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Abstract—For neuromorphic ICs, the implemented synaptic
dynamics play an important role in the complexity achievable
when running networks on the overall IC. One of these in-
gredients for realistic dynamics are conductance-based synapses,
which in contrast to current-based synapses let a neuron adapt
in various ways to its input characteristics. Another ingredient is
classical neuronal spike-frequency adaptation. Both are usually
realized in fully-analog subthreshold circuits, making them hard
to port to modern sub-100nm technologies. In contrast, we present
a compact switched-capacitor (SC) model of a conductance-
based synapse that can be widely configured to accurately depict
e.g. NMDA, GABA or AMPA type synapses. The SC approach
is inherently easy to port between technologies and its digital
part benefits fully from technology scaling. We show how this
synapse circuit can also be utilized to endow a neuron with spike-
frequency adaptation (SFA).

Keywords—conductance-based, multi-synapse, spike-frequency
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I. INTRODUCTION

In order to support the advancing knowledge in the
field of neuroscience, state-of-the-art neuromorphic circuits
must provide biologically realistic behavior, incorporating e.g.
conductance-based synapses [1], exponentially decaying con-
ductance trace and dynamic behavior such as SFA and voltage
dependent synaptic responses (e.g. NMDA-type synapses).
Most analog implementations of neuromorphic circuits rely
on so-called subthreshold circuits. These are hard to port
to small CMOS techologies, since leakage currents rapidly
increase with down-scaling, reaching the range of the desired
signal currents. Additionally, device mismatch and process
variation increase and the range of transistor transfer func-
tions usable for computation is very limited. This is why
even recent neuromorphic systems have been manufactured
in quite large technologies [2]–[4]. Furthermore, significant
deviations caused by device mismatch and process variation
have to be expected even there, so control voltages have to be
adjusted very accurately. On the other hand, due to relatively
high current ranges analog neuromorphic circuits exploiting
MOS transistors in saturation [5] mostly suffer from real-
time capability, which is important for e.g. interfacing living
nerve tissue and processing real-world input stimuli. These
problems can be largely circumvented by using SC circuits
[6], [7], which utilize robust charge-based signal transmission
and offer a wide-range configurability. Due to the mixed-
signal approach with a relatively large digital circuitry for
controlling the analog circuit, they can be ported easily to small
technologies, since only standard building blocks like opamps,
switches and capacitors are required. This again allows a high

Fig. 1. Leaky integrate-and-fire neuron with different types of conductance-
based multi-synapses and spike-frequency adaptation.

accuracy of the reproduction of biologically realistic behavior
[8].

In this paper we present a mixed-signal neuromorphic
system with SC synapses and a digital circuitry calculating the
conductance value of high input count multi-synapses, con-
sisting of standard analog building blocks and synthesizable
digital logic. We describe circuit techniques to reduce leakage
currents for achieving higher time constants. Additionally, we
present an approximation to the nonlinear voltage dependence
of NMDA synapses that simplifies circuit implementation,
while closely matching the exact formulation in the relevant
voltage range.

II. CIRCUIT DESCRIPTION

The circuit models a leaky integrate-and-fire neuron [9]
with SFA and several types of conductance based multi-
synapses (see Fig. 1). The synaptic current of each type is

Isyn,i = gsyn,i(Esyn,i − Vm) , (1)

with membrane voltage Vm, reversal potential Esyn,i and the
synaptic conductance gsyn,i modeled by

dgsyn,i
dt

=
−gsyn,i
τsyn,i

+∆gsyn,i
∑

k

wkδ(t− tk) . (2)

This results in an exponentially decaying conductance with
the corresponding time constant τsyn and with instantaneous
increments depending on a global conductance change ∆gsyn,i

and a specific weight wk at each incoming spike k at time tk.
Since different weights can be applied for each spike and the
resulting conductance changes sum linearly on one variable
this synapse can emulate an arbitrary number of individual
synapses [1], hence the name ”multi-synapse”.

The circuit of the conductance-based multi-synapse makes
use of a mixed signal approach, where the time-varying con-
ductance value is stored and computed in a digital sub-circuit



Fig. 2. Principle schematic of the leaky integrator circuit emulating the
synaptic conductance.

(see grey box in Fig. 1) and the membrane capacitance of the
postsynaptic neuron as well as the synaptic conductance itself
are represented by analog circuitry. The circuit offers several
simultaneously acting synapse types, which can be configured
individually for e.g. NMDA-, GABA- or AMPA-type behavior.
The adjustment includes time constant, amount of conductance
change at incoming spikes and the corresponding reversal
potential.

A. Switched-Capacitor Synapses

Fig. 2 shows the principle of operation for conductance-
based synapses using SC circuits. In contrast to the circuit in
[6], the membrane voltage is buffered by an opamp for further
computation in the NMDA circuit (described in Sec. II-E) and
for monitoring. The synaptic conductance is modeled by an
SC resistor emulation, consisting of Csyn and switches S1 to
S4. In combination with the parallel membrane capacitor, a
leaky integrator is created. S1, S2 and S3, S4, respectively,
are switched alternately and non-overlapping as indicated by
switch phases Φ1 and Φ2. In phase Φ1 capacitor Csyn is pre-
charged by the synaptic reversal potential Esyn, and in Φ2 a
charge equalization on Csyn and Cm occurs. The conductance
value is determined by the switching frequency fswitch and
the capacitance Csyn:

gsyn = Csyn · fswitch (3)

The analog circuit realizing the leaky-integrate-and-fire
neuron with multiple synapse types is shown in Fig. 3. Its
fully-differential architecture has been chosen to reduce charge
injection and clock feedthrough. A simple SC common-mode
feedback network (not shown) controls the common-mode
voltage Vcm = VDD/2. The SC resistor emulators repre-
senting the synaptic conductances are connected in parallel
to the membrane capacitor. An on-chip 8 bit digital-to-analog
converter provides the different reversal potentials for the
corresponding synapse types.

B. Leakage Current Reduction

A major issue in SC circuits is leakage current through
switches, particularly when moving to sub-100nm technolo-
gies. Especially for neuromorphic circuits with time constants
in the milliseconds range, low switching frequencies and small
capacitance values, these currents have a strong impact on the
accuracy of model reproduction. A way to reduce these effects
is by applying low-leakage switches as shown in [10], where

Fig. 3. SC neuron circuit with conductance-based synapses and comparator
for threshold detection.

a MOS switch is split into two transistors and the middle node
voltage is drawn to VDD in off-state (see upper right of Fig. 3).
Simulations have shown that leakage can be further reduced
by choosing a voltage between VDD and ground. In Fig. 3
this method has been applied with switches S1 – S6. S2 and
S3 disconnect Cm from the opamp feedback loop. S1 and
S4 set the outer nodes of the switches to a defined voltage
which is equal to Vcm in this case. This reduces subthreshold
currents through MOS transistors of S2 and S3 since VDS is
kept low. Furthermore, subthreshold leakage currents are kept
independent of the opamp output voltage. Another advantage
of the proposed switch configuration is the absence of gate
leakage at the opamp input which otherwise would draw
current from the membrane capacitor. A reduction of junction
leakage at the switches surrounding Cm can be achieved by
minimally sized drain and source areas. In order to effectively
exploit this low leakage technique, the membrane capacitor
is decoupled from the circuit whenever none of the synapse,
SFA or leakage generation circuits is in its second switch phase
Φ2, where Csyn is connected to Cm. In this state S5 and S6
disconnect the opamp from the rest of the circuit and S7 closes
a negative feedback loop around the opamp, which prevents
the opamp outputs from floating towards supply rails.

C. Digital Generation of the Conductance Trace

Eq. (2) is implemented by the digital circuit shown in Fig.
4. Its main parts are the conductance trace generation and a
numerical-to-frequency conversion, which triggers the switch
event generation for the SC circuit. The conductance trace gen-
eration sub-circuit holds a register GSYN REG, which stores
the conductance value. If a spike arrives, meaning VALID is
high for one clock cycle, the weight of this spike is added to
GSYN REG. Between incoming spikes the conductance value
decays exponentially towards zero. This is done by subtracting
the value of GSYN REG shifted right by 6 bit, which results in
a multiplication by 1− 2−6 = 0.984375, in a constant interval
configured by TAU SYN. TAU COUNTER is incremented at
each system clock cycle and when it reaches TAU SYN it
is reset and the subtraction is done. This leads to a direct
proportionality between the synaptic time constant and the
configuration value τsyn = −TAU SY N/(fclk·log(1−2−6)).



Fig. 4. Block diagram of the digital circuitry.

In the second part, the conductance is accumulated on the
phase register PHASE REG, which is clocked analogously
to GSYN REG. When an overflow is detected by the adder
the two switch phases for the analog part of the synapse
are triggered. With this method, the value of GSYN REG is
converted linearly to the switching frequency. Scaling of the
frequency can be done with DELTA GSYN, which is inversely
proportional to the conductance change ∆gsyn,i in Eq. (2).

D. Modeling SFA with Conductance-based Multi-synapses

A phenomenon especially present in pyramidal cells is
SFA. As shown in [9], it can be modeled in a similar way
as the conductance of a multi-synapse with a certain reversal
potential Esfa, where gsfa tends to shunt the membrane
capacitance dependent on the spiking frequency of the neuron,
which decreases the neuron’s excitability. For this, a fixed
amount is added to gsfa at each post-synaptic spike. In our
implementation, the same synapse circuit can be used for SFA
with only minor modifications. The spike output of the neuron
has to be connected to the spike input of the SFA circuit and
the WEIGHT signal can be set to a fixed value, e.g. 1.

E. Modeling NMDA-Type Synapses

In contrast to other synapse types, NMDA synapses show
a dependence between conductance value and membrane po-
tential [9]. The synaptic current of NMDA-type synapses can
be modeled by

Inmda = gnmda0

(Enmda − Vm)

1 + 0.28 · exp( Vm

16.129 mV
)
, (4)

with Enmda = 0. The nonlinear dependence of the conduc-
tance on Vm is difficult to faithfully reproduce in a circuit
implementation. As can be seen in Fig. 5, this dependence
can be well approximated linearly in the range between lowest
reversal potential at about −70mV for inhibitory synapses and
threshold voltage at about −50mV:

I∗nmda/gnmda0 = α(Vm − E∗

nmda) . (5)

We can rewrite Eq. (5) to get a regular conductance-based
synapse I∗nmda = gnmda0·(Ex−Vm), with a voltage-dependent
reversal potential

Ex = Vm + α(Vm − E∗

nmda) . (6)

Fig. 5. Linear approximation of the voltage dependence of NMDA-type
synapses.

Fig. 6. SC circuit providing the membrane voltage dependent reversal
potential for NMDA synapses.

The circuit generating the voltage-dependent reversal potential
is depicted in Fig. 6. In the sampling phase Φ1, the membrane
potential is stored on the binary weighted capacitors C1-C3
corresponding to α, and on C4, whereas C5 is reset. In Φ2,
the fraction α of Vm − E∗

nmda is integrated on C5 and the
output voltage is shifted by Vm, resulting in an output voltage
as described in Eq. (6).

III. RESULTS

The neuromorphic system was designed in a 180 nm
CMOS technology with a supply voltage of 1.8V. A neuron
circuit including one NMDA circuit has a power consumption
of 45 µW and a total silicon area of 18 000 µm2. The digital
circuit consumes an area of 45 000 µm2 for one neuron with
5 synapse types and has a power consumption of approxi-
mately 100 µW. Sources of deviations from the ideal model
parameters are opamp non-idealities, capacitor mismatch and
leakage currents. Due to the differential voltage swing of 1.5V,
the opamp offset voltage of less than 10mV is negligible.
Capacitor mismatch has an effect on the membrane time
constant and conductance values of the synapses, but can
be compensated by digital configuration. Unfortunately, we
are not provided with Monte-Carlo simulation models for the
MIM capacitors we used, so only a nominal simulation has
been carried out. Simulation results are depicted in Fig 7.
The upper diagram shows the membrane voltage trace Vm.
At 1ms, the neuron is stimulated with a 10 kHz spike train
for 10ms arriving at an AMPA synapse with high reversal



Fig. 7. Simulation results of membrane potential with synaptic input from
three different synapse types.

potential and τampa = 2ms. At 30ms, an inhibitory GABA
spike is triggered (τgaba = 10ms), which decreases the
membrane potential. From 40ms to 70ms, a 1 kHz spike
train arrives at the NMDA synapse (τnmda = 100ms). The
supra-linear increase of the membrane potential indicates the
voltage dependence of NMDA-type synapses (see Eq. (6)).
After reaching the threshold voltage at about 90ms the neuron
fires and is reset to its reset voltage.

Our implementation focuses on a robust reproduction of
the model equations and a high number of synaptic inputs,
which are required e.g. when simulating population bursts [11].
Other implementations of conductance-based synapses may
consume less area, but at the cost of reduced functionality
and robustness. A subthreshold circuit of a conductance-based
synapse with NMDA behavior is presented in [2]. The synapse
circuit was designed in a 0.35 µm process and consumes
an area of 1360 µm2. While this circuit was designed as a
single synapse, it could be used as multi-synapse as well, by
discarding the short-term plasticity mechanism. However, it is
not able to support such a high input count as our implementa-
tion. Furthermore, due to the exponential dependence between
control voltage and current signals, synaptic behavior is very
sensitive to device mismatch and process variation.

Another implementation of a conductance-based multi-
synapse using SC circuits can be found in [6]. It was fabricated
in a 0.5 µm process where a neuron circuit with one multi-
synapse consumes an area of about 3700 µm2. Here each
incoming pulse event triggers a switch event, which transmits
a charge packet. Although this is a very flexible approach,
exponentially decaying conductance traces and summation
over synapses have to be generated off-chip. In contrast, these
features are an important part of our integrated implementation.

As an outlook, memristive technologies could profit from
our circuit principle: By connecting the memristor terminals to
the postsynaptic membrane and a pulsed voltage source driven
by the switch event generation circuit, learning memristive ar-
rays [12] could be equipped with conductance-based synapses.

IV. CONCLUSION

We presented a conductance-based high input count multi-
synapse using SC circuits. With a slight modification, the
circuit can be used to model SFA. Furthermore, it has been
shown how the voltage dependent behavior of NMDA-type
synapses can be implemented with additional circuitry. The
overall silicon area of the neuron is 63 000µm2 and consumes
less than 100 µW of power. Due to a large capacitance array
consisting of unity capacitors of 50 fF (100 µm2), a fully-
differential architecture and a dedicated low-leakage technique,
a high model accuracy is achieved compared to existing
subthreshold circuits [2] and SC implementations [6]. Since
the area is strongly dominated by MIM capacitors, it could
be shrunk with relaxing the accuracy requirements. The large
digital part would perfectly benefit from technology scaling.
In contrast to [6], our circuit is equipped with exponentially
decaying conductances and is designed to emulate up to 10k
synaptic inputs at a firing rate of 10Hz providing a biologically
realistic behavior.
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