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Abstract—With neuromorphic hardware rapidly moving
towards large-scale, possibly immovable systems capabléim-
plementing brain-scale neural models in hardware, there isan
emerging need to be able to integrate multi-system combinains
of sensors and cortical processors over distributed, mulsite
configurations. If there were a standard, direct interface &
lowing large systems to communicate using native signallq
it would be possible to use heterogeneous resources effidign
according to their task suitability. We propose a UDP-based
AER spiking interface that permits direct bidirectional spike
communications over standard networks, and demonstrate a
practical implementation with two large-scale neuromorplic
systems, BrainScaleS and SpiNNaker. Internally, the intdaces
at either end appear as interceptors which decode and encode
spikes in a standardised AER address format onto UDP frames. ] ) ]
The system is able to run a spiking neural network distributel ~ Fig- 1. SpiNNaker to BrainScaleS interface
over the two systems, in both a side-by-side setup with a
direct cable link and over the Internet between 2 widely spaed
sites. Such a model not only realises a solution for connentj ~ Se, has created interesting sensors designed for particular
remote sensors or processors to a large, central neuromorph  application scenarios where conventional sensors have in-
simulation platform, but also opens possibilities for inteesting  appropriate characteristics or feature sets [6], [7]. Taedh
automated remote neural control, such as parameter tuning, for fast dynamic response makes neuromorphic processors,
for large, complex neural systems, and suggests methods 10 whose architecture is naturally matched, an obvious fit for
gf?feé?gr:?ep?;‘;gr?;e%\ﬂg'”.”tgsg";‘]'frglnd:{g\‘g:ﬁg’”p%?gfélb?n? such devices, either to provide “front-end” processing §8]

i . With i irely . .
physical layer, the interface makes large neuromorphic syems IRQeed o performhall the_l ptr)(.i_ceS?clng O.nagg da;]ta.dHowever,
a distributed, accessible resource available to all. this presupposes the availability of a suit Ve hardware
interface, and in actual fact, the hardware interface both a
the sensor and the processor side tends to be proprietary.
A protocol-level “standard” - AER - exists [9], but it is
far from being a standard in the formal sense of the term,

“Neuromorphic” chips, devices that attempt to implemen@nd there are fundamgntal issues still to be resolved at the
neural networks directly in hardware, are increasing inesca level of connectors, signal voltages, and other very low-
Various implementations have emerged, ranging from earl 'V§| hardware concerns. If there were an interface, warkin
small-scale analogue devices following the original marfel hatively with AER packets, but over a standard hardware
Carver Mead [1], to more advanced chips implementing sp&edium, and with standard AER protocols, it would thus
cific spiking neural networks [2], through to modern, largeneatly solve two problems: how to connect neuromorphic
scale systems intended to simulate very large networks wifi¢nsors to processors, and how to connect neuromorphic
reasonable biological fidelity, possibly at highly accated Processors together.
speeds [3]. Recently, the “neuromimetic” branch of neural
chips [4] has also begun to explore the configurability dimer}ea
sion, introducing highly flexible chips that can model a wid
range of different networks and dynamic models [5]. On bot

these fronts, neuromorphic chips are clearly moving toward,ggq 't actuators. Groups at the CapoCaccia neuromorphi
Iaré;e-_scals ?{ﬁtems atgle t;)h5|mglate SUbsr:am'?l Eﬂﬂ’m workshop have for several years running been creating and
a :am -t u the question then becomes how 1o hoo e?@fining a general AER standard interface, and in some cases
Systems togetner. have demonstrated actual hardware [11], [12]. However with
Another branch of neuromorphic engineering, focussegignal-level details remaining proprietary, and a daté-|i
more on practical applications than on neural modelfieg de5|gn that restricts these interfaces to direct links iwith
relatively modest distance, such systems are more for bench
Alexander Rast, Luis A. Plana, Steve Temple, David R. Lested |evel interfaces than multimodel, multisite experimeitisey
Sfteve Fuhrbef are W'thh the School ( of C_lomP“te'@SC'enceii Tﬁ‘gf‘ﬂ““y do not address the need to provide remote interfaces between
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I. NEUROMORPHICHARDWARE SYSTEMS. A NEED FOR
INTERFACES

Some progress has already been made in implementing
| multisystem neuromorphic interfaces. The group of
ernabe Linares-Barranco demonstrated as early as 2009 an
nd-to-end neuromorphic system [10], linking sensors ¢e pr
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Fig. 2. SpiNNaker Architecture. The dashed box indicates ektent of
the SpiNNaker chip. Dotted grey boxes indicate local menagas.

using standard, networkable UDP protocol, to link two sys-
tems: BrainScaleS and SpiNNaker, designed from the outset
for large-scale neural simulation, and with easy extelisibi

to AER-based sensors.

II. SPINNAKER AND BRAINSCALES: TwoO
NEUROMORPHICPLATFORMS

To demonstrate a direct neuromorphic interface, we chose
two platforms which, while sharing the overall goal of large
scale neural simulation, have very different design goats a
specifications that make them truly heterogeneous systems.
Here we discuss the architectures of the 2 chips, to provide
context for understanding their contrasting system reguir
ments.

A. SpiNNaker

The SpiNNaker chip (fig. 2) is a universal neural network
platform designed for real-time simulation. Unlike traalital
neuromorphic hardware, SpiNNaker uses an event-driven
asynchronous digital design containing programmable pro-
cessing blocks embedded in a configurable asynchronous
interconnect. Like many neuromorphic systems, however,
SpiNNaker is specifically designed to operate in real time.
There is no central clock; the assumption is that time “medel

| a structure and function optimised for neural computation.
The primary features of the neuromimetic architecture are:

Native Parallelism:

There are multiple (18) independent, general-
purpose ARM968 processors per device,

each operating completely independently

(asynchronously) from each other. Each

processor has a dedicated private subsystem
to support neural functionality. A processor

simulates multiple neurons which could be

as many as 1000 depending upon a tradeoff
between number of neurons per core, model
complexity and time resolution (or speed).

Event-Driven Processing:

An external, self-contained, instantaneous signal
- an event - drives state change in each proces-
sor. which contains a trigger that will initiate
or alter the process flow. Each processor node
contains a hardware vectored interrupt controller
that generates interrupts when an event occurs
on the node’s support devices. For an external
device to interact with SpiNNaker, it must be
able to generate and receive events at “real-time-
like” speeds.

Distributed Incoherent Memory:

Memory is local rather than global and shared.
SpiNNaker processors have access to 2 pri-
mary memory resources: their own (64+32)K

private “Tightly-Coupled Memory” (TCM) and

a per-chip partitioned SDRAM device, neither

of which require or have support for coherence
mechanisms. Any processor may modify any
memory location it can access without notifying

or synchronising with other processors. External
interfaces cannot rely on complex data-handling
routines requiring large amounts of local mem-
ory or global memory coherence.

Incremental Reconfiguration:

The structural configuration of the hardware

can change dynamically while the system

is running. SpiNNaker's communications fab-

ric (the Comms NoC) is a packet-switched

asynchronous interconnect using Address-Event
Representation to transmit neural signals be-
tween processors ([13], [14]). Each chip has a
run-time reprogrammable router implementing

incremental reconfigurability. An external de-

vice, however, must be able to identify itself to

this router and network using unique addresses
not corresponding to internal neurons, and like-
wise the configuration must be able to inform

SpiNNaker of these external signals.

SpiNNaker appears quite different to the typical neuro-

itself’, as measured by event rates from the external worldnorphic platform; where most of the latter implement a fixed

SpiNNaker exploits the large difference between typicgbhysical model, SpiNNaker is instead a substrate for a wide
electronic response times-(ns — ps) and biological times range of different possible models. Additionally, becaage

(~ ms) to support multiple neurons within a single pro-its event-driven architecture, SpiNNaker has no fixed time
cessor, creating an abstract neural hardware platforns Thnodel; it is an abstract-time system where the time model
approach embodies the neuromimetic architecture: procés-as programmable as the network model. However, the
sors and interconnect are generic and configurable, but hawal-time design objective has implications for the felesib
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B. BrainScaleS Hybrid Neuromorphic System

The BrainScaleS Hybrid Neuromorphic System (HMF EilEEiE 74ewilh8H|CANNchips
aims at building a flexible emulation platform for models o IS, eoonhas an o ik o3
of biological neural systems based on neuromorphic harg="="==eemeaedonion siie waler
ware. Its major building blocks (Fig. 3) are an industry
standard compute cluster and multiple neuromorphic harflig. 3. Overview of the BrainScaleS Hybrid Neuromorphic t8ys The
ware modules, interconnected by an OTS Ethernet switc ntral elemen_t is an uncut S!|ICOI’] wafer containing 448romworphic

. -~ CANN chips interconnected directly on top of the waferefbtal number
Each module contains an uncut silicon wafer as well as ]5 synapses per wafer is about 50 million.
digital communication subgroups. The wafer integrates 448

HICANN (High Input Count Analog Neural Network) chips host PC | host PC

compute
cluster

N oo B i

medium sized biologically realistic networks (up to about
10° synapses) at a very high speed. Some key features to wafer module 1
achieve this goal are:

[3], implementing mixed-signal circuits capable of motegl g s b _PC_S‘ I I

512 neurons ([15]). and 11_5k synapses. After the fabrlca}nong 3% FPGA — FPGA

of the HICANN chips additional metal layers are deposited -7 o g : 4_‘—|

on top of the wafer to create a dense interconnection networke = g : 11 . 11 | I 11 )

as well as the contact pads to interface the wafer to theg G < 4x ! I DNC 4x

printed circuit board it is mounted upon. o | | :

1) HICANN:  The neuromorphic circuits implemented  © I

in the HICANN chips operate in continuous time. Spikes @ o I,

generated by the neurons are distributed across the wholeg 2 I

wafer surface by the aforementioned interconnection nétwo ¢ 5 =~

on the top of the wafer. The system is aimed at emulating © 2 " - C'ANN
I S
1

wafer module 2

Small Time Constants: Fig. 4. Components and network connectivity of the Braif&gasystem
All circuits are tuned to accelerate the emu{l7l
lation by a factor of 16 compared to real-
time, i.e. the internal time constants (such as

the membrane time constant) determining the 2) Communication Network: The high acceleration factor
acceleration factor of the network aré* times demands a correspondingly high communication bandwidth,
shorter than in biology. This makes it unnec-Not only between individual HICANN chips, but also be-
essary to bias the neuron and synapse circuif¢’een different wafer-modules as well as the wafer-modules

in the deep sub-threshold regime of the transis@nd the compute cluster. Fig. 4 illustrates the organimatio
tors while keeping capacitances associated witf the off-wafer communication network. Eight HICANNs

model time constants reasonably small. Such @" @ wafer, constituting one reticle of the manufacturing
speed-up reduces approx. 3 hours of biologicdfOCeSS, are connected to a custom- designed digital nletwor
time to 1 second of emulation time, makingCh'p (DNC) [16], providing high-speed serial interfaces fo

learning experiments and extensive parametéPaXimiZing throughput to the wafer. This chip also supports
sweeps feasible. pulse handling functionality for realizing biologicalleal-

Large Neural Fan-In: istic constant-delay pulse connections. Four DNCs in turn
Up to 14k synapses can contribute to the memEoNNect to one FPGA, which provides the host-interface and
brane conductance of a single neuron. This is aficts as a network switch for wafer-to-wafer pulse routing in
important prerequisite for biologically plausible the BrainScaleS system [17]. In the current implementation
models. The average fan-in in the mammaliad-2 FPGAS connect to one wafer, limiting the number of

cortex is assumed to be at least 10k synapsé$able HICANN chips to 384 out of 448.
per neuron.
Integrated Calibration Capabilities:

To emulate the different electro-physiological
characteristics of nerve cells each neuron circuit  Connections Local to a Single Wafer: These connections
can be calibrated using 21 individual and 5Syse the links on top of the wafer. The events are transmitted
global analog parameters. They are stored iBsynchronously in continuous time. 64 neurons are time-
floating-gate memory cells locally to the neuronmuitiplexed on a single connection. The encoded neuron
circuits. number identifies the event’s target neurons. The network

Three different communication layers are used through-
out the BrainScaleS HMF system:



. . . ;[ BrainScaleS chip ID] Pad [ BrainScaleS Neuron Numbe}
topology is created by using programmable interconnestiof—; ey

. 16 0
on the HICANN chips as well as address decoders located TABLE Il.  PACKET FORMAT, SPINNAKER TO BRAINSCALES
in the synapses.

Neurons to FPGA: Leaving the wafer reduces the avail-
able bandwidth substantially. While each HICANN chipB. Network Protocol
has a communication bandwidth of 640 GBit's, its FPGA A fundamental design principle of the interface is the use

;ongéeli: é't(_)g az%r:jSis:(s)tgi:ﬁllerrg(;J dp;:]ex ggm iet\r;ezn?v%iittésgfgur()f standard protocols and hardware that present no batoiers
P P 9 880ption by the community. The hardware-level interface is

ID and a time stamp Is used, to make bepter use .Of trE‘?andard IEEE 802.3 Ethernet, and the network-level podtoc
available bandwidth with respect to the real-time linksisTh is UDP running over IP. Each data word contains a padded

encoding also facilitates the routing of events between trk%y (neuron address) in big-endian order. UDP bundles data

g:(ﬁaergggl\’vc?;gs's Eur;hh(zrn”]?éfrh ';glg\’\’: ct)rf]ee 'rgrﬂlegcelg?st' in frames of up to 65KB, permitting multiple AER packets to
X ys by 9 vent p " be packed into a single frame. However, since the interface

FPGA to Compute Cluster: The top communication layer iSSues packets immediately, a given frame can only contain
is based on the FPGA integrated Gbit-Ethernet capagsiliti 8 many packets as arrived simultaneously at the transmit
This allows the wafer-module to be integrated directly intdhterface. We therefore set the maximum frame size to 256
any OTS network infrastructure. As used here the FPGA2-bit data words, or 1024 bytes. As a common Internet
is connected to a host PC for configuration and contrdrotocol, supported both by BrainScaleS and SpiNNaker,
using the UDP protocol, different UDP ports distinguishing?DP_makes it possible to communicate between remote
between core communication and various support functiof@cations - simply by plugging the hardware into an Ethernet
such as remote reset, low-level configuration, and monitofWitch with access to an Internet-accessible router.
ing. Thus new communication targets, such as the SpiNNaker e interface translates system-native AER packets into
system used in this work, can be added with little effort byne standard 32-bit AER word, packs simultaneously argivin
employing an unused port. spike packets into a frame, and issues the frame to the target
system. At the target system, the interface unpacks each
packet from the frame and injects them directly into the
target. By packing spikes into a frame, the interface thus

The AER interface provides a direct communications linvercomes the potential mismatch between high native spike
between neuromorphic systems supporting an AER protoc@ites and relatively low UDP frame rates.

- such as BrainScaleS and SpiNNaker. Different chips may

have different AER encodings, thus a software layer is IV. |MPLEMENTATION OF THE INTERFACE
responsible for translating spikes from each side into mé&r . . .
decodable by the other side. The interface does not proviée Implementation Considerations

any built-in time-domain translation; it issues packetshe As described in section Il, BrainScaleS and SpiNNaker
target system as quickly as they are received. Likewise, fifave different design goals, leading to some specificatiion d
does not carry additional application information (such aferences that require handling. First is native packet fism
spike payloads or time stamps) that some AER protocolsrainScaleS expects 14-bit raw data words, while SpiNNaker
support. This initial version is designed as a demonsti@tor expects a packet format with a header and a 32-bit address
suitable techniques for a possible future standard interfa(and possibly a 32-bit payload, not used here). Thus part
for large-scale heterogeneous neural hardware simulationof the interface, on both sides, decodes the standard 32-
bit AER format into native format. We expect that other
chips would likewise involve a similar codec. A second, more
subtle consideration is the difference in time scales. Wher

Since most neuromorphic systems, such as BrainScale®INNaker was designed to operate in real-time, BrainScale
use a naked data word to transmit the address, we hayeCPtimised to run approximately0” times real-time. We
defined each AER event as a 32-bit word. Bits 13-0 represeﬂlf"ced functions to matCh the two tlmescales in a small
the neuron number. The 16 MSBs represent a hierachidgferface layer residing, in the case of the SpiNNaker syste
device address, which is prepended to the word and c fectly on.the main neuromimetic dgwce, and in the case
identify a specific chip or core each simulating up to 819 f the BrainScaleS system, in an integrated management
neurons. Pad bits are inserted to complete the 32-bit wo PGA [17].

For the demonstrator system, an AER packet originating at

the BrainScaleS side and targetting SpiNNaker has the fornfa SpiNNaker-Sde: The BrainScaleS Interface
in Table I1lI-A. And in the reverse direction, SpiNNaker-to-
BrainScaleS, the packet has the format in Table IlI-A.

IIl. A SPIKE EVENT-BASED AER INTERFACE

A. AER event representation

Since SpiNNaker processors are entirely general-purpose,
it is possible to use any given core on a chip for manage-
_ _ _ ment and system functions. The standard reference opgratin
[ BrainScaleS chip ID][ Pad | BrainScaleS Neuron Numbe} . . « e
31 6 1514 13 5 model for SpiNNaker designates a “Monitor” core [18]
TABLE |.  PACKET FORMAT, BRAINSCALESTO SPINNAKER specifically for this purpose. We implemented the Brain-
ScaleS interface as a packet interceptor within the Mowitor
the chip connected directly to the Ethernet interface(E)g.
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Fig. 5. BrainScaleS-SpiNNaker interface. The SpiNNaketesy we used ' > [Brainscales
implements the interface directly on the neuromimetic ${faker chip itself.
In the BrainScaleS system, since a control FPGA is an intggnd of the
design [17], we placed the interface on the FPGA, which isjatative

BrainScaleS packets to the HICANN chip. . SEinLakeél
acket Handler

[y —— BrainScaleS |
Interceptor |
A

SpiNNaker
Network

In the outgoing direction, it accepts packets from internal
SpiNNaker neurons targetted at BrainScaleS and bundles

them into frames. In the incoming direction, it detects sk Fig. 6. SpiNNaker-side BrainScaleS interface. The diagsirows the
originating in BrainScaleS, converts them into virtuagimtal ;¢ > pro‘éesses active on the Monitor. “Register B o o
neurons, and injects them onto the SpiNNaker system. Termal command originating in the host. The SpiNNakewoek is its
identify BrainScaleS to the system, the SpiNNaker hosivn internal AER asynchronous interconnect.

software registers the BrainScaleS interface as a perrhanen

IP address at start-up. This command both identifies the

BrainScaleS IP address to the system (it must be a static

IP), and specifies a “virtual chip ID” - the 16-bit address A BrainScaleS FPGA
prepended to incoming packets as in llI-A. The system also

Y

requires a few additional routing table entries to route MC

traffic to the interceptor core. Outgoing packets and rautin UDP Interface

table entries can be automatically configured using the PAC-

MAN tool chain [19]: the user specifies BrainScaleS neurons T

as a Population, mapped to a virtual core corresponding to | Frame Generation |

the registered address.

|Pu|se Downsamplingl

Routing Table

Pulse Multiplier

During operation, the interceptor on the incoming direc-
tion:

1) Captures and buffers incoming UDP packets from DNC Interface
the BrainScaleS ID. T I
2) Schedules a packet-issuing task which dequeues the L] |
buffer. DNC / HICANN |

3) Issues multicast packets containing the origin vir-

tual chip/core ID from each 32-bit word.
Fig. 7. BrainScaleS-side SpiNNaker interface, showingdifferent pulse

And in the outgoing direction: processing steps for incoming and outgoing traffic.

1) Intercepts MC traffic with source IDs matching the
range to be sent to the BrainScaleS interface.  accelerated time). This partially matches the spike ratbef
2) Strips off the unused high bits. incoming pulse stream to the speed-up of the BrainScaleS
3) Assembles the packets into UDP frames. system. In effect, the accelerated neurons are sufficiently
4) Issues the frames to the BrainScaleS Ethernet postimulated even with spike trains with plausible real-time
) ) o _ rates. Spikes generated by the neurons on the HICANNs
To cope with the difference in time scales, on the SpiNare |ikewise downsampled by a factor of 100 to 1000
Naker side, we have implemented a packet repeater. Whilg® partially match the mean rates in the BrainScaleS-to-
given neuron in SpiNNaker generates only one packet to oWpiNNaker direction.
put to the Monitor, the interceptor generates multiple gtk ) ] ]
for the same neuron, simulating a population. The number Fig. 7 shows the SpiNNaker interface blocks on the

of duplicate packets and their timing can be configured vigrainScaleS FPGA. As per sec. II-B, the BrainScaleS FPGA
parameters at system start-up. uses UDP ports to differentiate between different types of

communication targets. To interface with SpiNNaker, a port
C. BrainScaleSside: The SpiNNaker interface filter selects incoming UDP frames from th_e SpiNNake_r
system. These frames are forwarded to a configurable routing
Handling the pulse communication on the BrainScalegble, which translates the incoming 32bit words into 14bit
side is done completely in the system’s FPGAs. These al@cal addresses, specifying the target HICANN and virtual
responsible for address decoding and pulse processing. Saurce neuron address. The translated pulses are thetedhser
bridge the gap in the operating timescales, incoming puls@s a ring buffer, which realises the pulse multiplication by
from SpiNNaker are multiplied between 100 and 1000 timesontinuously looping over all buffer entries and geneigtin
at a frequency of approx. 100kHz (corresponding to 10Hz iapikes with the entry’s address. Pulses generated by neuron
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delay_di str = p. RandonDi stribution('uniforni, [5,10], rng)
i /RS1) @ /RS2 i /RS3) i /RS e /RS5) iy /RSE wei ght _di str = p. RandonDi stribution(’uniform, [0,2], rngl)

‘Stimu\us

v_distr = p.RandonDi stribution(’uniform, [-55,-95], rng)

SpiNNaker BrainScaleS SpiNNaker vinits =[]

for i in range(nNeurons):
v_inits.append(v_distr.next())

Fig. 8. Structure of the synfire chain experiment and digtiln among  ceii params_1if in = {'taum:32, 'v_init':-80, 'v_rest’:-75, 'v_reset’:-95,
the two systems. 'v_thresh':-55, 'tau_syn_E :5, 'tau_syn_l':10, 'tau_refrac’:20, 'i_offset’:1}

cell_params_|if = {"tau_m:32, 'v_init':-80, 'v_rest’:-75, 'v_reset’:-95,
'v_thresh':-55, 'tau_syn_E :5, 'tau_syn_l':10, 'tau_refrac’:5, 'i_offset’':0}
on the HICANNSs are sent to a downsampling unit that onlyy 2o 2159
forwards every n-th spike to a frame generation module, oo
. . . N i ght _to_spi ke = 20
which bundles simultaneous spikes and sends them via the

. . . r i in range(n_pop):
UDP interface to the SpiNNaker side. iti =0 ,
popul ati ons. append( p. Popul ati on(nNeurons, p.|F_curr_exp,
cell _params_lif_in, |abel="pop_%' %i))
popul ations[i].random nit(v_distr)
V_ DUAL-SYSTEM, MULT|-T|ME DOMA|N S|MULAT|ON BSpopul ation = p. Popul ati on(nNeurons, p.|F_curr_exp, cell_params_lif,

| abel =" Br _ai nScal eSiDu_mry' ) _

In order to verify the interface, we tested the System eise o = -ep e eonstrant(oesz, o, tpea)
both with a local connection, the two systems side-by- — [eei™ pepia wryy ot on(nieurons, prtFeurr_exp. cell paramtit,
side and connected directly through an Ethernet cable (as'' ', ¢ '~ %
in flg 1), and over the |nternet, eaCh SyStem residing in proj ections. append(p. Proj ection(popul ations[i-1], populations[i],

p. OneToOneConnect or (wei ght s=wei ght _t o_spi ke, del ays=10)))

a remote location. We configured a standard benchmark e'se

proj ections. append(p. Proj ecti on(BSpopul ation, popul ations[i],

test that both systems could execute, and that represents a p. oeTooneconnect or (vei ght s=wei ght _t o_spi ke, del ays=10)))
popul ations[i].record_v()

reasonably realistic application scenario. Results ydhe popul ati ons[i] . record(to_fil e=Fal se)

COFreCt Operat'on Of the InterfaCe proj ections. append(p. Proj ecti on(popul ations[1], BSpopul ation,
p. OneToOneConnect or (wei ght s=wei ght _t o_spi ke, del ays=10)))

A. Test Experiment D endey
For testing the combined systems in a reasonable ex- .

periment, a s%mplified version c};f a synfire chain [20] wasé' Dual-System Testing

used. This network is suited for testing the interface fao tw  The first tests we ran placed the systems side-by-side

reasons. First, it is a feed-forward network, so that theylel in a single location, for direct observability and mitigpati

of the interface, being very different for local or remotéuge  of possible networking issues. Indeed, we observed that for

has no influence on the network behaviour, as would be tk®me network configurations, a remote setup could experi-

case for a recurrent network. Second, the synfire chain éhce connectivity problems when the systems on either side

selective for the relative spike timings. More precisefy, iwere separated by an intervening firewall. Obviously in a

spikes are spread in time, they do not trigger a transmissi@irect connection situation this was not a concern.

through the chain, while short burst of spikes are safely

transmitted. Reproducing this behaviour is a challengasg t

for a combined system operating at different timescales.

In the second series of tests, the two systems were in
separate locations - the SpiNNaker system at the University
of Manchester, the BrainScaleS system at TU Dresden.
The test bench is a script written in the PyNN [21]We also configured the SpiNNaker system remotely from
network description language, executed on the SpiNNake&resden, usingsh to connect to the SpiNNaker local host.
system. Neurons on the SpiNNaker side are configurdgebr this test we also optimised the BrainScaleS parameters
so that a given neuron in the chain will fire whenever ifor a selective response, setting the pulse multiplicatmn
receives a spike. As shown in Fig. 8, the chain contains 200 and the downsampling to 100.
populations of neurons, of which SpiNNaker simulates five.
We then inserted BrainScaleS to simulate th&mpulation,
to complete the chain. On the BrainScaleS system, o

Figs. 9 and 10 show the results for the remote operation,
e first one for a narrow initial spike burst, the second

neuron with ten inputs was utilized, together with the puls@n€ for a wider distribution. Both results show the suc-
processing described in Sec. IV-C. The BrainScaleS palnt wif €SSful combined, remote operation of both systems. Note
its accelerated time base essentially operates as a ceimed that_ in both cases, the timing of re_ce|ved sp|kes from the
detector, generating output spikes only if enough inpués aPrainScales system on SpiNNaker is much tighter than the
spiking in a short time window. The SpiNnaker system wa riginating splke_s, because of the higher hative speed_of
configured to run in real-time, with a simulation time stegn€ HICANN chip, and the absence of any time-domain
of 1 ms. The listing below gives the PyNN script. translation.

oot 51 oyt o '_I'h(_e c_omparison of_both figures also _sh_o_ws th_at th_e vv_hole
import pyNN.spi NNaker as p chain is indeed selective: For a narrow initial spike dstri

p. setup(timestep=.0, min delay = 1.0, max_delay = 8.0, db_name="synfire. sqlite’) tion, transmission is stable and the populations followvihngy
BrainScaleS one are rather forced to spike. In contrastnwhe

n_pop = 6 #60

nNeurons = 100 #100 choosing a slightly wider initial spike burst, transmissio
P. get _db(). set_nunber _of _neur ons_per_core(’ | F_curr_exp’, nheurons) starts to fade out and get unreliable. Even wider distrimi
rng = p. NunpyRNG( seed=28374) would result in an almost complete shut down of activity afte

rngl = p. NunpyRNG( seed=12345)

the BrainScaleS part.



RS6 (SpiNNaker) Such manual configuration would be the simplest way to
- perform system tuning, but it is not unreasonable to comside
; t a more advanced method: using one system to configure
RS4 (Spi T : T the other automatically, in the manner of a neuromodulatory
(SpiNNaker) : : . . . . ..
L g L path, allowing for dynamic-real-time system tuning. Tlgs i

RS3 (Down- N -
sampled HICANN) L one direction we are looking at for the future.

RS2 (SpiNNaker)

RS5 (SpiNNaker)

B. Next Steps: Future Work

Dynamical tuning using neuromodulation is one example

RS1 (SpiNNaker)

Stimulus I T N I A of an advanced, multi-system application we are investigat
o T R—r Y as part of the next steps. This approach is particularlyasie
Time in ms in the SpiNNaker-to-BrainScaleS system: inherently, SpiN

Naker runs in a slow time domain, relative to BrainScaleS,

Fig. 9. Synfire chain, combined BrainScaleS-SpiNNakeresgsnarrow which makes it a natural fit to model slow neuromodulatory

initial stimulation processes on a model running at high speeds within the
] BrainScaleS system. More immediately, we are working to

RS6 (SpiNNaker) . | | integrate a silicon retina into the system using the same
i : interface, demonstrating the use of the approach for remote

RS5 (SpiNNaker) T sensors or actuators as well as connections between ¢ortica

like processors modelling cognitive processes. In adulitio
we will be investigating more thoroughly the behaviour of
simulations across heterogeneous time domains and devel-
oping techniques for time domain bridging. These direcion
become possible because of the basic work here to create a
standard interface that permits remote connectivity betwe
different neuromorphic systems.

RS4 (SpiNNaker) .f : ';;

RS3 (Down-
sampled HICANN)l

RS2 (SpiNNaker)

RS1 (SpiNNaker)

Stimulus

s 800 C. What Should A Neuromorphic Interface Look Like?

0 200 4

£]I'(i)me in ms
The question of neuromorphic interfaces has been en-
gaging the research community for several years now. Very
early on in the development of the BrainScaleS-SpiNNaker
interface, it became clear that the only practicable apgroa
would be to use a standard Ethernet connection - because
The successful execution of these tests and the improvéds is one of the few built-in components that almost every
output results verify the functionality of the interfacedan device supports. With this research, we propose several key

Fig. 10. Synfire chain, combined BrainScaleS-SpiNNakeltesys wide
initial stimulation

confirm its suitability for active multisite simulations. points about what such a neuromorphic interface should look
like:
VI. DiscussioN A NETWORKABLE STANDARD I
NEUROMORPHICINTERFACE Remote Accessibility: . .
Two devices need not be physically proximate

Developing and running an interface for two real-world to communicate.
systems in a real-time simulation scenario makes obvious |ndustry Standard Protocol:
several points about both the potential and the practieslit The interface uses available public protocols
of neuromorphic interfaces. with existing support.

Off-the-Shelf Physical Interface:

A. Dynamic System Tuning The physical layer, connectors, and cabling use

existing hardware standards .
Address-Event-Representation:

The neural layer interface is a spike-based AER

protocol with simple packet format.

A direct interface between the SpiNNaker and Brain-
ScaleS system makes it possible to observe interactively th
effects of different models, and different parametersjraur
multi-system simulation. One way this was of immediate use

was in tuning the BrainScaleS parameters for the synfirghis style of universal, globally accessible interface i-s
chain model. Taking advantage of the direct observabilityhle as a standard for the upcoming generation of neuromor-

available by running the model interactively, it is possibl phic systems: large, multisite, heterogeneous platforms.
to follow a simple iterative configure-run-examine results

cycle to tune the BrainScaleS chip. A similar model can be VIl. CONCLUSIONS
applied to other processes, either model-specific or hamlwa '
specific, that require tuning, and because the interfacevall The interface we have implemented between the Brain-

for remote access, either hardware system can be configufchleS and the SpiNNaker systems bridges two neural hard-
in this way from a model running on either side, or moravare platforms that have been designed from the outset to be
generally between any group of remotely-connected devicdarge-scale systems. Such systems, sited in a fixed location



and accessible to modellers through public Internet iat&$  [6]
will become an increasingly typical pattern in neuromocphi
hardware, as systems scale towards brain-scale simulation
However, the question of interfacing to such large system >
seems, in the past, to have been thought through mostill
with respect to pre-built simulations targetted at a specifi
platform, in the mode of a traditional HPC computing
model. Such a model is probably unrealistic in the casqs]
of neuromorphic systems, which may need to interface to
sensors and actuators (themselves quite probably neuromor
phic chips), or in fact other neuromorphic systems simngati
other high-level cognitive processes. An interface suclvas (9]
have developed, that permits direct communications ower th
Internet via a private channel, makes it possible to hook ifg
these devices directly into a large system, as if they were
beside it.

Furthermore, research either into brain function or neural
computing models at large scales usually takes the form of
collaborations between multiple research groups, tylyical
having several computing platforms. Immediate benefits lik
cross-system parameter tuning, as we observed in our expgh;
iments, are a simple way a remote neuromorphic interface
enhances the value of multiple platforms. Far more sig-
nificantly, however, different neuromorphic chips will keav
different strengths: perhaps multi-model simulation ireon
case, single-model accuracy for another, high speed forlg]
third. A large-scale neural simulation may need all these
capabilities and more, for example to examine one area
in high detail while retaining an abstract model for othefi3
necessary processes in the entire simulation. The interfac
we have developed allows these groups to use multiple
neuromorphic platforms as a single, integrated heteragene
system rather than being forced to operate them in isolatiof¥]
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