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Abstract- Signal restoration is necessary 
to perform computations of significant com- 
plexity. In digital computers each state vari- 
able is restored to a binary value, but this 
strategy is incompatible with analog compu- 
tation. Nevertheless, cortical neurons, whose 
major mode of operation is analog, are able 
to perform prodigious feats of computation. 
Our research on visual cortex suggests that 
cortical neurons are able to compute reliably 
because they are organized into populations 
in which the signal at each neuron is restored 
to an appropriate analog value by a collec- 
tive strategy. The strategy depends on feed- 
back amplification that restores an input sig- 
nal towards a stored analog memory. This 
principle is similar to recall by autoassocia- 
tive neural networks. Networks of cortical 
amplifiers can solve simple visual processing 
tasks. They are well-suited to sensory pro- 
cessing because the same principle that re- 
stores their analog signals can also extract 
meaningful features from ambiguous sensory 
input. We describe a hybrid analog-digital 
CMOS architecture for constructing networks 
of cortical amplifiers. This neuromorphic ar- 
chitecture is a step towards exploring analog 
computers whose distributed signal restora- 
tion permits them to perform reliably sequen- 
tial computations of great depth. 

I. INTRODUCTION 

Computation in physical systems is fundamentally 
limited by noise [l]. Digital computers attempt to 
overcome the problem of noise by fully restoring all 
their binary state variables at each step of a com- 
putation. The cost of this strategy is high, because 
the representational capacity of each state variable 
is reduced to a single bit. But full restoration at the 
hardware level is not the end of the problem. Noise 
enters again at the representational level. Even with 
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fully-restored signals, digital computers must use 
many bits of precision to represent real world data 
that are often only accurate to about one part in a 
hundred. They require high precision, not only to 
accommodate differences of scale, but because com- 
putational errom accumulate, or even multiply, in 
each step of the computation [2]. 

The brain adopts a different strategy for control- 
ling noise than does the digital computer. Although 
neuronal action potentials could be thought of as 
fully restored digital signals, they are not used to 
represent binary numbers. Instead, the brain uses a 
hybrid analog-digital signal representation in which 
trains of pulses transmit analog information in the 
timing of the events, and these are translated back 
into analog signals in the dendrites of the neuron. 
How does the brain cascade large numbers of such 
imprecise a n h g  processing steps without losing the 
signal in the noise? One possibility is that the brain 
is able to restore analog signals by using structured 
data representations stored in its connectivity. Such 
a mechanism is illustrated in Figure 1. We call this 
mechanism a smart amplifier, based on the obser- 
vation that an amplifier can only amplify the sig- 
nal without amplifying the noise if it already knows 
what the signal is [3]. 

11. CORTICAL AMPLIFIER 
Our work on the anatomy and physiology of visual 
cortex has shown that positive feedback is a major 
feature of cortical processing [4, 51. Even in the in- 
put layer of visual cortex, only 6% of the excitatory 
synapses are feedforward inputs derived from the 
principle sensory afferents, while 70% are derived 
from other intracortical neurons [5].  And we esti- 
mate that at least 10% of the excitatory synapses 
on the input neurons are di-synaptic reciprocal con- 
nections from cells of the same class. These feedback 
synapses alone are capable of driving the neuron to 
its maximum output. 

Simplified neural networks with positive feedback 
Positive feedback have been studied in the context 
of content-addressable memory [6] and of computa- 
tional mechanisms [7], but the behaviour of the more 
complex cortical networks is still poorly understood. 
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Figure 1: A general method for signal restoration in 
analog computers. a. An ideal analog signal profile is 
shown in the upper trace. This signal will be degraded 
by noise (lower trace) in the process of computation. 
b. Thresholding (left) is a common method for remov- 
ing noise. The corrupted input signal from part (a) is 
p a d  through a threshold element. The lower trace 
shows the signal and a superimposed threshold level 
(dotted line). All the parts of the signal below thresh- 
old are multiplied by zero while all parts above are mul- 
tiplied by one. The result resembles poorly the original 
signal. Linear amplification of the signal (right) im- 
proves the threshold's discrimination of the peak, but 
it does not improve the quantitative matching of the 
resulting signal to the original. C. A smart amplifier 
in a positive feedback loop is able to restore the ana- 
log shape of the signal because it has stored an analog 
memory. The parts of the signal that match the mem- 
ory are preferentially amplified. The amplified signal 
is separated tkom the noise by a threshold element. 

Our approach to this problem is to explore the be- 
havior of networks of non-linear neurons by making 
simple circuit approximations (Figure 2). 

To understand cortical computations is to under- 
stand how reexcitation is controlled to produce se- 
lective neuronal responses while maintaining electri- 
cal stability in the cortex. Stabilitiy can be analyzed 
in terms of the abstraction of a cortical amplifier. A 
cortical amplifier is not a discrete, physical object; 
rather, it refers to a population of interconnected 
neurons that are activated together in a particular 
situation. A particularly simple cortical amplifier 
consists of a population of identical pyramidal neu- 
rons. These neurons receive the same input, they 
are connected to each other with the same synaptic 
strength, and they share a common inhibitory feed- 
back signal. Since the outputs of all of the neurons 
are equal, the network can be reduced to the circuit 
shown in Figure 2b. 

In this abstraction, the various active and pas- 
sive conductances of the neuron, other than those 
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Figure a: behaviour of the cortical amplifier compoa 
of pyramidal neurons embedded in a network. a. T 
output of a cortical pyramidal cell drives other pyran 
dal and smooth (inhibitory) neurons (shown in blad 
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b. The electrical.equivaleni circuit of'the cortical neu- 
ron in its embedding circuit. The recurrent excitatory 
circuit creates a network conductance, a, while the re- 
current inhibitory circuit creates another network con- 
ductance, p. The effective conductance of the neu- 
ron is thus G . j j  = G + p - a, and its current gain is 
(G + P ) / G . j j  (see text). C. Current-discharge relations 
that explain the behaviour of the cortical amplifier. 
The 1/G curve expresses the current-sink, 19, offered 
by the passive membrane conductance and the aver- 
aged spike conductances. The 1/(G + p )  curve indicates 
the increased current sink, I, + I i n h ,  caused by inhibi- 
tion that is proportional to the output of the neurons. 
The l / a  curve expresses the dependence of the feed- 
back current measured in a particular neuron, I,.,, on 
the average output of neurons in the population. The 
steady-state discharge rate, F(IYec  + I,,), occurs were 
I,,, + I,, + I ,  + I , n h  = 0 is satisfied. 

associated with synaptic inputs, are collected into 
a single input conductance G .  The action potential 
discharge frequency, F ,  of a single neuron in the 
absence of feedback is an analog variable that is ap- 
proximately linear in the input current I ,  = Ii, [5]. 
So the rate output of the neuron can be equated 
with the voltage I,/G. The output of each cell 
contributes some excitatory current to each of its 
fellows, and receives from all of them a total feed- 
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back component Iree.  All the pyramidal neurons are 
the same, so the feedback current to each neuron is 
proportional to its own output, I re=  = aF, and 80 

creates an effective conductance, a, which we call a 
network conductance. Since the excitatory feedback 
is positive, the excitatory network conductance is 
negative. By a similar argument, the feedback in- 
hibitory connections contribute a positive network 
conductance, p. 

Conservation of current dictates that in the steady 
state the sum of the excitatory currents must equal 
the sum of the inhibitory currents, as indicated in 
Figure 2c. The output of all the cells in feedback 
amplifier are proportional to the input current: 

The amplifier is stable in the sense that its response 
remains bounded without the restraint of saturation 
provided that a < (G+P). Equivalently, the gain of 
the feedback loop is less than one if perturbation of 
the output by an amount 6F results in a greater in- 
crease in current sink than it does in current source, 
6F(G + p) > 6Fa. Under these conditions, the am- 
plifier will relax in the absence of input current. 

Although the feedback loop gain is less than one, 
the closed loop current gain of the amplifier can be 
much greater than one. The current gain is the ratio 
of the total excitatory current to the input current: 

(2) 
-- l i n + I r e c  G + P  

Iin - G + P - a ‘  

As a approaches G+P, the current giving rise to the 
output is due mainly to recurrent excitation rather 
than the input current. If a noise component is 
added to the inputs of each of the identical neu- 
rons in the amplifier, the responses of the neurons 
are nevertheless nearly equal, since the input current 
is dominated by the recurrent connectivity pattern, 
which averages over the noise in the input. 

A .  Noise Suppression in the Computation of 
Orientation Selectivitg 

Computation can be performed by a network of 
cortical amplifiers in which each neuron participates 
in the amplification of a whole range of input pat- 
terns. We h&ve simulated such a network computing 
just orientation selectivity, one of the most studied 
problems in primary visual cortex. The problem 
is to explain how the cortical neurons acquire an 
exquisite sensitivity to the orientation of the visual 
stimuli, when the primary inputs to visual cortex 
show only a coarse orientation bias at best. The 
model is illustrated schematically in Figure 3. Genicub 
cortical connections have imprecise mapping onto 
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Figure Sr Orientation tuning in the presence of noisy 
signal and connections. b Forty pyramidal cella (large 
black fllled circles, examples shown) each receive input 
fkom a group of LGN &ereats (small dark fflied cir- 
cles, examples shown), whose receptive flelds are orga- 
nised along an d m  in the vkual space (rectmglen). A 
pyramidal neuron is optimally stimulated by a light bar 
(shaded rectangle) that exdtes the receptive field. of, 
and has the SUM orientation U, the p u p  of &ereats 
that supply it (bottom I&). If the orientation of the 
bar is orthogoad to that of the &erants (top right), 
then the pyramidal cell receives suboptimal sthala- 
tion m d  so respond less strongly. Pyramidal neurons 
that encode sh i la r  orientations are reciprocally con- 
nected with weights, a,j that are a pussinn ihnction 
of the similarity of their preferred response, U indi- 
cated by r l q  connected neurop. and connection ihnc- 
tion on the ring (part a.). C. Geniculate current input 
to pyramidal populations (dashed line) in noisy because 
ofhpred .e  connections and intrinsic signal nob .  The 
initid level of inhibitory current (1 = 0 )  cannot s u p  
preu all of the noisy inputs. Nevertheless, most of 
the neurons with rmmptive fleldn d e n t e d  clone to the 
stimulus receive more excitation than inhibition, and 
the amount of recurrent exdtrtion increases there. The 
increesed activity of preferred neurons increases the av- 
erage inhibition, and suppr- more of the outliers. 
Wmination of the outlien improves the correlations 
amongst the survivors, and enhaaces their response. 
M e r  convergenm ( t  = 0 0 ) )  inhibition suppresses all of 
the cells whose receptive fleldn are oriented more than 
46/2 degrees fkom the stimulus (solid, guauiur-shaped 
line). 
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cortical cells [a]. The statistics of this mapping 
are approximated by assigning geniculo-cortical con- 
nection values from a binormal spatial distribution 
whose principle axis is rotated progressively through 
180 degrees, across the 40 cortical cells. Thus each 
cell responds to  a slightly different principle axis. 
The cortical cells form reciprocal positive connec- 
tions with each other. These ajj are a Gaussian 
function of the angle between the preferred orien- 
tations of the coupled cells, i and j .  In addition, 
all forty pyramidal neurons stimulate a single in- 
hibitory interneuron, which inhibits them all equally. 

In this case, I,,, is not simply aF, but the sum 
over the aijFj. Furthermore, some of the neurons in 
this network will be below the threshold nonlinear- 
ity. However, the thinking in the previous, simple 
case provides intuition for the operation of the ori- 
entation circuit. The equation that the ith neuron 
in the network obeys is: 

where N is the total number of neurons in the net- 
work. 

The effective recurrent current is maximal when 
all of the cells that are connected to the ith neu- 
ron are above threshold. If Cjaij meets the con- 
dition for stability describe in the previous section, 
then the response of the neuron cannot grow with- 
out bound. The gain of the recurrent amplifier of 
a given neuron changes as neurons to which it is 
connected pass through the threshold point. The 
amplifier’s gain is highest when all its neurons are 
above threshold, and its gain is zero when all of 
the neurons are below threshold. Similarly, the de- 
gree to which the inhibition tracks the output of 
the winning amplifier increases as convergence pro- 
ceeds, because the outputs of the neurons that are 
loosing the competition stop contributing to inhi- 
bition when they fall below threshold. In this way 
inhibition changes its role from thresholding to pro- 
portional, as convergence proceeds. Thresholding is 
required initially to extract the best estimate of the 
signal, and proportional inhibition is required later 
to stabilize the cooperative excitation of the winning 
neurons. The maximal value of proportional (stabi- 
lizing) inhibition that the amplifier can experience 
is P(n/N), where n is the number of neurons above 
threshold, participating in the active amplifier. 

The model network amplifies the correlated signal 
in a pattern that was stored in the connectivity of 
the network, without amplifying random noise (Fig- 
ure 3c). It does this by expressing the tuning curve 
inherent in the cortical connectivity. It is likely that 

the same architectures and adaptive processes used 
by neural systems to generate coherent action in the 
presence of imperfect components also enable them 
to extract precise information from a noisy and am- 
biguous environment. 

B. Control of Amplifier Activation 
Previous models of the selective responses of neo- 
cortical neurons depended on specific spatial pat- 
terns of strong inhibition [9, lo]. By contrast, cor- 
tical amplifier networks proposed here are able to 
achieve selective responses that are shaped by pat- 
terns of excitatory connection. This excitation can 
and be controlled by small levels of inhibition, pro- 
vided that the inhibition is supplied to all of the 
neurons participating in the amplifier. 

In a feedforward network, complete inhibition re- 
quires that an inhibitory current at least as large as 
Ii, to prevent a neuron from firing. When the neu- 
rons are embedded in a recurrent circuit, the same 
value of F is achieved with a much smaller Ii,,  be- 
cause a substantial fraction of the total current is 
due to a recurrent current, Irec. Under these condi- 
tions complete inhibition of discharge also requires 
that the inhibitory current be at least as large as Ii, , 
but because Ii, is smaller than the feedforward case, 
so is the required inhibitory current. The inhibition, 
Iinhamp , required to suppress neurons participating 
in a cortical amplifier, compared to the inhibition, 
Iinh;,, , required to suppress an isolated neuron is 

(4) 

The higher the gain of the amplifier, the less input 
current is needed to achieve a given level of activa- 
tion, and the less inhibition is needed to suppress 
it. 

C. Latching an Analog Memory 
The cortical amplifier can be hysteretic in its be- 
havior. This property allows the amplified state to 
be latched as a stable analog pattern by a simple 
control signal until it is ready for the next step in 
the computation. Persistence of patterns of cortical 
activity has been observed in monkeys waiting for 
a cue to make a requested eye movement [ll]. The 
spatial location of the requested eye movement is in- 
dicated by a visual target. At the onset of the target 
some neurons in cortex are activated, and they re- 
main so even after the position indicator is switched 
off. They return to rest only after the animal is cued 
to make the eye movement. 

The principles underlying latching of output can 
be seen in a system composed of two cortical am- 
plifiers, A and B, each similar to the population 
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of neurons illustrated in Figure 2b. The two am- 
plifiers compete via common inhibition, in which 
the inhibitory current for each is given by Iinh = 
$(FA + FB).  Assume that IinA > IinB has led to 
the state in amplifier A is the winner with FA above 
zero, and FB zero. Under these conditions both am- 
plifiers are inhibited by an amount, 

(5) 

IinB does not contribute to this inhibition, because 
FB is zero. To raise FB above zero to contend for 
a new winner, IinB must be greater than the inhi- 
bition. If the denominator of the above equation is 
less than one (a > G), then IinB will have to be 
larger than IinA before inhibition is exceeded and a 
new competition can begin. At any IinB value be- 
neath this &nh, the state of the system will remain 
unchanged. Therefore, provided the gain of the pop- 
ulations is sufficiently large, the winning state of the 
system can be latched by supplying the same input 
currents to all of the populations equally. Although 
the system is hysteretic, the activity of the winning 
population will still decay when the input currents 
are removed. 

111. HYBRID ANALOG-DIGITAL CMOS 
IMPLEMENTATION OF CORTICAL 

AMPLIFICATION 

A multi-chip hybrid analog-digital system that uses 
the principle of smart amplification for computing 
the stereocorrespondence of simple one-dimensional 
images in real time has been reported previously[l2]. 
This system comprised two silicon retinae, each con- 
taining 4096 pixels, and a stereocorrespondence chip, 
with 969 processing nodes. The system used the 
address-event communication method described in 
the next section. We are generalizing this architec- 
ture to make an emulator for networks of biologically- 
realistic neurons. 

A .  Communication 

The action potentials of the brain, necessitated by 
the the poor conduction of neurons, seem to be a 
specialization wholely inappropriate for the mod- 
ern VLSI medium. However, robust communica- 
tion of analog information between chips is difficult 
even though aluminum is a good conductor. Part 
of the difficulty rests in the inherent systematic dif- 
ferences between subthreshold transistor[l3] proper- 
ties on different chips. This variability implia that 
the effect of a voltage on the transistors of one chip 
is different than the effect on similar transistors of 
another. A more profound impediment to building 
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neuromorphic systems is the small number of inter- 
face ports to a chip. Chips with many neurons must 
time multiplex their outputs. Accurately multiplex- 
ing analog signals is slow due to  the settling times 
of the analog hplifiers. Analog VLSI neural net- 
work chips have overcome these difficulties by using 
digital pubbased  communication [14, 151. 

chronous digital pulse-based encoding method that 
captures the temporal structure of action potential 
discharge. The silicon neurons generate trains of 
action-potential-like events. When a particular neu- 
ron generates an action potential, this event is d e  
tected by an arbiter that immediately places the 
address of the active neuron on the bus. The ad- 
dress event is passed on to all the synapsee in the 
network. Those synapses that are ‘connected’ to 
the source neuron detect that their source neuron 
has generated an action potential, and they initi- 
ate a synaptic input to the post-synaptic neuron to 
which they are attached. The mappings between 
source neurons and recipient synapses can be e% 
tablished by digital circuitry on the AE bus that 
map the source-encoded output addreeses to differ- 
ent destination-encoded synaptic positions. 

The bandwidth of communication does limit the 
number of neurons that can share the same bus, but 
a number of factors act to conserve bandwidth. Like 
their biological counterparts, only a small fraction of 
the silicon neurons embedded in a network are active 
at any time. Even the active ones generate action 
potentials at lese than about 100 Hs. However, the 
AE bus is able to transmit events at approximately 
1 MHz. This means that the same communication 
bus can be shared by thousands of neurons. Un- 
like sequential scanning techniques for multiplexing, 
which poll neurons on every frame even if the neu- 
rons have no new data, the (AER) devotes all of 
ita bandwidth to active neurons and 80 reduces the 
temporal aliasing problem. The bandwidth limita- 
tion of a global bus will foster the development of 
hierarchical traffic routing schemes for constructing 
networks with mainly local connectivity. 

The address-event representation (AER) is an asyn- 

B. SCXl 

The SCXl project currently underway is a general- 
purpose reconfigurable neural emulator that will help 
us to investigate the computational power of a net- 
work of biologically realistic analog VLSI neurons 
[16]. The SCXl board  use^ AER communication. 
It is designed to be integrated in a multi-board sys- 
tem that also usea AER. The SCXl provides a re- 
configurable network of neurons that can function 
in real time, interacting with the real world via sili- 
con sensors, and actuators. These networks will be 
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used to explore the performance of cortical amplifier 
networks on sensorimotor tasks. 

Each SCXl board is composed of combination of 
analog and digital chips. The neurons reside on 
a number of analog multi-neuron chips. The pro- 
totype chip analog chip is a 6.8 x 4.6 mma and 
has 36 neurons. Each neuron has 6 compartments 
with active and passive channel emulator circuits 
and a total of 20 synapses. A single synapse may 
be shared by multiple presynaptic inputs. Both 
the biophysical properties of the neurons, and the 
synaptic weights are stored on volatile capacitors 
which are refreshed by a DSP chip. In addition to 
this maintenance function, the DSP participates in 
the network computation by routing presynaptic ad- 
dress events onto the synapses of neurons. 

The number of neurons on our neuron chip is 
small. However, simulation of this biophysical com- 
plexity on a SPARC2 workstation would take about 
10,000 times real time. The number of neurons in 
this application is not limited by the architectural 
framework but by the space on the chip required 
to emulate full neuronal biophysics. We estimate 
that the SCXl architecture could support a popula- 
tion of 1,000 neurons with an average firing rate of 
50 Hz, and 100 inputs per neuron on a single board. 
As demonstrated by the stereocorrespondence sys- 
tem, a neuron pool of this size can already perform 
a useful computation. 

IV. HYBRID ANALOG-DIGITAL COMPUTATION 

The cortical architecture described in this paper sug- 
gests the poesibility of a new kind of analog-digital 
hybrid computer. The physical interface between 
the digital world and the analog world is the ac- 
tion potential of the neurons. The representational 
interface between the abstract token of the digital 
world and the analog symbol is the cortical ampli- 
fier. The cortical amplifier aggregates fragmentary 
information into a cohesive pattern. The cortical 
amplifier provides a framework of a creative mem- 
ory device. Rather than the timeless and desiccated 
text of a digital memory, the hybrid analog-digital 
memory is alive and changing with the context of 
recollection. The cortical amplifier implements con- 
tent addressable memory (CAM) but with an ana- 
log encoded output. The analog values indicate the 
confidence with which the symbol is recalled, mak- 
ing implementation of fuzzy logic rules natural. 
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