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Abstract—Two terminal devices with switchable resistance
have been of interest to electrical engineers for a long time, but
only in the last few years these have attracted widespread atten-
tion. Recently a BiFeO3 (BFO) capacitor-like metal-insulator-
metal (MIM) structure was proposed as a synthetic synapse in
neuromorphic systems, implementing voltage waveform driven
spike timing dependent plasticity (STDP). Using a new device
model that faithfully reproduces measurements of BFO-MIM
structures we analyze how the switching characteristic affect the
STDP learning window. Our simulations indicate that the gradual
increase in the resistance change of BFO MIM structures result
in a robust STDP with a biologically realistic learning window,
whereas a distinct threshold followed by a steep hysteresis curve
produce a narrow learning window and inflict strict operating
conditions. Therefore we conclude that the steepness of the
current voltage hysteresis curve is a fundamental characteristic
to consider when designing synthetic synapses for neuromorphic
hardware.
Index Terms—neuromorphic systems, STDP, device model,

memristive device, memristor

I. INTRODUCTION

The synapse is widely thought to be one key structural

component of the brain, it acts as the connection point for

neurons as they communicate through action potentials. The

weight of the synapse regulates how well one neuron (pre-

synaptic) transmits to another neuron (postsynaptic). It has

been shown that if the postsynaptic neuron fires an action

potential after the presynaptic neuron the weight is increased

and vice versa. This dynamic is called spike timing dependent

plasticity (STDP) and is considered as one of the underlying

mechanisms for information processing and memory storage

in biological neural networks [1]. Illustrated in Fig. 1 is

how presynaptic spikes and excitatory postsynaptic potentials

(EPSP) interact to form a learning window where the weight

is changed.

In neuromorphic engineering one goal is to mimic the dis-

tributed computation of neural networks, with the underlying

idea to access the evidently powerful computational paradigms

of the brain. Another area where neuromorphic hardware may

prove advantageous is as interface for live tissue, in these

applications the critical aspect is not speed; but high levels

(a) (b)

Fig. 1. (a) Illustration of the spike timing concept: ∆t := tpre − tpost
(= 0.5 ms). (b) Measurements by Froemke and Dan [2] for the timing interval
where the EPSP changes, thus displaying the learning window for the synaptic
weight.

of integration, low power consumption and real-time behavior

[3]. Since a single neuron on average can have 103 to 104

synaptic connections one of the major area consumers on a

neuromorphic chip are the synapses, therefore it is important

to implement the synapses in an area efficient way.

The last years have seen an increase of interest in two-

terminal resistive switching devices (by some called memris-

tors) from the neuromorphic engineering community [4]. As

the synapse has a weight with continuous range a two-terminal

non-volatile multilevel storage element would be an important

part in neuromorphic hardware [5]. These devices can be

realized in a crossbar fashion processed on top of standard

semiconductor technology, achieving a high degree of integra-

tion [6]. Recently we demonstrated that BiFeO3 (BFO) devices

have the ability to faithfully reproduce the STDP phenomena

[7]. Though many other devices have been proposed to form

synaptic arrays, some may not be preferable in biologically

feasible schemes for analog processing [6], [8]. In fact, our

thesis is that devices aimed at digital storage are inherently ill

suited in some situations, and we will discuss one fundamental

property of synthetic synapses that affects voltage waveform

driven STDP in neuromorphic hardware. The paper is orga-

nized as follows: section II contains an overview of physical



devices with focus on a BFO device, section III addresses

the modeling of said device, in section IV practical model

implementations for electrical simulations are compared and

lastly conclusions are presented in section V.

II. BFO DEVICE PROPERTIES

For our research we use BFO thin films on a Si/SiO2/Pt sub-

strate with a large-scale Pt bottom electrode and circular Au-

top electrodes [9]. This capacitor-like BFO structure exhibits

an IV hysteresis with inner state and threshold behavior. This

means that in a small voltage range from about −1.5V to 2V,
depending on the specific structure, an applied bias induces

a state dependent current but does not significantly change

the actual state. The BFO provides what we call a smooth

switching over a wide voltage range with rectifying behavior

and nearly linear correlation when in saturation (Fig. 2a).

The device state can be programmed nearly arbitrarily and

the process is reversible. The temporal behavior restricts the

usage to real-time applications, because the time constants for

saturation are >1 s and a change in state requires programming
periods of at least 1ms.

Fig. 2a shows a sample curve with the current for a given

voltage Vd over a 0.5mm
2 device. Also included for compari-

son are IV-curves of Ag/Si [5], TiO2 [8] and Chalcogenide [10]

capacitor like structures. From these reported measurements

we can distinguish two fundamental types of characteristics;

one where no significant resistance change is visible below

a threshold voltage followed by a rapid switching to a low

resistance state (Fig. 2c and 2d), and another where the smooth

switching is evident (Fig. 2a and 2b). All these structure types

has been associated with neuromorphic hardware and synapses

[4], [5], [7], [8], [11], but as we shall see in the following

sections the abrupt switching restrain the possibilities of a

realistic STDP.

(a) (b)

(c) (d)

Fig. 2. IV characteristics of reported measurements from different capacitor-
like structures that have been proposed for use in neuromorphic hardware: (a)
BiFeO3[7], (b) Ag/Si [5], (c) TiO2 [8], (d) Chalcogenide (PCM) [10]

III. MODELING

In order to develop a model for BFO, we used a voltage-

saturation experiment. In this experiment the device was first

reset and then programmed to high resistance state by applying

successive 1V steps, each held for 10 s. An exponential
saturation of the measured time-dependent current can be

observed after every 1V step and the level of this saturation
increases exponentially with each step (Fig. 3). That is, we

have two exponential dependencies, one is the state develop-

ment over time (saturation) and the other is at which level the

conductance will be limited for a given voltage.

Fig. 3. Measured and modeled time-dependent current for 1 V voltage steps,
each held for 10 s.

The IV characteristics are modeled as a system of equa-

tions with a non-linear ordinary differential equation of first

order for the state variable G and a distinction of cases

for positive and negative voltages. The conductance of the

current-voltage relationship can be interpreted as having three

parts; the state dependent variable with two parasitic resistors

expressed through rs and gp. The voltage dependent limit of

the state variable GLim is a simple exponential function and

the saturation follows the basic principle Ġ = a · (GLim −G).
For a positive bias the logarithm function restricts the deriva-

tive to non-negative values, as where for negative voltages

the exponential acts as threshold. The complete system of

equations can be described with the formulas given in Eq. 1.

GLim(V ) = gmin + ag · e
bgV

dG(V, t)

dt
=

{ ap

bp
· ln

(

1 + ebp(GLim(V )−G)
)

, V > 0

an
(

e−bnV − 1
)

(GLim(V )−G) , else

I(V, t) =







kpV
ep

(

1
G(t)−1+rsp

+ gpp

)

, V > 0

knV
en

(

1
G(t)−1+rsn
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)

, else

Eq. 1. System of equations of our device model with state variableG, voltage
dependent limit GLim and current I .

Many models are mainly time controlled using a windowing

function to limit a state variable between fixed values [12],

[13] with partly very abrupt behavior which suits some types

of devices. The voltage dependent limit in our model do

however provide the ability to set a wide range of analog

values and allows for robust simulations where small changes

in either time or voltage levels only have little influence. Not



TABLE I
FITTED MODEL PARAMETERS

gmin 5× 10−3 ap 250× 10−3 en 3

ag 30× 10−3 bp 15 gpp 1× 10−3

bg 1.2 an 15× 10−6 gpn 500× 10−6

kp 3.7× 10−6 bn 3.1 rsp 50× 10−3

kn 20× 10−6 ep 1.8 rsn 200

Fig. 4. Comparison of measured and modeled IV characteristics.

included in the model are effects of higher order, in particular

the behavior in absence of any external bias and parasitic

effects like capacitance or the influence of aging.

Even though the device model is fairly simple, it matches

several IV characteristics, with time scales ranging from a

few milliseconds to several seconds. Fig. 3 and 4 show the

result with manually fitted parameters for a specific capacitor-

like BFO structure. The same parameters were also used for

following simulations and are listed in TABLE I.

IV. SPICE IMPLEMENTATIONS

One way of operating a synthetic synapse is by the concept

of waveforms that depending on timing will give rise to higher

or lower voltages over a device [14]. Our implementation

of this is depicted in Fig. 5 where pre- and postsynaptic

spikes are represented by a negative voltage pulse (Vpos|neg,min)

with a positive swing (Vpos|neg,max) followed by an exponential

decay towards zero [7]. Due to the exponential decay the bias

superposition of Vpos and Vneg will result in a larger positive or

negative voltage proportional to the timing of the pulses. This

can of course be generalized to a ’low’ and a ’high’ voltage

that is centered around a common mode voltage other than

zero.

For plausible electrical simulation we have implemented

the before mentioned BFO device model in a SPICE (Simula-

tor Program with Integrated Circuit Emphasis) dialect called

Spectre R©. As customary, our SPICE implementations make

use of a behavioral current source which integrates the state

variable as a voltage upon a virtual capacitor [12]. To in-

vestigate our thesis that the steepness of the switching may

affect the performance of gradual resistance change, we also

implemented a general model proposed by Yakopcic et al. [13].

The simulations for this device model were performed with the

parameters given in Fig. 5, [13, pp. 1438], which are fitted

to measurements performed on a TiO2-device by Yang et al.

[11], while our model was fitted to measurements of a BFO-

device. As can be seen in Fig. 6 the resulting output exhibit the

distinctive characteristic of a sharp and fast switching (Fig. 6a)

compared to a smoother hysteresis curve of the BFO-device

model (Fig. 6b).

Fig. 5. Simulation of voltage waveforms using SPICE. If the Vneg pulse
occurs before or after the Vpos pulse, Vd would become largely negative or
positive, respectively.

Fig. 6. Normalized SPICE simulations for an implementation of the the
device model proposed by Yakopcic et al. 2011 [13] (a) and of our device
model (b).

To simulate the Yakopcic model for STDP we adapted the

voltage ranges to fit within the switching region of the TiO2
device (1.2 < Vd < 1.5, Fig. 6). The impact of the different
hysteresis characteristics is significant, as seen in Fig. 7a the

sharp switching behavior gives rise to a narrow operating

region where STDP is possible. As soon as the voltage over

a device drops below the switching threshold, STDP would

no longer be possible since the conductance cannot change. If

we instead consider the upper bound of the switching region;

pulses here will very rapidly change the resistance, leading to

a condition where the learning window bulges and the risk is

that the device reaches its maximum conductance prohibitively

quick (even for a large ∆t). In contrast we can observe that

the smooth switching of the BFO produces a STDP that is

robust to voltage variations (Fig. 7b). From this comparison

we can surmise that a sharp switching device results in a



region of a few hundred millivolts where STDP is possible

and small fluctuations could render the device nonfunctional

as a synthetic synapse.

(a)

(b)

Fig. 7. STDP simulations of the implemented SPICE models, for each
∆t a sequence of 60 pulses has been used to change the conductance. The
waveforms used were adapted for the voltage range of the respective model,
in (a) for the TiO2 device model and in (b) for our BFO device model.

V. CONCLUSIONS

We have proposed a device model that is developed on a

concept that differs from the frequently used window functions

seen in literature [4]. Instead of limiting the state (effectively

the conductance) between fixed values [12], our device model

lets the upper limit vary depending on the applied voltage,

which is required to capture the fact that BFO has a wide

switching region. Simulations show that this model can give a

good match to measurements; and as we have recently demon-

strated this BFO-device can reproduce biologically realistic

STDP [7].

Using the developed model we have shown that the device

hysteresis characteristic plays a crucial part with regards

to implementing synthetic synapses operated by the STDP

paradigm using voltage waveforms. More specifically, a very

steep switching characteristic leads to a narrow operating

region useful for STDP, such a device would impose stricter

restrictions on the creation of the used waveforms compared

to a device with a smooth hysteresis. Because precise voltages

require complex circuitry to deal with mismatch and process

variations, this leads in the end to fewer neurons per chip. In

a digital encoded memory it is advantageous to have a very

steep switching characteristic since one strive to have well

defined ones and zeros; ending up somewhere in between

when performing a write is erroneous. In a neuromorphic

memory on the other hand (i.e. the synaptic array), it is not

only desired to have intermediate states, it is necessary; and a

wide region of operation where these intermediate states can be

written is the foundation for a robust reproduction of learning

rules like STDP. Even though we have shown that BFO is

highly interesting as a synthetic synapse the ultimate proof

of BFO applicability in neuromorphic hardware would be to

demonstrate this type of capcitor-like structure in a crossbar

array on top of standard semiconductor technology. This will

be the focus of future work.
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