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Fig. 1. From top to bottom: postsynaptic current trace (PSC) with depression,
membrane voltage trace (with resting potential marked), and analog weight
state progression for different settings of the learning threshold ΘU [3]

I. DEMO DESCRIPTION

Traditionally, neuromorphic ICs have integrated only re-
duced subsets of the rich repertoire of plasticity seen in biolog-
ical preparations [1], [2]. The focus with respect to long term
plasticity has been mostly on Spike-Time-Dependent Plasticity
(STDP) [1]. Several ICs have also implemented forms of
presynaptic short term dynamics, which filter synaptic pulse
input, but have no influence on other timescales of plasticity.
Here, we demonstrate an IC that implements short-term-,
long-term-, and metaplasticity in an integrated way following
[3], where these three different timescales interact to form
the overall weight at the synapse. Fig. 1 shows an example
presynaptic pattern with depression and the membrane trace as
input for learning [3]. The resulting analog weight state shows
the influence of presynaptic depression in the step increases,
comparable to [1]. Also, different settings for the learning
threshold exhibit a bias towards weight increase/decrease on a
metaplastic (i.e. slow) timescale similar to [2]. The overall
setup features several Maple-ICs of each 16 neurons and
512 of the above synapses, interlinked via FPGA-based pulse
transmission. This allows network sizes of up to 200 neurons,
sufficient to demonstrate the necessity for this type of learning
for a range of computational neuroscience models.

II. VISITOR EXPERIENCE

The Multi-Maple setup is operated via a high-level Python
interface, allowing the user to quickly change parameters

Fig. 2. PCB housing one of the Maple-ICs and support circuits. The
demonstration setup links up to 15 of these boards by a standard Xilix Virtex5
experiment board.

of the learning experiments or design their own experiment.
There will be a set of experiments in the code as a starting
point for the user: experiments where interplay between differ-
ent timescales is of essence, e.g. demonstrations of binocular
rivalry [2], structural learning in recurrent networks, etc. The
individually configurable timescale nature of the synapses as
shown in Fig. 1 will also allow the user to experiment e.g. with
different settings for the STDP windows in different parts of
the network. This can lead to structural diversification/special-
ization [4].
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Abstract— The information processing of neural networks
depends heavily on the learning/plasticity function carried out
at the individual synapses. Traditionally, neuromorphic ICs have
integrated forms of Spike-Time-Dependent-Plasticity (STDP), a
subset of the rich repertoire of biological plasticity. However,
STDP is challenged by rate-dependent learning as well as by bi-
ological experiments exhibiting more complex timing dependency.
Also, recent research shows that incorporating these biological
findings in models of plastic synapses is important for various
computational functions. Here, we present an IC that implements
a plasticity rule based on the postsynaptic membrane potential
and the profile of the presynaptic spike. This circuit moves
significantly beyond the STDP in mainstream neuromorphic ICs,
replicating the triplet experiments of Froemke and Dan [1] and
the timing and rate experiments of Sjoestroem et al. [2].

I. INTRODUCTION

Endowing synapses with learning ability has long been a
major target for neuromorphic hardware, as this allows the IC
to become plastic, i.e. adapt to changes, restructure its topol-
ogy and adjust the processing function. When looking to ex-
perimental evidence, synaptic weight is changed on a medium-
to-long timescale (hours-days) by spike rates [3], spike timing
in various forms [1] and membrane voltage [2]. There are also
various mechanisms that change synaptic weight on very short
time scales (seconds, short-term-plasticity) [1] and very long
time scales (days-months, metaplasticity) [4]. Only a small
subset of this repertoire has been implemented in VLSI so
far. Neuromorphic ICs currently focus mainly on Spike-Time-
Dependent-Plasticity (STDP), i.e. the synaptic weight change
caused by a pair of pre- and postsynaptic spikes [5]–[7].
Several ICs have also implemented forms of presynaptic short
term dynamics [6], but these usually operate independently
of the longer timescales, contrary to the interlinking seen in
biology [1].

In this paper, the so-called MAPLE (Multiscale Plasticity
Experiment) IC is presented. The MAPLE IC implements a
combined short-term-, long-term-, and metaplasticity, where
these three different timescales interact to form the overall
weight at the synapse following a novel learning rule [4]. This
rule can reproduce a variety of recent experimental results and
is simple to implement, since it derives most of its dynamics
from the neuron and the reconstruction of the incoming pulse,
i.e. the postsynaptic current (PSC) profile. Thus, the synapse
complexity itself can be kept to a minimum. In Sec. II-A,
the overall MAPLE architecture is detailed and the basic

learning rule introduced. The synaptical circuit realizing the
computation of the learning function is described in Sec. II-B.
Sec. III details measurement results using various biological
plasticity protocols.

II. THE MAPLE IC

A. System Description

The MAPLE IC implements 16 neurons with 32 synapses
each, arranged in a matrix, as shown in Fig. 1A. It employs
a special system architecture that separates as much function-
ality as possible from the individual synapse circuit, bundling
it outside the synapse matrix. The individual synapse only
includes those functions that depend both on the incoming
(presynaptic) spikes and the neuron state. It consists of a 4bit
digital weight storage with attached digital-to-analog (DA)
converter and an analog computation of long-term synaptic
plasticity, realising the local correlation plasticity (LCP) rule
[4]. This rule combines the PSC waveform g(t), the postsy-
naptic membrane potential u(t) and a voltage threshold Θu in
a compact rule for the change of the synaptic weight w:

dw

dt
= B · g(t) · (u(t)−Θu) , (1)

where B is a scaling factor. This mathematical formulation
is similar to the BCM rule [3]. However, instead of the rate
variables in BCM, it uses local state variables directly available
to the synapse. Fig. 1B shows a measured weight change for
a sample spike train. At each postsynaptic spike, the weight
steeply increases due to the elevated membrane potential,
while it steadily decreases during the neuron’s refractory
period. Thus, in this simple case, weight potentiation is deter-
mined by the PSC shape and the size of the postsynaptic spike,
while depression is governed by the membrane refractoriness
time course and the area under the PSC curve.

The LCP rule can replicate a multitude of biological exper-
imental results, even when combined only with simple models
for PSC and membrane voltage [4]. Furthermore, it allows the
direct incorporation of other adaptation mechanisms. Short-
term adaptation may be expressed in the PSC and membrane
voltage waveforms, while the voltage threshold may slowly
change as in the BCM rule, allowing similar forms of meta-
plasticity.

The LCP rule facilitates an efficient hardware implementa-
tion, because it re-uses existing waveforms. This is exploited
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Fig. 1. (A) system architecture of the MAPLE IC, showing the different forms of plasticity implemented by the individual modules; (B) measured trace of
the analog synaptic weight (Vweight) evolution along with the corresponding local state variables PSC (VPSC) and membrane potential (Vmem). The time
axis denotes hardware time (104 accelerated to biological time).

by the MAPLE system architecture described above. All
functions that are only dependent on the presynaptic spikes are
bundled in reconstruction circuits for the PSC, located above
and below the synapse matrix. Each of them consists of a
short-term plasticity (STP) circuit [8], and a generation circuit
for exponentially-shaped PSCs. The number of PSC circuits
is twice the number of synapse columns, so that each synapse
can choose between two PSC outputs. This architecture results
in a significantly more flexible synaptic connectivity at little
extra cost [9].

The neuron circuit implements a leaky-integrate-and-fire
model with adaptation of the postsynaptic pulse length [4],
the latter directly influencing the amount of potentiation in
the LCP rule. It also forwards a voltage threshold to its
connected synapse row. This voltage is generated by an 8bit
DA converter, so that it can be finely tuned externally during
an experiment.

An external synapse state machine iterates over the synapse
matrix, reading out the state of the analog weight storage and
computing a new 4bit digital weight. This process is detailed in
Sec. II-B. The MAPLE IC was implemented in a UMC 180nm
technology, using a supply voltage of 3.3V and a typical clock
frequency of 50MHz for the digital core logic. The complete
chip occupies a silicon area of 1.5×3.2mm2. All circuits have
been designed for a speed-up of 104 compared to biological
time. The chip components are configured completely via a
standard JTAG interface, while pulse input/output and weight
output is performed via a parallel interface, allowing for simple
control and monitoring by an FPGA.

B. The Plastic Synapse

Fig. 2 shows a block diagram of the synapse at the heart
of the MAPLE IC as outlined in the previous section. The
analog weight computation in the upper right block is detailed

in Fig. 5 of [10]. It carries out the actual computation of Equ. 1
resp. Fig. 1B based on the PSC (Ipsc, Ipsc spk), the membrane
voltage Vmem and the threshold ΘU. The postsynaptic current
reconstruction and its adaptation circuit is based on [8], the
membrane waveform fed to the synapse is generated in a
neuron based on the circuits of Fig. 2/3 of [10].

When the weight update cycle of the synaptic state machine
addresses this particular synapse via the RW-Control & Select,
the transmission gate M1/2 activates and the analog weight
state voltage Vweight of this block is driven via the source
follower M3 to two comparators below the synapse column.
At the same time, the 4-bit digital weight (WEIGHT< 3 :
0 >) is read out and passed off-chip for monitoring purposes.
When little weight change has happened since the last cycle,
i.e. the weight voltage is between both reference voltages,
nothing happens and the state machine moves to the next
synapse. When the weight voltage is below Vweight low, the
state machine decrements the digital synaptic weight by an
LSB, writes it in the synapse and via M4 resets the analog
weight voltage to Vweight reset (between the two thresholds).
The operation is similar for Vweight high and the digital weight
increment. The digital weight in turn governs a current-based
DA-converter. When a PSC comes in, its equivalent current
timecourse Ipsc weight is scaled with the weight value and
passed as Iweight out to the current collection rail of the neuron
of that synaptic row.

The processing chain of analog weight computation, digital
readout and storage, DA-conversion and analog PSC weighting
is similar to [6]. However, for the 1-bit synapse of [6], this can
be done directly in the synapse. For a graded, 4-bit synapse,
the digital state machine is too large to integrate into every
synapse, so we adopted the approach of [7] of an external
state machine.

Please note: the general makeup/functioning of the synapse



Fig. 2. Block diagram of the plastic synapse, with external ports (dashed boxes) grouped according to direction. The analog weight computation receives the
digital neuron spike output, the neuron membrane voltage and PSC waveform in two different scalings. It computes the analog weight change according to the
LCP rule as outlined in [10]. The upper left corner shows as an inset the immediate interface below each synapse column which converts the source-follower-
driven analog weight state voltage via two thresholds to digital values. The port RW-Control & Select stands for a couple of signals that select the particular
synapse for weight update and govern the read/write cycle. A small piece of logic in the synapse (not shown) converts those signals into the synapse-internal
signals Rsyn and Wsyn. The whole synapse occupies 20*35µm2. The digital weight bus is bidirectional. SOURCE SEL is a static configuration bit that
enables the choice between upper and lower PSC circuits (Compare Fig. 1A).

as outlined above is to a large part generic to such a mixed-
signal approach for the synapse. Therefore, the building blocks
surrounding the actual analog weight computation have been
adapted from literature or at least constitute similar solutions
to similar problems. The novelty of the MAPLE IC lies in the
circuit realization [10] of weight computation based on analog
waveforms supplied by neuron and presynaptic circuit. As
shown in the next section, this makes the plasticity exhibited
by the synapses of the MAPLE IC very biologically realistic.

III. RESULTS

This section shows the digital weight change output for
a few sample biological plasticity protocols, i.e. we are not
giving the analog weight state voltage change as in Fig. 1B
or as in Fig. 6 of [4], but rather the resultant digital weight
change. The experiments are typical biological plasticity ex-
periments with one synapse, stimulated via one presynaptic
and one postsynaptic neuron. Please note that the results shown
here are converted back from the speed-up IC time to real time
for easy comparison with biological measurements.

Fig. 3 replicates conventional STDP after [1]. As outlined
in Sec. II-A, the time window of the LTP part is governed by
the PSC curve shape, while the LTD window depends on the
membrane time constant. This is evident from Fig. 3, where
different settings for PSC and neuron time constants directly
influence the STDP curve.

Fig. 4 shows the digital weight change for the spike timing
and frequency protocol of [2]. Ordinary STDP rules (without
a frequency component) perform quite poorly at this [4],
even though this crossing from LTD at low frequencies to
LTP for high frequencies is crucial for various biological
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Fig. 3. Conventional STDP replication, protocol of [11]. Digital weight
change curves are shown for differing settings of the PSC and membrane
time constants.

functions, e.g. binocular rivalry [3]. As Fig. 4 shows, our
circuit implementation results in a very good experiment
reproduction of [2].

To illustrate another facet of this combined spike-timing
and -rate driven plasticity, Fig. 5 gives the results for a triplet
protocol [1]. To replicate the biological results in especially
the lower right quadrant, a postsynaptic depression function
is necessary which diminishes the influence of the second
postsynaptic spike in a post-pre-post triplet, where the two
postsynaptic spikes follow in quick succession (i.e. close to
the origin of the diagram in Fig. 5). Fig. 5(B) illustrates that
the postsynaptic depression of [10] workes as designed and,
via the membrane voltage curve shape, has the same effect
on the overall learning as in the ideal plasticity rule [4].
Again, the experiment reproduction is in accordance with [1],
significantly better than the current state-of-the-art of other
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Fig. 5. (A) Digital weight change for the triplet protocol of [1] without
postsynaptic adaptation of the action potential duration [10]; (B) Same as
(A), with activated postsynaptic adaptation, note the difference in the lower
right quadrant to (A).

VLSI-realized synaptic plasticity circuits.

IV. CONCLUSION

We have shown the circuit realization of a novel synaptic
plasticity rule with a very high degree of biological real-
ism. Since the learning rule is based on reusing waveform
functionality which is already included in most neuromorphic
systems [5], [7], circuit complexity is significantly reduced.
Compared to [5], [7], [12], no time constants (i.e. capac-
itances) are required for the STDP time windows. Circuit
area is on par with the smallest synaptic plasticity realizations
currently available in CMOS [6], [7]. More importantly, even
at this reduced complexity, our circuit outperforms all current
synaptic learning implementations with respect to experiment
reproduction, since these are only built to replicate versions
of STDP, which is incompatible with spike triplet results [1]
and learning evoked by combinations of timing and rate [2].

With the actual waveforms at the basis of the plasticity
supplied by neuron and presynaptic reconstruction, the plas-
ticity function of the synapse can be finely configured via e.g.
the membrane time constant (see Fig. 3) or the postsynaptic
adaptation (see Fig. 5). With the runtime-configurable ΘU,
we can even supply a learning bias or modulatory input to
plasticity (see Sec. II-A here and also Fig. 1 in the associ-
ated demo paper), in keeping with biological evidence [3].
Beyond replicating biological experiments, this kind of multi-

factor multi-timescale plasticity is important in computational
neuroscience, e.g. for the learning stability or convergence of
recurrent networks [13], or for developing motor primitives
across multiple timescales [14].

The waveform-driven plasticity shown here also holds great
promise for future nanotechnology/CMOS integration. We
have recently shown that the LCP rule as implemented in
CMOS circuits in this manuscript can also be applied to
BiFeO3 memristive devices [15]. Together, this constitutes
almost a proof of principle of a future CMOS/memristor
hybrid IC, as we have shown here the veracity of the
waveform generation in CMOS, and we have shown those
same waveforms applied to biologically realistic learning at a
memristive synapse [15]. Future work will center on actually
implementing this union.
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in CMOS derived from a model of neurotransmitter release,” in 20th
ECCTD 2011, 2011, pp. 197–200.

[9] M. Noack, J. Partzsch, C. Mayr, S. Henker, and R. Schuffny, “Biology-
derived synaptic dynamics and optimized system architecture for neu-
romorphic hardware,” in MIXDES, 2010, pp. 219–224.

[10] C. Mayr, M. Noack, J. Partzsch, and R. Schuffny, “Replicating experi-
mental spike and rate based neural learning in CMOS,” in ISCAS, 2010,
pp. 105–108.

[11] R. C. Froemke, I. A. Tsay, M. Raad, J. D. Long, and Y. Dan,
“Contribution of individual spikes in burst-induced long-term synaptic
modification.” J Neurophysiol, vol. 95, no. 3, pp. 1620–1629, 2006.

[12] K. Saeki, R. Shimizu, and Y. Sekine, “Pulse-type hardware neural
network with two time windows in STDP,” in Proceedings of 15th
International Conference on Neural Information Processing ICONIP08,
ser. LNCS, vol. 5507, 2008, pp. 877–884.

[13] M. A. Bourjaily and P. Miller, “Synaptic plasticity and connectivity
requirements to produce stimulus-pair specific responses in recurrent
networks of spiking neurons,” PLoS Comput Biol, vol. 7, no. 2, p.
e1001091, 02 2011.

[14] Y. Yamashita and J. Tani, “Emergence of functional hierarchy in a mul-
tiple timescale neural network model: A humanoid robot experiment,”
PLoS Comput Biol, vol. 4, no. 11, p. e1000220, 11 2008.

[15] C. Mayr, P. Stärke, J. Partzsch, L. Cederstroem, R. Schüffny, Y. Shuai,
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