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Abstract—With neuromorphic hardware rapidly moving
towards large-scale, possibly immovable systems capable of im-
plementing brain-scale neural models in hardware, there isan
emerging need to be able to integrate multi-system combinations
of sensors and cortical processors over distributed, multisite
configurations. If there were a standard, direct interface al-
lowing large systems to communicate using native signalling,
it would be possible to use heterogeneous resources efficiently
according to their task suitability. We propose a UDP-based
AER spiking interface that permits direct bidirectional spike
communications over standard networks, and demonstrate a
practical implementation with two large-scale neuromorphic
systems, BrainScaleS and SpiNNaker. Internally, the interfaces
at either end appear as interceptors which decode and encode
spikes in a standardised AER address format onto UDP frames.
The system is able to run a spiking neural network distributed
over the two systems, in both a side-by-side setup with a
direct cable link and over the Internet between 2 widely spaced
sites. Such a model not only realises a solution for connecting
remote sensors or processors to a large, central neuromorphic
simulation platform, but also opens possibilities for interesting
automated remote neural control, such as parameter tuning,
for large, complex neural systems, and suggests methods to
overcome differences in timescale and simulation model between
different platforms. With its entirely standard protocol a nd
physical layer, the interface makes large neuromorphic systems
a distributed, accessible resource available to all.

I. NEUROMORPHICHARDWARE SYSTEMS: A NEED FOR
INTERFACES

“Neuromorphic” chips, devices that attempt to implement
neural networks directly in hardware, are increasing in scale.
Various implementations have emerged, ranging from early,
small-scale analogue devices following the original modelof
Carver Mead [1], to more advanced chips implementing spe-
cific spiking neural networks [2], through to modern, large-
scale systems intended to simulate very large networks with
reasonable biological fidelity, possibly at highly accelerated
speeds [3]. Recently, the “neuromimetic” branch of neural
chips [4] has also begun to explore the configurability dimen-
sion, introducing highly flexible chips that can model a wide
range of different networks and dynamic models [5]. On both
these fronts, neuromorphic chips are clearly moving towards
large-scale systems able to simulate substantial fractions of
a brain - but the question then becomes how to hook these
systems together.

Another branch of neuromorphic engineering, focussed
more on practical applications than on neural modellingper
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Fig. 1. SpiNNaker to BrainScaleS interface

se, has created interesting sensors designed for particular
application scenarios where conventional sensors have in-
appropriate characteristics or feature sets [6], [7]. The need
for fast dynamic response makes neuromorphic processors,
whose architecture is naturally matched, an obvious fit for
such devices, either to provide “front-end” processing [8], or
indeed to perform all the processing on the data. However,
this presupposes the availability of a suitablenative hardware
interface, and in actual fact, the hardware interface both at
the sensor and the processor side tends to be proprietary.
A protocol-level “standard” - AER - exists [9], but it is
far from being a standard in the formal sense of the term,
and there are fundamental issues still to be resolved at the
level of connectors, signal voltages, and other very low-
level hardware concerns. If there were an interface, working
natively with AER packets, but over a standard hardware
medium, and with standard AER protocols, it would thus
neatly solve two problems: how to connect neuromorphic
sensors to processors, and how to connect neuromorphic
processors together.

Some progress has already been made in implementing
real multisystem neuromorphic interfaces. The group of
Bernabe Linares-Barranco demonstrated as early as 2009 an
end-to-end neuromorphic system [10], linking sensors to pro-
cessors to actuators. Groups at the CapoCaccia neuromorphic
workshop have for several years running been creating and
refining a general AER standard interface, and in some cases
have demonstrated actual hardware [11], [12]. However with
signal-level details remaining proprietary, and a data-link
design that restricts these interfaces to direct links within a
relatively modest distance, such systems are more for bench-
level interfaces than multimodel, multisite experiments.They
do not address the need to provide remote interfaces between
large-scale (and hence nonportable) neuromorphic systems
and either real-world sensors or other large-scale systemsat
other facilities. Here we introduce a neuromorphic interface,



Fig. 2. SpiNNaker Architecture. The dashed box indicates the extent of
the SpiNNaker chip. Dotted grey boxes indicate local memoryareas.

using standard, networkable UDP protocol, to link two sys-
tems: BrainScaleS and SpiNNaker, designed from the outset
for large-scale neural simulation, and with easy extensibility
to AER-based sensors.

II. SPINNAKER AND BRAINSCALES: TWO
NEUROMORPHICPLATFORMS

To demonstrate a direct neuromorphic interface, we chose
two platforms which, while sharing the overall goal of large-
scale neural simulation, have very different design goals and
specifications that make them truly heterogeneous systems.
Here we discuss the architectures of the 2 chips, to provide
context for understanding their contrasting system require-
ments.

A. SpiNNaker

The SpiNNaker chip (fig. 2) is a universal neural network
platform designed for real-time simulation. Unlike traditional
neuromorphic hardware, SpiNNaker uses an event-driven
asynchronous digital design containing programmable pro-
cessing blocks embedded in a configurable asynchronous
interconnect. Like many neuromorphic systems, however,
SpiNNaker is specifically designed to operate in real time.
There is no central clock; the assumption is that time “models
itself”, as measured by event rates from the external world.
SpiNNaker exploits the large difference between typical
electronic response times (∼ ns− µs) and biological times
(∼ ms) to support multiple neurons within a single pro-
cessor, creating an abstract neural hardware platform. This
approach embodies the neuromimetic architecture: proces-
sors and interconnect are generic and configurable, but have

a structure and function optimised for neural computation.
The primary features of the neuromimetic architecture are:

Native Parallelism:
There are multiple (18) independent, general-
purpose ARM968 processors per device,
each operating completely independently
(asynchronously) from each other. Each
processor has a dedicated private subsystem
to support neural functionality. A processor
simulates multiple neurons which could be
as many as 1000 depending upon a tradeoff
between number of neurons per core, model
complexity and time resolution (or speed).

Event-Driven Processing:
An external, self-contained, instantaneous signal
- an event - drives state change in each proces-
sor. which contains a trigger that will initiate
or alter the process flow. Each processor node
contains a hardware vectored interrupt controller
that generates interrupts when an event occurs
on the node’s support devices. For an external
device to interact with SpiNNaker, it must be
able to generate and receive events at “real-time-
like” speeds.

Distributed Incoherent Memory:
Memory is local rather than global and shared.
SpiNNaker processors have access to 2 pri-
mary memory resources: their own (64+32)K
private “Tightly-Coupled Memory” (TCM) and
a per-chip partitioned SDRAM device, neither
of which require or have support for coherence
mechanisms. Any processor may modify any
memory location it can access without notifying
or synchronising with other processors. External
interfaces cannot rely on complex data-handling
routines requiring large amounts of local mem-
ory or global memory coherence.

Incremental Reconfiguration:
The structural configuration of the hardware
can change dynamically while the system
is running. SpiNNaker’s communications fab-
ric (the Comms NoC) is a packet-switched
asynchronous interconnect using Address-Event
Representation to transmit neural signals be-
tween processors ([13], [14]). Each chip has a
run-time reprogrammable router implementing
incremental reconfigurability. An external de-
vice, however, must be able to identify itself to
this router and network using unique addresses
not corresponding to internal neurons, and like-
wise the configuration must be able to inform
SpiNNaker of these external signals.

SpiNNaker appears quite different to the typical neuro-
morphic platform; where most of the latter implement a fixed
physical model, SpiNNaker is instead a substrate for a wide
range of different possible models. Additionally, becauseof
its event-driven architecture, SpiNNaker has no fixed time
model; it is an abstract-time system where the time model
is as programmable as the network model. However, the
real-time design objective has implications for the feasible



models of time, just as the processors’ internal specification
has implications for feasible dynamical models of neurons.
The critical property is the event rate: feasible time models
must generate events at rates that do not overwhelm the
processor’s event-handling capacity (which itself depends
upon the complexity of the neural model).

B. BrainScaleS Hybrid Neuromorphic System

The BrainScaleS Hybrid Neuromorphic System (HMF)
aims at building a flexible emulation platform for models
of biological neural systems based on neuromorphic hard-
ware. Its major building blocks (Fig. 3) are an industry
standard compute cluster and multiple neuromorphic hard-
ware modules, interconnected by an OTS Ethernet switch.
Each module contains an uncut silicon wafer as well as 12
digital communication subgroups. The wafer integrates 448
HICANN (High Input Count Analog Neural Network) chips
[3], implementing mixed-signal circuits capable of modelling
512 neurons ([15]) and 115k synapses. After the fabrication
of the HICANN chips additional metal layers are deposited
on top of the wafer to create a dense interconnection network
as well as the contact pads to interface the wafer to the
printed circuit board it is mounted upon.

1) HICANN: The neuromorphic circuits implemented
in the HICANN chips operate in continuous time. Spikes
generated by the neurons are distributed across the whole
wafer surface by the aforementioned interconnection network
on the top of the wafer. The system is aimed at emulating
medium sized biologically realistic networks (up to about
109 synapses) at a very high speed. Some key features to
achieve this goal are:

Small Time Constants:
All circuits are tuned to accelerate the emu-
lation by a factor of 104 compared to real-
time, i.e. the internal time constants (such as
the membrane time constant) determining the
acceleration factor of the network are104 times
shorter than in biology. This makes it unnec-
essary to bias the neuron and synapse circuits
in the deep sub-threshold regime of the transis-
tors while keeping capacitances associated with
model time constants reasonably small. Such a
speed-up reduces approx. 3 hours of biological
time to 1 second of emulation time, making
learning experiments and extensive parameter
sweeps feasible.

Large Neural Fan-In:
Up to 14k synapses can contribute to the mem-
brane conductance of a single neuron. This is an
important prerequisite for biologically plausible
models. The average fan-in in the mammalian
cortex is assumed to be at least 10k synapses
per neuron.

Integrated Calibration Capabilities:
To emulate the different electro-physiological
characteristics of nerve cells each neuron circuit
can be calibrated using 21 individual and 5
global analog parameters. They are stored in
floating-gate memory cells locally to the neuron
circuits.
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Fig. 3. Overview of the BrainScaleS Hybrid Neuromorphic System. The
central element is an uncut silicon wafer containing 448 neuromorphic
HICANN chips interconnected directly on top of the wafer. The total number
of synapses per wafer is about 50 million.

Fig. 4. Components and network connectivity of the BrainScaleS system
[17].

2) Communication Network: The high acceleration factor
demands a correspondingly high communication bandwidth,
not only between individual HICANN chips, but also be-
tween different wafer-modules as well as the wafer-modules
and the compute cluster. Fig. 4 illustrates the organization
of the off-wafer communication network. Eight HICANNs
on a wafer, constituting one reticle of the manufacturing
process, are connected to a custom- designed digital network
chip (DNC) [16], providing high-speed serial interfaces for
maximizing throughput to the wafer. This chip also supports
pulse handling functionality for realizing biologically real-
istic constant-delay pulse connections. Four DNCs in turn
connect to one FPGA, which provides the host-interface and
acts as a network switch for wafer-to-wafer pulse routing in
the BrainScaleS system [17]. In the current implementation
12 FPGAs connect to one wafer, limiting the number of
usable HICANN chips to 384 out of 448.

Three different communication layers are used through-
out the BrainScaleS HMF system:

Connections Local to a Single Wafer: These connections
use the links on top of the wafer. The events are transmitted
asynchronously in continuous time. 64 neurons are time-
multiplexed on a single connection. The encoded neuron
number identifies the event’s target neurons. The network



topology is created by using programmable interconnections
on the HICANN chips as well as address decoders located
in the synapses.

Neurons to FPGA: Leaving the wafer reduces the avail-
able bandwidth substantially. While each HICANN chip
has a communication bandwidth of 640 GBit/s, its FPGA
connection consists of a full-duplex link with 2 GBit/s. Thus,
a packet-based protocol encoding each event with a neuron
ID and a time stamp is used, to make better use of the
available bandwidth with respect to the real-time links. This
encoding also facilitates the routing of events between the
different wafers. Furthermore, it allows the implementation
of axonal delays by short-term storage of event packets.

FPGA to Compute Cluster: The top communication layer
is based on the FPGA’s integrated Gbit-Ethernet capabilities.
This allows the wafer-module to be integrated directly into
any OTS network infrastructure. As used here the FPGA
is connected to a host PC for configuration and control
using the UDP protocol, different UDP ports distinguishing
between core communication and various support functions
such as remote reset, low-level configuration, and monitor-
ing. Thus new communication targets, such as the SpiNNaker
system used in this work, can be added with little effort by
employing an unused port.

III. A S PIKE EVENT-BASED AER INTERFACE

The AER interface provides a direct communications link
between neuromorphic systems supporting an AER protocol
- such as BrainScaleS and SpiNNaker. Different chips may
have different AER encodings, thus a software layer is
responsible for translating spikes from each side into a format
decodable by the other side. The interface does not provide
any built-in time-domain translation; it issues packets tothe
target system as quickly as they are received. Likewise, it
does not carry additional application information (such as
spike payloads or time stamps) that some AER protocols
support. This initial version is designed as a demonstratorof
suitable techniques for a possible future standard interface
for large-scale heterogeneous neural hardware simulation.

A. AER event representation

Since most neuromorphic systems, such as BrainScaleS,
use a naked data word to transmit the address, we have
defined each AER event as a 32-bit word. Bits 13-0 represent
the neuron number. The 16 MSBs represent a hierachical
device address, which is prepended to the word and can
identify a specific chip or core each simulating up to 8192
neurons. Pad bits are inserted to complete the 32-bit word.
For the demonstrator system, an AER packet originating at
the BrainScaleS side and targetting SpiNNaker has the format
in Table III-A. And in the reverse direction, SpiNNaker-to-
BrainScaleS, the packet has the format in Table III-A.

BrainScaleS chip ID Pad BrainScaleS Neuron Number
31 16 15 14 13 0

TABLE I. PACKET FORMAT, BRAINSCALES TO SPINNAKER

BrainScaleS chip ID Pad BrainScaleS Neuron Number
31 16 15 14 13 0

TABLE II. PACKET FORMAT, SPINNAKER TO BRAINSCALES

B. Network Protocol

A fundamental design principle of the interface is the use
of standard protocols and hardware that present no barriersto
adoption by the community. The hardware-level interface is
standard IEEE 802.3 Ethernet, and the network-level protocol
is UDP running over IP. Each data word contains a padded
key (neuron address) in big-endian order. UDP bundles data
in frames of up to 65KB, permitting multiple AER packets to
be packed into a single frame. However, since the interface
issues packets immediately, a given frame can only contain
as many packets as arrived simultaneously at the transmit
interface. We therefore set the maximum frame size to 256
32-bit data words, or 1024 bytes. As a common Internet
protocol, supported both by BrainScaleS and SpiNNaker,
UDP makes it possible to communicate between remote
locations - simply by plugging the hardware into an Ethernet
switch with access to an Internet-accessible router.

The interface translates system-native AER packets into
the standard 32-bit AER word, packs simultaneously arriving
spike packets into a frame, and issues the frame to the target
system. At the target system, the interface unpacks each
packet from the frame and injects them directly into the
target. By packing spikes into a frame, the interface thus
overcomes the potential mismatch between high native spike
rates and relatively low UDP frame rates.

IV. I MPLEMENTATION OF THE INTERFACE

A. Implementation Considerations

As described in section II, BrainScaleS and SpiNNaker
have different design goals, leading to some specification dif-
ferences that require handling. First is native packet formats:
BrainScaleS expects 14-bit raw data words, while SpiNNaker
expects a packet format with a header and a 32-bit address
(and possibly a 32-bit payload, not used here). Thus part
of the interface, on both sides, decodes the standard 32-
bit AER format into native format. We expect that other
chips would likewise involve a similar codec. A second, more
subtle consideration is the difference in time scales. Where
SpiNNaker was designed to operate in real-time, BrainScales
is optimised to run approximately104 times real-time. We
placed functions to match the two timescales in a small
interface layer residing, in the case of the SpiNNaker system,
directly on the main neuromimetic device, and in the case
of the BrainScaleS system, in an integrated management
FPGA [17].

B. SpiNNaker-Side: The BrainScaleS Interface

Since SpiNNaker processors are entirely general-purpose,
it is possible to use any given core on a chip for manage-
ment and system functions. The standard reference operating
model for SpiNNaker designates a “Monitor” core [18]
specifically for this purpose. We implemented the Brain-
ScaleS interface as a packet interceptor within the Monitoron
the chip connected directly to the Ethernet interface(Fig.6).



Fig. 5. BrainScaleS-SpiNNaker interface. The SpiNNaker system we used
implements the interface directly on the neuromimetic SpiNNaker chip itself.
In the BrainScaleS system, since a control FPGA is an integral part of the
design [17], we placed the interface on the FPGA, which injects native
BrainScaleS packets to the HiCANN chip.

In the outgoing direction, it accepts packets from internal
SpiNNaker neurons targetted at BrainScaleS and bundles
them into frames. In the incoming direction, it detects packets
originating in BrainScaleS, converts them into virtual internal
neurons, and injects them onto the SpiNNaker system. To
identify BrainScaleS to the system, the SpiNNaker host
software registers the BrainScaleS interface as a permanent
IP address at start-up. This command both identifies the
BrainScaleS IP address to the system (it must be a static
IP), and specifies a “virtual chip ID” - the 16-bit address
prepended to incoming packets as in III-A. The system also
requires a few additional routing table entries to route MC
traffic to the interceptor core. Outgoing packets and routing
table entries can be automatically configured using the PAC-
MAN tool chain [19]: the user specifies BrainScaleS neurons
as a Population, mapped to a virtual core corresponding to
the registered address.

During operation, the interceptor on the incoming direc-
tion:

1) Captures and buffers incoming UDP packets from
the BrainScaleS ID.

2) Schedules a packet-issuing task which dequeues the
buffer.

3) Issues multicast packets containing the origin vir-
tual chip/core ID from each 32-bit word.

And in the outgoing direction:

1) Intercepts MC traffic with source IDs matching the
range to be sent to the BrainScaleS interface.

2) Strips off the unused high bits.
3) Assembles the packets into UDP frames.
4) Issues the frames to the BrainScaleS Ethernet port.

To cope with the difference in time scales, on the SpiN-
Naker side, we have implemented a packet repeater. While a
given neuron in SpiNNaker generates only one packet to out-
put to the Monitor, the interceptor generates multiple packets
for the same neuron, simulating a population. The number
of duplicate packets and their timing can be configured via
parameters at system start-up.

C. BrainScaleS-side: The SpiNNaker interface

Handling the pulse communication on the BrainScaleS
side is done completely in the system’s FPGAs. These are
responsible for address decoding and pulse processing. To
bridge the gap in the operating timescales, incoming pulses
from SpiNNaker are multiplied between 100 and 1000 times
at a frequency of approx. 100kHz (corresponding to 10Hz in

Fig. 6. SpiNNaker-side BrainScaleS interface. The diagramshows the
internal processes active on the Monitor. “Register BrainScaleS” is an
external command originating in the host. The SpiNNaker network is its
own internal AER asynchronous interconnect.
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Fig. 7. BrainScaleS-side SpiNNaker interface, showing thedifferent pulse
processing steps for incoming and outgoing traffic.

accelerated time). This partially matches the spike rate ofthe
incoming pulse stream to the speed-up of the BrainScaleS
system. In effect, the accelerated neurons are sufficiently
stimulated even with spike trains with plausible real-time
rates. Spikes generated by the neurons on the HICANNs
are likewise downsampled by a factor of 100 to 1000
to partially match the mean rates in the BrainScaleS-to-
SpiNNaker direction.

Fig. 7 shows the SpiNNaker interface blocks on the
BrainScaleS FPGA. As per sec. II-B, the BrainScaleS FPGA
uses UDP ports to differentiate between different types of
communication targets. To interface with SpiNNaker, a port
filter selects incoming UDP frames from the SpiNNaker
system. These frames are forwarded to a configurable routing
table, which translates the incoming 32bit words into 14bit
local addresses, specifying the target HICANN and virtual
source neuron address. The translated pulses are then inserted
in a ring buffer, which realises the pulse multiplication by
continuously looping over all buffer entries and generating
spikes with the entry’s address. Pulses generated by neurons



Fig. 8. Structure of the synfire chain experiment and distribution among
the two systems.

on the HICANNs are sent to a downsampling unit that only
forwards every n-th spike to a frame generation module,
which bundles simultaneous spikes and sends them via the
UDP interface to the SpiNNaker side.

V. DUAL -SYSTEM, MULTI -TIME DOMAIN SIMULATION

In order to verify the interface, we tested the system
both with a local connection, the two systems side-by-
side and connected directly through an Ethernet cable (as
in fig. 1), and over the Internet, each system residing in
a remote location. We configured a standard benchmark
test that both systems could execute, and that represents a
reasonably realistic application scenario. Results verify the
correct operation of the interface.

A. Test Experiment

For testing the combined systems in a reasonable ex-
periment, a simplified version of a synfire chain [20] was
used. This network is suited for testing the interface for two
reasons. First, it is a feed-forward network, so that the delay
of the interface, being very different for local or remote setup,
has no influence on the network behaviour, as would be the
case for a recurrent network. Second, the synfire chain is
selective for the relative spike timings. More precisely, if
spikes are spread in time, they do not trigger a transmission
through the chain, while short burst of spikes are safely
transmitted. Reproducing this behaviour is a challenging task
for a combined system operating at different timescales.

The test bench is a script written in the PyNN [21]
network description language, executed on the SpiNNaker
system. Neurons on the SpiNNaker side are configured
so that a given neuron in the chain will fire whenever it
receives a spike. As shown in Fig. 8, the chain contains 6
populations of neurons, of which SpiNNaker simulates five.
We then inserted BrainScaleS to simulate the 2nd population,
to complete the chain. On the BrainScaleS system, one
neuron with ten inputs was utilized, together with the pulse
processing described in Sec. IV-C. The BrainScaleS part with
its accelerated time base essentially operates as a coincidence
detector, generating output spikes only if enough inputs are
spiking in a short time window. The SpiNnaker system was
configured to run in real-time, with a simulation time step
of 1 ms. The listing below gives the PyNN script.

#!/usr/bin/python
import pyNN.spiNNaker as p

p.setup(timestep=1.0, min_delay = 1.0, max_delay = 8.0, db_name=’synfire.sqlite’)

n_pop = 6 #60
nNeurons = 100 #100

p.get_db().set_number_of_neurons_per_core(’IF_curr_exp’, nNeurons)

rng = p.NumpyRNG(seed=28374)
rng1 = p.NumpyRNG(seed=12345)

delay_distr = p.RandomDistribution(’uniform’, [5,10], rng)
weight_distr = p.RandomDistribution(’uniform’, [0,2], rng1)

v_distr = p.RandomDistribution(’uniform’, [-55,-95], rng)

v_inits = []
for i in range(nNeurons):

v_inits.append(v_distr.next())

cell_params_lif_in = {’tau_m’:32, ’v_init’:-80, ’v_rest’:-75, ’v_reset’:-95,
’v_thresh’:-55, ’tau_syn_E’:5, ’tau_syn_I’:10, ’tau_refrac’:20, ’i_offset’:1}

cell_params_lif = {’tau_m’:32, ’v_init’:-80, ’v_rest’:-75, ’v_reset’:-95,
’v_thresh’:-55, ’tau_syn_E’:5, ’tau_syn_I’:10, ’tau_refrac’:5, ’i_offset’:0}

populations = list()
projections = list()

weight_to_spike = 20

for i in range(n_pop):
if i == 0:

populations.append(p.Population(nNeurons, p.IF_curr_exp,
cell_params_lif_in, label=’pop_%d’ % i))
populations[i].randomInit(v_distr)
BSpopulation = p.Population(nNeurons, p.IF_curr_exp, cell_params_lif,
label=’BrainScaleS_Dummy’)
BSpopulation.set_mapping_constraint({’x’:2, ’y’:0, ’p’:1})

else:
populations.append(p.Population(nNeurons, p.IF_curr_exp, cell_params_lif,
label=’pop_%d’ % i))

if i == 1 or i > 2:
print i
projections.append(p.Projection(populations[i-1], populations[i],
p.OneToOneConnector(weights=weight_to_spike, delays=10)))

else:
projections.append(p.Projection(BSpopulation, populations[i],
p.OneToOneConnector(weights=weight_to_spike, delays=10)))

populations[i].record_v()
populations[i].record(to_file=False)

projections.append(p.Projection(populations[1], BSpopulation,
p.OneToOneConnector(weights=weight_to_spike, delays=10)))

p.run(10000)
p.end()

B. Dual-System Testing

The first tests we ran placed the systems side-by-side
in a single location, for direct observability and mitigation
of possible networking issues. Indeed, we observed that for
some network configurations, a remote setup could experi-
ence connectivity problems when the systems on either side
were separated by an intervening firewall. Obviously in a
direct connection situation this was not a concern.

In the second series of tests, the two systems were in
separate locations - the SpiNNaker system at the University
of Manchester, the BrainScaleS system at TU Dresden.
We also configured the SpiNNaker system remotely from
Dresden, usingssh to connect to the SpiNNaker local host.
For this test we also optimised the BrainScaleS parameters
for a selective response, setting the pulse multiplicationto
200 and the downsampling to 100.

Figs. 9 and 10 show the results for the remote operation,
the first one for a narrow initial spike burst, the second
one for a wider distribution. Both results show the suc-
cessful combined, remote operation of both systems. Note
that in both cases, the timing of received spikes from the
BrainScaleS system on SpiNNaker is much tighter than the
originating spikes, because of the higher native speed of
the HiCANN chip, and the absence of any time-domain
translation.

The comparison of both figures also shows that the whole
chain is indeed selective: For a narrow initial spike distribu-
tion, transmission is stable and the populations followingthe
BrainScaleS one are rather forced to spike. In contrast, when
choosing a slightly wider initial spike burst, transmission
starts to fade out and get unreliable. Even wider distributions
would result in an almost complete shut down of activity after
the BrainScaleS part.



Fig. 9. Synfire chain, combined BrainScaleS-SpiNNaker system, narrow
initial stimulation

Fig. 10. Synfire chain, combined BrainScaleS-SpiNNaker system, wide
initial stimulation

The successful execution of these tests and the improved
output results verify the functionality of the interface and
confirm its suitability for active multisite simulations.

VI. D ISCUSSION: A NETWORKABLE STANDARD
NEUROMORPHICINTERFACE

Developing and running an interface for two real-world
systems in a real-time simulation scenario makes obvious
several points about both the potential and the practicalities
of neuromorphic interfaces.

A. Dynamic System Tuning

A direct interface between the SpiNNaker and Brain-
ScaleS system makes it possible to observe interactively the
effects of different models, and different parameters, during
multi-system simulation. One way this was of immediate use
was in tuning the BrainScaleS parameters for the synfire
chain model. Taking advantage of the direct observability
available by running the model interactively, it is possible
to follow a simple iterative configure-run-examine results
cycle to tune the BrainScaleS chip. A similar model can be
applied to other processes, either model-specific or hardware-
specific, that require tuning, and because the interface allows
for remote access, either hardware system can be configured
in this way from a model running on either side, or more
generally between any group of remotely-connected devices.

Such manual configuration would be the simplest way to
perform system tuning, but it is not unreasonable to consider
a more advanced method: using one system to configure
the other automatically, in the manner of a neuromodulatory
path, allowing for dynamic-real-time system tuning. This is
one direction we are looking at for the future.

B. Next Steps: Future Work

Dynamical tuning using neuromodulation is one example
of an advanced, multi-system application we are investigating
as part of the next steps. This approach is particularly relevant
in the SpiNNaker-to-BrainScaleS system: inherently, SpiN-
Naker runs in a slow time domain, relative to BrainScaleS,
which makes it a natural fit to model slow neuromodulatory
processes on a model running at high speeds within the
BrainScaleS system. More immediately, we are working to
integrate a silicon retina into the system using the same
interface, demonstrating the use of the approach for remote
sensors or actuators as well as connections between cortical-
like processors modelling cognitive processes. In addition
we will be investigating more thoroughly the behaviour of
simulations across heterogeneous time domains and devel-
oping techniques for time domain bridging. These directions
become possible because of the basic work here to create a
standard interface that permits remote connectivity between
different neuromorphic systems.

C. What Should A Neuromorphic Interface Look Like?

The question of neuromorphic interfaces has been en-
gaging the research community for several years now. Very
early on in the development of the BrainScaleS-SpiNNaker
interface, it became clear that the only practicable approach
would be to use a standard Ethernet connection - because
this is one of the few built-in components that almost every
device supports. With this research, we propose several key
points about what such a neuromorphic interface should look
like:

Remote Accessibility:
Two devices need not be physically proximate
to communicate.

Industry Standard Protocol:
The interface uses available public protocols
with existing support.

Off-the-Shelf Physical Interface:
The physical layer, connectors, and cabling use
existing hardware standards .

Address-Event-Representation:
The neural layer interface is a spike-based AER
protocol with simple packet format.

This style of universal, globally accessible interface is suit-
able as a standard for the upcoming generation of neuromor-
phic systems: large, multisite, heterogeneous platforms.

VII. C ONCLUSIONS

The interface we have implemented between the Brain-
ScaleS and the SpiNNaker systems bridges two neural hard-
ware platforms that have been designed from the outset to be
large-scale systems. Such systems, sited in a fixed location



and accessible to modellers through public Internet interfaces
will become an increasingly typical pattern in neuromorphic
hardware, as systems scale towards brain-scale simulation.
However, the question of interfacing to such large systems
seems, in the past, to have been thought through mostly
with respect to pre-built simulations targetted at a specific
platform, in the mode of a traditional HPC computing
model. Such a model is probably unrealistic in the case
of neuromorphic systems, which may need to interface to
sensors and actuators (themselves quite probably neuromor-
phic chips), or in fact other neuromorphic systems simulating
other high-level cognitive processes. An interface such aswe
have developed, that permits direct communications over the
Internet via a private channel, makes it possible to hook in
these devices directly into a large system, as if they were
beside it.

Furthermore, research either into brain function or neural
computing models at large scales usually takes the form of
collaborations between multiple research groups, typically
having several computing platforms. Immediate benefits like
cross-system parameter tuning, as we observed in our exper-
iments, are a simple way a remote neuromorphic interface
enhances the value of multiple platforms. Far more sig-
nificantly, however, different neuromorphic chips will have
different strengths: perhaps multi-model simulation in one
case, single-model accuracy for another, high speed for a
third. A large-scale neural simulation may need all these
capabilities and more, for example to examine one area
in high detail while retaining an abstract model for other
necessary processes in the entire simulation. The interface
we have developed allows these groups to use multiple
neuromorphic platforms as a single, integrated heterogeneous
system rather than being forced to operate them in isolation.
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R. Berner, M. Rivas-Pérez, T. Delbrück, S.-C. Liu, R. Douglas,
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