

u(t). These variables are combined in a BCM-like fashion to
determine the synaptic weight m(t) [1]:

dm(t)
dt

= (u(t)−Θu) · g(t) , (1)

with a voltage threshold parameter Θu. Normally, this thresh-
old is equal to the membrane’s resting potential, but it may
be varied to change the ratio of weight increase (potentiation)
to decrease (depression), thus corresponding to the frequency
threshold in the original BCM rule.

As can be seen from Eq. 1, the synaptic weight is always
increased if presynaptic activity coincides with a membrane
voltage above the threshold Θu. Conversely, the weight is
decreased if the membrane voltage is below Θu at presynaptic
activity (cf. Fig. 1a). In particular, a postsynaptic spike, due to
its high positive amplitude, leads to a steep weight increase,
whereas the reset of the membrane below resting potential
after a postsynaptic spike (hyperpolarization) results in elon-
gated weight decrease. However, these weight changes are
subject to presynaptic activity, reflected in g(t). In the model,
this variable is set to a fixed value at each presynaptic spike
and decays exponentially. Likewise, the membrane potential
is set to a fixed value below rest after each postsynaptic spike
and decays exponentially afterwards. The interaction of all
these mechanisms is shown in Fig. 1a, extracted from our
circuit implementation, with u(t) corresponding to VMem,
g(t) to IPSC , and m(t) to Vm. Note that this implementation
operates at an acceleration of 104 compared to biological time.
However, for easier comparison with experimental results in
the rest of this paper, we convert the time base used in our
circuit simulations back to biological time (cf. Fig. 1b).

The above rule exhibits the typical STDP behaviour for
spike pairings, as is analytically shown in [1]: If a presynaptic



spike occurs, g(t) is high, so that a postsynaptic spike occuring
shortly afterwards will strongly increase the synaptic weight,
before the membrane hyperpolarization leads to a slight weight
decrease. If the order of the spikes is reversed, no potentiation
occurs because g(t) is zero at the postsynaptic spike, so
that the weight is only decreased. This leads to the temporal
asymmetry seen in classical STDP experiments [5]. Fig. 1b
shows the corresponding time window of our circuit. Note that
the areas under the potentiation and depression part of the time
window are roughly equal, which is a typical property of STDP
[5]. For our rule, this results in equal area under the pulse and
the hyperpolarization curve, meaning that the pulse amplitude
needs to be much higher than that of the hyperpolarization,
which is biologically realistic [1].

III. CIRCUITS FOR THE BCM PLASTICITY RULE

The waveforms necessary for the plasticity rule of [1] are
generated in the presynaptic as well as the postsynaptic neu-
ron. This reduces the synapse itself to the simple multiplication
of Eq. 1, which is very advantageous in VLSI implemen-
tations. Especially for conventional matrix implementations
[9], [7], where the number of synapses scales quadratically
with the number of neurons, transferring functionality from
the synapse to the neuron and PSC reconstruction situated at
the edge of the matrix [9] significantly reduces the overall
complexity. Also, as long as the multiplication is carried out
with sufficient matching between synapses, all other error
sources (e.g. the STDP time windows) are contained in the
waveform generation circuits. Since those scale linearily with
the number of neurons, it is computationally feasible to adjust
them on a much finer level than the synapses.

A. Neuron and PSC generation

The neuron circuit proposed for validating the learning rule
from above is a leaky integrate-and-fire neuron, which is able
to reproduce the waveform of VMem in Fig. 1a. The circuit
diagram is shown in Fig. 2a. Features of this neuron are a
tunable resting potential unequal to zero, adjustable membrane
time constant, threshold voltage and duration of an action
potential. An adaptation mechanism which modulates the pulse
duration against the time between current and previous spike
[1] is also implemented.

1) operation: All currents flowing into the neuron are
integrated on capacitance Cmem and increase the neuron’s
membrane potential Vmem. When reaching a certain threshold
Vthr an action potential is generated. For the duration of a
spike, digital signals SPK and SPK are set. After this the
membrane potential is reset to the voltage Vreset below resting
potential and runs through a hyperpolarization curve.

2) leakage: The leakage module in Fig. 2b basically con-
sists of the OTA structure presented in [10]. A negative
feedback lets the circuit act like a resistor with resistance
Rleak, which can be adjusted by changing the bias current
Ileak. The resting potential is controlled by Vrest at the
noninverting input. If no external currents are flowing, the
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Fig. 2. (a) top level of neuron (b) leakage circuit

Fig. 3. Spike generation and attenuation circuit: The LEAKAGE circuit
generates an exponential decay of VCatt towards Vbias. The DELAY circuit
delays and inverts signal SPK to SPKdelayed.

membrane potential discharges exponentially with time con-
stant τmem = Rleak ·Cmem towards Vrest. By using a balanced
OTA, the symmetry is improved and the offset is reduced [11].
This design is successfully applied in [6]. Cascode current
mirrors (M5 - M16) fully reduce the offset. To allow larger
time constants the current mirrors divide the output current
by 15. Dynamic range and linearity are improved by using an
active source degeneration topology (M3/4) [11].

3) spike generation and attenuation: An attenuation of
postsynaptic spikes was introduced in [1], which reduces the
pulse area via an exponential dependence on the interval
between the last and the current spike [2]. If an action potential
is represented by a rectangle, the pulse area can be varied
by changing height or width. However, to exploit a maximal
range for sub-threshold activity, Vthr is very high. Since the
plasticity rule is based on a single state variable representing
both the neurons’ subthreshold behaviour as well as the output
pulse, the height of a pulse would have to be in the limited
range between Vthr and V DD. Thus, it is more reasonable to
change the pulse area by adjusting the duration of the pulse.
Core of the spike generation and adaptation circuitry is the
capacitance Catt, which defines via an exponential decay of
VCatt the pulse duration adaptation. In steady state SPK is
high, SPKdelayed is low and Catt is charged up to Vbias. In
this case RESET is low. If the membrane potential increases
and reaches the threshold voltage Vthr, signal SPK becomes
low and stops all currents flowing out of Catt. Now the voltage
across Catt increases linearly by charging with a constant
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Fig. 4. (a) schematic time response diagram of VCatt and SPK (b) pulse
duration of the current spike as function of the interspike interval

current Ispktime. With reaching the threshold voltage Vs of the
following inverter (M26, M27), signal RESET becomes high,
stops all currents flowing into Catt and resets the membrane.
The time to charge Catt determines the spike duration tspk,n:

tspk,n = Catt
Vs − VCatt(t

post
n )

Ispktime
(2)

After SPK changes back to high, another leakage circuit
similar to Fig. 2b lets VCatt decay back exponentially towards
Vbias with a controllable time constant τrefr. If a second
spike occurs shortly after the first one, the pulse duration is
shortened since the time to charge Catt is shorter (see Fig.
4a). This adaptation mechanism is adjustable via the current
Iαatt which discharges Catt to V0 after a pulse for a fixed time
period determined by the time difference between SPK and
SPKdelayed. Since this time is short compared to τrefr, V0

can be used as new starting value for the exponential decay:

VCatt(t) = Vbias + (V0 − Vbias)e
− t−t

post
n−1

τrefr (3)

Inserting (3) in (2) results in an attenuation of tspk similar
to [1] (see Fig. 4b). To keep the attenuation from producing
an insufficient pulse width for subsequent stages, the RESET
signal is additionally gated by the state of the digital pulse
registration following the neuron.

4) PSC generation: The exponentially decaying PSC cur-
rent required by the learning rule is realized by employing
another instance of the leakage circuit of Fig. 2b in a pulsed
configuration. With each incoming (presynaptic) spike, its
capacitance is set to a defined value below its resting potential,
and the exponentially decreasing current generated by the
leakage circuit charges the capacitance back to its resting
potential. This is mirrored to the synapse circuit as PSC
current. The basic PSC waveform generated by this circuit
(Fig. 1a, upper curve) is quite similar to other PSC time course
reconstructions in literature [9]. PSC and neuron will each
occupy about 1400µm2 in the chosen UMC 130nm process.

B. Synapse

The circuit shown in Fig. 5 approximates the multiplication
of the difference between membrane potential and voltage
threshold Θu with the PSC current as shown in Eq. 1. It
is similar in realization to the learning rule of [12], with a
current difference computation carried out in the differential
pair MN5/6, while the multiplication is based on the pro-
portionality of this current difference to the tail current. The
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Fig. 5. Circuit carrying out the difference computation and multiplication
of Eq. 1 based on the waveforms of Fig. 1a. Waveforms are generated by the
circuits described in Sec. III-A

tail current of the differential pair is accordingly provided as
the exponentially decaying PSC current via MN4. As in the
neuron, source degeneration [11] is used in the form of MP1/2
to extend the linear range of the differential pair and thus
the quality of the VMem −Θu computation. Since the neuron
circuit has a membrane resting potential at approximately half
the supply voltage, the term Θu of Eq. 1 has to be offset by this
resting potential, arriving at (Vrest + Θu) for the gate voltage
of MN6. The current in both differential paths is mirrored
out via MP3/4, while MN7/8 and MP5/6 compute the current
difference which is used to charge the weight capacitance Cm

to arrive at the weight-proportional voltage Vm. Since this
constitutes a volatile weight storage, it is planned to extend
this linearily by a secondary digital weight storage similar to
[9], [7], which is incremented/decremented when the weight
value at the capacitance is driven to one of its extremes.

As explained in Sec. II, the spike amplitude needs to
be much higher than the hyperpolarization amplitude for a
realistic STDP curve. To achieve equal areas, the relation
between these amplitudes must be the inverse of the relation
between spike duration (approx. 2ms biol.) and the membrane
time constant of the refractoriness period (approx. 34ms biol.).
Thus, the spike amplitude has to be 17 times higher than the
hyperpolarization amplitude. Since the supply voltage range is
used almost entirely for implementing the subthreshold neuron
dynamics (including hyperpolarization), a simple scaling of the
spike is not possible. Instead, the PSC current provided by the
exponential PSC reconstruction is scaled by this amount and
added to the ordinary PSC current IPSC via the VPSC SPK

signal at MN3. A digital pulse from the neuron signals
an action potential to the synapse at port SPK (see Fig.
2a), activating the increased PSC current only during action
potentials. A second inverted signal SPK pulls the gate of
MN3 to ground after the action potential to reduce charge
storage effects. This switching can be seen in the transients of
IPSC in Fig. 1a. The synapse has been realized with an area
of approx. 350µm2 in the chosen UMC 130nm process.

IV. RESULTS

Basic STDP behaviour for the overall circuit (i.e. synapse,
neuron, PSC reconstruction) is shown in Fig. 1b, also included
is a sweep of the process corners for the transistors. As can be
seen, the STDP curve [5] is robustly replicated, with especially
the time constants almost invariant to process mismatch, while
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Fig. 6. Results for replicating various experimental paradigms using the circuit realization of our learning rule, with results plotted as the voltage difference
at the weight capacitance before and after the experiment: (a) pairs of pre- and postsynaptic spikes at fixed time differences of 10ms in either pre-post or
post-pre order, subject to a sweep of the pairing repetition frequency [3] (b) Triplets of spikes consisting of two pre- and one postsynaptic spike or the
opposite, results plotted in similar conventions as in [2], weight increase denoted in red squares, decrease in blue diamonds (c) pairs of pre- and postsynaptic
spikes with a timing difference drawn from a Gaussian distribution with µ = 0ms and σ = 7ms [3]. To remove the resultant stochastic variability in the
experimental results, the mean of 20 repetitions of this experiment was plotted. In order for the remaining variability of the curve not to mask the effect of
different ΘU settings, an identical instance of the stochastic protocol was employed for both ΘU ’s, leading to similar curve shapes.

the actual weight increase/decrease varies by about a factor of
4. However, this could easily be adjusted via parameter settings
of the respective neuron and/or PSC generation. Also, since
these curves represent the 6σ ranges of the process, actual
deviations across a single neuromorphic ASIC are expected to
be significantly less.

As shown in Fig. 6a, the combination of spike pairings at
varying time differences with a sweep of the repetition fre-
quency of those pairings [3] is also replicated. The extension
of spike pairings to the well-known triplet paradigm [2] can
also be reproduced by the learning rule (Fig. 6b). A sample
BCM-type protocol [3] is shown in Fig. 6c. Note especially
the sliding of the frequency threshold (i.e. the point where the
weight crosses from decrease to increase with spike frequency)
when the voltage threshold is varied. Thus, this feature of the
BCM theory [4] is also replicated using our circuit.

V. CONCLUSION

Although no silicon implementation of the rule has yet
been realized, the robustness of the general learning function
can be seen from the corner simulation carried out for STDP
learning in Fig. 1b. Since the learning rule is based on reusing
waveform functionality which is already included in most neu-
romorphic systems [9], [6], circuit complexity is significantly
reduced. Compared to [9], [8], [6], [13], no time constants (i.e.
capacitances) are required for the STDP time windows, and
the transistor count is reduced by a factor of 2-3. Our synapse
is on par with the similar complexity-reduced approach of
[7], while outperforming most other recent examples in terms
of transistor and capacitor count. More importantly, even at
this reduced complexity, our circuit outperforms all current
synaptic learning implementations with respect to experiment
reproduction, since these are only built to replicate STDP,
which is incompatible with spike triplet results [2] and learning
evoked by combinations of timing and rate [3].
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