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Abstract

Neurons of the same column in L4 of the cat visual cortex are likely to share the same sensory input from the same region of
the visual field. Using visually-guided patch clamp recordings we investigated the biophysical properties of the synapses of
neighboring layer 4 neurons. We recorded synaptic connections between all types of excitatory and inhibitory neurons in
L4. The E–E, E–I, and I–E connections had moderate CVs and failure rates. However, E–I connections had larger amplitudes,
faster rise-times, and shorter latencies. Identification of the sites of putative synaptic contacts together with compartmental
simulations on 3D reconstructed cells, suggested that E–I synapses tended to be located on proximal dendritic branches,
which would explain their larger EPSP amplitudes and faster kinetics. Excitatory and inhibitory synapses were located at the
same distance on distal dendrites of excitatory neurons. We hypothesize that this co-localization and the fast recruitment of
local inhibition provides an efficient means of modulating excitation in a precisely timed way.
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Introduction

The aim of this study was to describe the statistical and kinetic

properties of synaptic connections in layer 4 of the cat’s primary

visual cortex. The reason for this interest is that while the role of

thalamic afferents in producing simple receptive fields is well-

studied (reviewed by [1–3]), far less is known on the synaptic

interactions of the neurons within layer 4. Neurons comprising the

layer 4 network are excitatory spiny stellate and star pyramidal

neurons, and the inhibitory neurons, like basket cells. Thalamic

axons form synapses with both excitatory and inhibitory layer 4

neurons, but provide only about 5% of their synapses [4]. The

majority of synapses on layer 4 neurons are provided by spiny

stellate cells and layer 6 pyramidal cells [5].

Previous studies of the physiological properties of intracortical

synapses in layer 4 of the cat visual cortex revealed a network of

moderately strong and variable excitatory synapses but highly

reliable inhibitory synapses [6–13]. These findings strengthen the

hypothesis that the recurrent excitatory connections act to amplify

the transient thalamic input, while the recurrent inhibition serves

to balance the excitation and prevent runaway excitation [14,15].

Temporal factors would seem important in this interaction

between excitation and inhibition, but little is known about the

kinetic properties of EPSPs and IPSPs generated by neurons in cat

layer 4. This is in part due to the technical limitations of previous

studies, but also because precise synaptic timing on the millisecond

time scale has not previously been considered to be a major factor

in visual information processing. However, recent theoretical

studies have indicated that precise timing of thalamic inputs may

well be an essential factor in driving cat simple cells [16,17].

Precise timing of the feedforward excitatory and inhibitory inputs

were also shown in rodent somatosensory and auditory cortices

[18,19], so it seemed likely to us that synaptic dynamics may also

play an important role in modulating the response of layer 4 cells.

To define some key aspects of the synapses formed between cat

layer 4 neurons, we employed visually-targeted dual whole cell

patch clamp recordings from neighboring L4 neurons in acute

slices of cat V1 to measure the kinetics and latencies of their PSPs.

Our data show that excitatory synapses onto inhibitory L4 cells

have the largest amplitudes, fastest rise and decay kinetics and are

evoked with the shortest latencies. Based on compartmental

modeling of the reconstructed neurons and on putative synaptic

locations, we suggest that the uniquely fast recruitment of E–I

synapses results from their proximal location on the inhibitory

dendrites. We show that this mechanism provides an additional

means of modulating the activity of recurrent circuits.

Methods

Ethics Statement
All animal experiments were approved by the Kantonal

Veterinaeramt of Zurich and performed under License Nr. 25/

2001 and 50/2003 to K.A.C.M.

Slice Preparation
Performing visually-targeted patch clamp recordings requires

that the slices be particularly healthy and that their surfaces

contain numerous viable cells. Since this mode of recording was

not previously performed in adult cat slices, procedures were first
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optimized to meet these requirements and are subsequently

described in detail. Recordings were made in slices of visual cortex

taken in a terminal procedure from 2–24 months old male and

female cats that had been used in in-vivo experiments. Anesthesia

was induced by subcutaneous injection of xylazine (Rompun,

Bayer, 0.5 mg/kg) and ketamine (Narketan 10 mg/kg, or

Vetoquinol, 10 mg/kg) and maintained with intravenous injec-

tions of alphaxalone/alphadolone (‘‘Saffan’’, Schering-Plough

Animal Health) while the animal was placed in a streotaxic

apparatus. The visual cortex was accessed by craniotomy and a

block of cortex was excised and put immediately into iced slicing-

ACSF. The block was trimmed such that it contained the medial

bank, areas 17 and 18, and glued with cyanoacrylate onto the

surface of a rotating metal plate. The plate was placed in the

slicing-chamber and rotated such that the top of the lateral gyrus

was always perpendicular to the blade. The chamber was

constantly filled with freshly iced slicing-ACSF and continuously

oxygenated (95% O2– 5% CO2). Coronal slices (300 mm) were cut

on a vibratome (Sigmann Elektroniks, Germany) at a speed of

0.7 mm/s and at lateral vibration amplitude of 1.4 mm and 40 Hz

vibration frequency. Slices were maintained in a submersion

chamber containing oxygenated recording-ACSF for 45 min at

37u and subsequently at room temperature (21u–24u). Slices

obtained from cats older than 6 months were maintained in

slicing-ACSF to improve neuronal viability. ACSF contained, in

mM: 125 NaCl, 2.5 KCl, 25 NaHCO3, 1.25 NaH2PO4,

1 MgCl2, 2 CaCl2, 10 Glucose. Slicing-ACSF contained in

addition: 3 Myo-Inositol, 2 Na-Pyruvate, 0.4 Ascorbic acid and

a total of 25 mM Glucose. Slices could be maintained up to 24 Hr

after slicing, however, stable recordings were typically obtained

from slices ,18 Hr.

Electrophysiology
Slices were placed in a submersion chamber and continuously

perfused with warmed oxygenated ACSF at a rate of 2–3 ml/min,

temperature at the slice was 34–36u. Neurons were visualized with

an IR-DIC equipped microscope at 660 magnification. Somatic

whole-cell patch-clamp recordings were made in current-clamp

mode (Multiclamp-700a amplifier, Axon Instruments, Foster City,

CA) from visually identified L4 neurons in area 17 of the visual

cortex. Data acquisition was done on-line through an AD

converter (Digidata 1322, Axon Instruments, Foster City, CA) at

sampling rates of 10 kHz and filtered at 3 kHz. Access resistance

was continuously monitored and the bridge potential was

compensated. Patch pipettes were pulled from borosilicate

capillaries (2 mm outer diameter, 0.5 mm wall thickness, Hilgen-

berg, Germany). Typically, pipettes had tip-diameters of 1.5–

2.5 mm and a 4–8 MV resistance when filled with recording

pipette solution, under these conditions the access resistance was

6–25 MV. EPSPs were evoked by injecting either single or trains

of current pulses (4–9 pulses, each 2–4 ms, 0.6–1.4 nA) into the

presynaptic neuron at inter-train frequencies of 1–100 Hz, trains

were repeated at a rate of 0.1–0.125 Hz.

Pipette solution contained, in mM: 135 K-Gluconate, 4 Mg-

ATP, 5 Na2-Phosphocreatin, 0.3 GTP, 10 Hepes, KCl was added

in concentrations between 4–20 mM, pH was adjusted to 7.2 and

osmolarity to 280–290 mOsmolar. Biocytin (0.25–0.5%) was

added to the pipette solution prior to recording.

Neurons in layer 4, particularly spiny stellates, had shown high

sensitivity to the recording conditions. Pipette solutions containing

low [Cl2] were used in an attempt to facilitate the detection of

inhibitory GABAA synaptic connections. However, while IPSPs

could be well detected and recorded, the measured reversal

potential of the IPSP did not depend on the pipette [Cl2]. On the

other hand, low [Cl2] caused rapid swelling of layer 4 somata and

dendrites and a partial loss of dendritic spines. Pyramidal neurons

in layers 3 and 5 did not show similar structural damage or

swelling. Using smaller tip pipettes with resistance of 6–8 MV
reduced the damage to layer 4 neurons and recording with high

[Cl2] (20 mM) prevented the damage. In addition, neurons in

slices obtained from cats older than 3 months were more

susceptible to structural damage, swelling, and depolarization of

membrane potential than neurons from younger cats.

Histology
Immediately following recordings, slices were fixed in 4%

paraformaldehyde in 0.1 M phosphate buffer (PB), pH 7.4 and left

overnight. Slices were then washed 3 times in PB, incubated for

5 min in 1% H2O2 in PB to quench endogenous peroxidase and

subsequently washed in PB (64, 10 min each). Membranes were

permeabilised by incubation with 1% Triton 6100 for 2 Hr (4 Hr

for slices obtained from cats .6 months). Slices were then reacted

in ABC kit (Vectostain elite, Reactolab) containing 0.5% Triton

6100 for 3 hr in room temperature. Following a series of washes

in PB, slices were incubated in 0.05% diaminobenzodine in PB

containing 0.1% H2O2 for 5–10 min until cells became sufficiently

dark. Staining was terminated by washes in PB. Slices were placed

on a microscope slide and embedded in Moviol (Fluka) after excess

liquid was removed. If not otherwise stated, chemicals were

obtained from Sigma-Aldrich.

The 3-D neuronal morphology was reconstructed in the light

microscope (LM) with a computerized system (Neurolucida,

MicroBrighField) equipped with a 660 or 6100 oil objective

and analyzed with Neurolucida Explorer (version 4.50.2). The

morphological criteria for determination of a contact were the

existence of a varicosity or boutons, and no discernible gap

between the preysnaptic bouton and the postsynaptic dendrite.

Analysis
Amplitudes of unitary PSPs (EPSPs or IPSPs) were calculated as

the mean of 21 points around the peak amplitude within a time

window of 5–10 ms after the presynaptic AP. CV was calculated

as follows: Failures of the unitary PSPs were manually detected by

comparing single traces with the averaged PSP template, and are

expressed as percentage of all monitored traces. The release

probability (p) was calculated from the following equation [20]:

1

CV 2
~

N|p

1{p

The number of release sites N was assumed to be the same as

the number of contacts determined from the 3-D reconstruction,

in few cases where N was not morphologically determined, the

averaged N of the connection type was used.

For analysis of the PSP kinetics, 20–50 traces were selected in

which a PSP was evoked. These traces were aligned to the peak of

the presynaptic APs, their baseline potential subtracted and

averaged. The EPSP latency was calculated as the interval

between the time of the preysnaptic AP peak and the time at

which the EPSP rose to 10% of its maximal amplitude. The rise

time was calculated as the interval between 10–90% rise of the

EPSP amplitude and the half width was calculated as the time

interval between the rise and decay of the EPSP at the 50% peak

amplitude of the EPSP. The analysis was performed on the aligned

averaged trace only.

Cat Area 17 Inhibition
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All means are represented 6 s.d. unless otherwise stated.

Statistical significance was tested with non-parametric test due to

small sample size. The Mann-Whitney U test was used for

comparison of 2 groups and the Kruskal-Wallis test for 3 groups.

Compartmental Simulation
All simulations were carried out using the NEURON simulation

environment Version 5.9 [21] either on a Pentium PC running

Linux (the evolutionary algorithms) or on a PC running Windows

XP. The integration time step used was 25 ms. Four inhibitory

(basket) and six excitatory (5 stellate and 1 star pyramid) cells were

used for the compartmental modeling. The passive properties were

measured in these neurons and they could be fully reconstructed.

The Neurolucida reconstruction files were converted to NEU-

RON format using NeuroConvert43 (Arnd Roth & Klaus Bauer

MPI Medizinische Forschung, Heidelberg). Reconstructed spines

were deleted from the Neurolucida files prior to conversion.

Neurons were segmented into compartments whose length was

proportional to the square root of the local diameter.

To determine their passive parameters, simulated voltage

responses to somatic current pulses were directly fitted to the

experimentally measured voltage responses in the same cell. An

evolutionary algorithm written in (C++) was applied to explore the

parameter space and was instructed by a least-square error

function of the fits to find the best matching values of the specific

membrane resistance (Rm), specific membrane capacitance (Cm)

and the axial resistivity (Ri). The population size was 60 and the

algorithm was repeated over 10 generations.

Spines were globally incorporated into the dendrites by locally

multiplying Cm and 1/Rm in by a factor of 1.8. This factor was

calculated as follows: F = (Nspines* DF * ASpine +ADendrites)/

ADendrites. Where NSpines is the total number of reconstructed

spines (6755 from all spiny stellate cells, n = 6), DF is the ratio

between the spine density reported in EM studies (0.35/mm) and

the one observed in our LM reconstructions (0.19/mm), ASpine is

the spine area calculated in Neurolucida Explorer (4.25 mm2,

approximated by a Frustum) and ADendrites is the total dendritic

area of the reconstructed spiny stellate cells (95,586 mm2). The

excitatory neurons were simulated twice: once without spines and

once with the scaling factor. The evolutionary algorithm fit yielded

the following average uniform passive parameters for 4 smooth

cells: Cm = 1.360.44 mF/cm2 (range: 0.76–1.84);

Rm = 393862134 Vcm2 (range: 2006–6987) and Ri = 118655

Vcm (range: 60–173). The fitted properties of the excitatory

neurons (n = 6) without spines were: Cm = 1.260.58 mF/cm2

(range: 0.4–1.82); Rm = 1112466755 Vcm2 (range: 5270–22000)

and Ri = 134646 Vcm (range: 72–181). With spine scaling factor

of 1.8 the fitted properties were somewhat different:

Cm = 0.8560.34 mF/cm2 (range: 0.35–1.23); Rm = 1610766921

Vcm2 (range: 9723–27516) and Ri = 128657 Vcm (range: 67–

219). In all simulations the reversal potential (Erev) was set at

264 mV and the temperature at 34uC for both cell types. It

should be noted that these parameters are not truly ‘‘passive’’,

since the experiments were performed without any blockers of

ionic or synaptic conductances, but rather represent the effective

membrane conductances active at voltages near the resting

membrane potential.

Simulations of the synaptic responses were performed on 6

excitatory and 4 inhibitory neurons each assigned its own fitted

passive parameters. The data for the latencies, attenuation and rise

times were obtained by successively attaching the same artificial

spine segment to each dendritic compartment in the model neuron

and stimulating its inserted conductances. The spine’s length and

diameter were 1 mm and 0.35 mm, respectively. The spine had the

same passive properties as the rest of the cell and included an

AMPA and an NMDA current. The AMPA synapse was modeled

as a sum of 2 exponentials according to NEURON’s built in

Exp2syn point process with the following parameters:

gmax = 0.0038 mS, t1 = 0.23 ms and t2 = 1 ms for the fast

synapse (used for the inhibitory neurons only) and t2 = 2.3 ms

for the slow synapse. The NMDA current was simulated by a

series of functions written by Arnd Roth (1994) taking into account

Mg2+ block and partial calcium permeability with the following

parameters: gmax = 0.0005 mV/cm2, t1 = 2.5 ms and t2 = 30 ms.

The simulated time constants were based on voltage clamp

measurements of isolated AMPA and NMDA EPSCs recorded

from single-axon synapses between cortical L5 neurons (Ohana;

unpublished results). The synaptic conductance was deliberately

set at a high value to ensure that the EPSP from all dendritic

compartments was visible at the soma. All results shown in the

figures were obtained using this standard model. The latency was

defined as the time from stimulus onset in the spine to 10% of the

EPSP peak amplitude in the soma, a fixed value of 0.3 ms was

added to the simulated latency to account for axonal propagation

and transmitter release time. The attenuation was calculated as the

ratio of the peak EPSP in the soma over its amplitude in the spine.

The rise time was calculated from the EPSP trace in the soma, as

the time difference between 10% and 90% peak amplitude.

Network Simulations
A network of 320 excitatory and 80 inhibitory current-based

leaky integrate-and-fire (LIF) neurons (modified from NEURON’s

IntFire4 mod file [21–23] was implemented in NEURON version

5.6 (please refer to Appendix S1 for details). Thalamic input was

modeled with a layer of 400 ‘‘thalamic cells’’ (NEURONs NetStim

object) which are essentially stimulus generators providing synaptic

input once activated. Cells in the network were connected

randomly with connection probabilities chosen such that every

L4 excitatory neuron received: 45 thalamic (18%), 160 recurrent

excitatory (64%) and 45 inhibitory (18%) synaptic inputs.

Inhibitory neurons received: 40 thalamic (18%), 140 recurrent

excitatory (64%) and 40 inhibitory (18%) synaptic inputs. The

proportions of excitatory and inhibitory neurons in the network

reflect published anatomical values but the relative proportions of

synaptic sources reflect a functional rather than an anatomical

structure. All LIF neurons had a membrane time constant of

20 ms and received inhibitory, excitatory and thalamic input with

various kinetics (for theoretical explanation see [23,23]. All

synapses were modeled with a double-exponential function.

Thalamic input synapses (thalamic-E, thalamic-I) were modeled

with the following parameters: t1 = 0.23 ms and t2 = 2.3 ms and a

latency of 0 ms. E–E and E–I synapses were modeled with

t1 = 0.23 ms and t2 = 2.3 ms and a latency of 1.4 ms. Inhibitory

synapses (I–I and I–E) were modeled with t1 = 0.23 ms and

t2 = 3 ms and a latency of 1.4 ms. The fast E–I synapse was

modeled with a t1 = 0.23 ms, t2 = 1 ms and a latency of 0.5 ms.

Synaptic weights (W) for each individual connection were

randomly assigned from a Gaussian distribution with a median

of W and a variance of s. The random distribution was generated

by an ACG algorithm (intrinsic to NEURON) with a fixed seed,

such that in every run of the simulations the same random

variables were selected. This was done to ensure that only the

synaptic kinetics vary between the different simulation runs. The

values of the weight were as follows: T-E W = 0.004375 and

s= 0.0021875, T-I W = 0.0055 and s= 0.0021875, E–E

W = 0.0055 and s= 0.0005, I–E, and I–I had W = 20.0055 and

s= 0.0005 E–I = 0.011 and s= 0.0011. Input stimulus. Thalamic

input synapses were activated by 250 ms long trains of APs whose

Cat Area 17 Inhibition
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times were generated using a Poisson process with underlying

average rate Fin. The latter was calculated according to the

equation adapted from [24] as follows:

Fin~Lce
{(

(a{a0)2

s2
)

Where a is the tuning factor and a0 represents the preferred

tuning factor (range 0,1), s is the bandwidth of the tuning

function, L is the maximal frequency and set to 80 Hz and C is the

intensity factor (range 0,1), was set to 0.4. The L4 model neuron

response is measured as the mean firing rate during the 250 ms

input stimulus.

Synaptic Conductance Calculations
Because we measured the synaptic potential rather than the

currents and because most synapses were located distal to the

soma, we could not provide direct estimates of the synaptic

conductance. We calculated the synaptic conductance from

Ohm’s law, as follows:

Gsynapse~PSP=(Fattenuation �Rin)= Vm{Vrevð Þ=Ncontacts

PSP was the averaged PSP amplitude, Fattenuation was the

simulated passive attenuation factor of the PSP from the ‘‘overlap’’

compartments to the soma. For the E–E and I–E conductances

Fattenuation was taken from the simulations of the excitatory

synapses on the excitatory neurons and was 0.046 on average. For

the E–I conductance, Fattenuation was taken from the simulations

of the excitatory synapses on the inhibitory neurons and was 0.39

on average. Rin was the averaged value given in Table 1. Vm was

the membrane potential at which the PSPs were recorded and that

was on average 266 mV, 264 mV and 251 mV, for the E–E, E–

I and I–E synapses, respectively. Vrev was the reversal potential of

the excitatory synapses was assumed to be 0 mV while Vrev of the

inhibitory synapses was set to 267 mV, as we measured (see

Results). Ncontacts was taken from the morphological reconstruc-

tions and was 3, 2 and 5 for the E–E, E–I and I–E, respectively.

Results

Layer 4 Synaptic Connections Recorded with Dual Patch-
clamp

An example of a dual patch clamp experiment is illustrated in

Fig. 1. The low magnification IR-DIC image of the coronal slice

(610, Fig. 1A, upper panel) shows layer 4, which is visible as a

dark band at 600–1000 mm below the pial surface. Specific

neurons were selected for recording based on morphological cues

that were observed at higher magnification (660, Fig. 1A, lower

panels). In this experiment a presumed spiny stellate neuron was

selected, based on its relatively small and quadratic appearance,

while the presumed smooth neuron was selected based on its

round shape and the stubby short dendrite emerging from the

soma (below the pipette tip). Staining for biocytin and 3-D

reconstruction (Fig. 1B, C) of the recorded neurons, confirmed

their presumed identity and provided the detailed morphological

information for simulations and for identification of putative

synaptic contact sites. Most recorded neurons were successfully

filled with biocytin, so that in all but 2 cases the identities of the

neurons in the pair were confirmed morphologically. Synaptic

connections were tested by alternately driving one of the two

neurons to produce single action potentials, or more commonly,

trains of action potentials (APs). Fig. 1D, shows the averaged EPSP

evoked in the smooth basket neuron by the AP discharged in the

spiny stellate neuron, and the reciprocal IPSP evoked in the spiny

stellate neuron in response to an AP in the basket neuron.

In approximately 70 slices obtained from 20 cats, we tested 464

neuron pairs of which 25 were synaptically connected (6.3%, bi-

directionally tested). There were 10 pairs between two excitatory

neurons, 14 between an excitatory and an inhibitory neuron and a

single inhibitory-inhibitory pair. Four of the pairs (14%) were bi-

directionally connected (1 E–E and 3 E–I). Thus out of 25 pairs, a

total of 29 connections were measured, of which 11 were E–E, 8

E–I, 9 I–E and 1 I–I.

Morphology of Pairs
Morphological reconstructions provide detailed information on

the axonal and dendritic structure of the recorded neurons. This

information can be used to define microcircuits within the cortex

and for understanding the properties of the recorded synapses.

Since, such a correlative study has not previously been made for

the excitatory network of cat layer 4, we routinely stained all

recorded neuron pairs and reconstructed in 3-D the dendritic and

axonal arbors of most.

The major neuron types in layer 4 are star pyramids, spiny

stellates, and smooth multipolar cells. Star pyramids and spiny

stellates, which are excitatory, were easily identified by their

stereotypical dendritic morphology [25,26], most notably the

existence of numerous dendritic spines, radially emerging basal

dendrites and an apical dendrite (star-pyramids). Smooth

inhibitory cells are more variable in form and size and were

classified by a combination of dendritic and axonal attributes.

We identified inhibitory cells by their smooth, beaded dendrites

and by their densely ramifying, curved axon collaterals that were

richly studded with large synaptic boutons [26–28]. Excitatory

connections were found exclusively between pairs of spiny stellate

(5/9 pairs) or between pyramidal neurons (4/9). Six excitatory

neurons presynaptic to a smooth inhibitory cell were spiny

stellates and two were star pyramids. Smooth inhibitory cells

Table 1. Reliability of EPSPs and IPSPs.

Amplitude (mV) CV Failures (%) Distance (mm)

E–E 0.3860.35 (0.073–1.33) [n = 11] 0.42460.155 (0.293–0.753) [n = 7] 20625 (5–74) [n = 7] 47644 (5–116) [n = 10]

E–I 1.5461.55 (0.224–4.2) [n = 8] 0.33260.154 (0.17–0.53) [n = 7] 17628 (0–68) [n = 7] 40640 (16–137) [n = 8]

I–E 0.59860.4 (0.18–1.44) [n = 9] 0.29560.12 (0.129–0.432) [n = 9] 6.4611 (0–34) [n = 9] 27615 (3–51) [n = 8]

I–I 0.78 [n = 1] 0.369 [n = 1] 5 [n = 1] 21 [n = 1]

Amp, amplitude; CV, coefficient of veriation; Distance, between pre- and post somata as measured from reconstruction. Means are presented 6 s.d. Ranges from min to
max values are written in parentheses and number of observations in square brackets.
doi:10.1371/journal.pone.0040601.t001
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targeted 3 star pyramids and 6 spiny stellate cells. In one pair

(Fig. 2N) the presynaptic neuron was a layer 4 basket cells

whereas the postsynaptic neuron was a layer 3-like pyramidal cell

at the border of layer 4 and 3. Thus our sample of close-range

layer 4 synapses includes connections between similar excitatory

neurons and connections between excitatory and inhibitory

neurons, involving all cell types.

The morphology of 15 pairs (E–E, E–I, I–E, 5 of each) was

sufficiently well-preserved to allow full reconstruction of 20

excitatory and 10 inhibitory neurons. Excitatory cells were

classified as star pyramids (n = 9) and spiny stellate neurons

(n = 11). Star pyramids had larger somata (mean diameter

20.264.2 mm, n = 9 vs. 16.161.8 mm, n = 11, P = 0.012 Mann-

Whitney U-Test) but fewer primary dendrites (5.461.7 n = 9 vs.

7.761.8, n = 11, P = 0.009 Mann-Whitney U-Test) and shorter

total dendritic length than the spiny stellates (21906754 mm, n = 9

vs. 321861155 mm, n = 11, P = 0.04 Mann-Whitney U-Test).

However, the basal dendritic span and total spine numbers were

similar (147620 mm vs. 147628 mm, P = 0.73 and 8546360 vs.

6146290 spines, P = 0.12 Mann-Whitney U-Test, n = 9 and

n = 11 for star pyramids and stellate cells, respectively). These

data suggest that excitatory synapses onto stellate and star

pyramidal cells of layer 4 are distributed similarly. Axons of both

excitatory types had similar length (361862033 mm, n = 8 and

407561716 mm, n = 10, P = 0.48 Mann-Whitney U-Test, strongly

severed axons (,850 mm in length) were omitted from the

analysis).

All 10 reconstructed inhibitory neurons were classified as basket

cells owing to their radially extending dendrites (Fig. 2F–J, 2K,

2L–O), dense clusters of large boutons and curving axons, which

occasionally formed multiple contacts around somata. Eight basket

cells had small-to-medium sized somata (averaged diameter

15.762.6 mm, n = 8), but two (Fig. 2M, 2N) had larger somata

(mean diameter 24 and 22 mm, respectively) and a wider axonal

span. These two were medium-sized basket cells. All inhibitory

neurons had narrow action potentials (AP half width as measured

from the AP threshold was on average 0.460.13 ms, range 0.2–

0.7, n = 13). For comparison, the AP half width of excitatory

neurons was on average 1.0360.07 ms (range 0.4–1.6, n = 18).

The firing patterns of 8 inhibitory neurons were tested in response

to constant current pulses. Six neurons (presented in Fig. 2F–H, K)

responded with high frequency (.200 Hz), non-adapting trains of

Figure 1. Paired recordings from visually identified L4 neurons. A. An IR-DIC image of a coronal slice from area 17 of the cat cortex. Layer 4
was identified under low magnification (106) as a dark stripe extending over the middle third portion of the cortex. Lower panel: at a higher
magnification (606) an excitatory neuron (left) and an inhibitory neuron (right) were recorded simultaneously with patch clamp pipettes. B, C.
Biocytin stain of the same cell pair and its 3-D reconstruction, identifying them as a spiny stellate cell and a smooth basket cell. The cells are
presented separately for clarity. D. The cell pair was reciprocally connected as is evident by the EPSP (red) and IPSP (blue) evoked in the basket and
spiny stellate neurons, respectively. The presynaptic APs in the basket and stellate cells are colored blue and red respectively. Vertical scale bar is
0.4 mV for the EPSP/IPSP and 50 mV for the APs and horizontal scale bar is 20 ms.
doi:10.1371/journal.pone.0040601.g001
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action potentials and 2 (Fig. 2I, O) showed a ‘‘stuttering’’ response

pattern with a lower maximal frequency (,124 Hz). As a group,

inhibitory neurons had on average fewer primary dendrites

(561.4, n = 8 vs. 6.762, P,0.027 Mann-Whitney U-Test) of

slightly shorter length (114639 mm, n = 8 vs. 147624 mm, n = 20,

P = 0.04 Mann-Whitney U-Test) than the excitatory neurons. In

contrast, the axons of inhibitory neurons were denser and thus

better preserved in the thin slice preparation than their excitatory

counterparts, as is reflected by their larger total length

(861964282 mm, n = 10 vs. 387261821 mm, n = 20, P,0.001

Mann-Whitney U-Test).

Inhibitory Synaptic Connections
Fast IPSPs in the cortex are mainly mediated by GABAA

receptors forming Cl2 channels (reviewed in [29]. Due to a low

intracellular versus high extracellular Cl2 concentrations ([Cl2]),

the Cl2 reversal potential in most neurons is close to the resting

Vm (Vrest), resulting in a small driving force for IPSPs at Vrest.

To determine the IPSP reversal potential in our recording

conditions, the postsynaptic Vm was held at values negative and

positive to Vrest. Fig. 3A shows an example of the hyperpo-

larizing IPSP at Vm of –50 mV and the same IPSP producing

a depolarizing potential from Vm of –75 mV. The IPSP

reversal potential was calculated from the intercept of a linear

fit of the IPSP amplitudes at 3 different Vm; in this experiment

the reversal potential was –65 mV (Fig. 3B). The fast ionic

diffusion between the large patch-pipette tip and the soma

allows, in theory, the intracellular [Cl2] to be clamped to that

of the pipette solution. Thus the IPSP reversal potential should

match the Cl2 reversal potential calculated from the pipette and

ASCF concentrations. In an attempt to lower the Cl2 reversal

potential below the Vrest, we patched postsynaptic neurons with

pipette solution containing either 4, 8 or 17 mM [Cl2]. The

calculated Cl2 reversal potential of these solutions was

290 mV, 272 mV and –53 mV, respectively. Measured IPSP

reversal potentials in different experiments ranged between –

56 mV and –83 mV with an average at –6969 mV (n = 8), but

were not positively correlated with the theoretical Cl2 reversal

potential (Correlations Coeff. = 20.37). These results indicate

that either the [Cl2] at the dendritic synaptic locations is not

well clamped by the pipette ([Cl2]), possibly due to dominant

local Cl2 homeostasis at the dendrites, or, the depolarized IPSP

reversal potential reflects a mixed flux of Cl2 and hydro-

carbonate ([HCO3
2]i) ions through the GABAA receptor-linked

channels [29–33], which are permeable to both anions. Close to

the resting membrane potential, HCO3
2 flows out of the cell

and has thus a depolarizing effect, while Cl2 flows into the cell

and hyperpolarizes the membrane potential.

Size and Variability of IPSPs
In order to improve detection and measurements of IPSPs, the

postsynaptic Vm was held at a depolarized value between –50 and

–55 mV (on average 25163 mV, n = 8). This was approximately

20 mV positive to the average IPSP reversal potential. Fig. 3C

illustrates consecutive IPSPs from an exemplar I–E connection,

which showed variable amplitudes between trials. The IPSP

amplitude distribution was broad and skewed towards larger

amplitudes (Fig. 3D, median = 20.53 mV and s= 0.36 mV). The

CV of the IPSP amplitudes in this experiment was relatively low

(0.24) and no failures were observed (0/60 trials). The mean IPSP

amplitude of all I–E connections was 0.59860.4 mV (at –50 mV,

n = 9) and the averaged CV was 0.29560.12 (n = 9). In 4/9

experiments no IPSP failures were observed, and the averaged

percentage failures over all experiments was 667.7% (n = 9). The

single I–I connection we recorded from was similar in amplitude

(0.78), CV (0.369) and F (5%) to the I–E connections.

Size and Variability of EPSPs
The size and variability of the EPSPs were determined from sets

of consecutive trials evoked at slow stimulation frequencies (0.1–

0.125 Hz). The postsynaptic Vm was 26667 mV, n = 10 and

26463 n = 8 for E–E and E–I synapses, respectively. An

excitatory-to-excitatory connection (E–E) is illustrated in Fig. 4A.

Unitary EPSP amplitudes were small and varied between trials

and only occasionally was a failure observed (uppermost trial,

failure percentage F = 10%). The EPSP amplitude histogram was

fitted with a Gaussian distribution with a median of 0.23 mV and

s= 0.15 mV (Fig. 4B). In comparison, an excitatory-to-inhibitory

connection (E–I) illustrated in Fig. 4C had larger EPSP

amplitudes, but these were broadly distributed around the median

of the Gaussian distribution (Fig. 4D, median 0.84 mV,

s= 0.43 mV) and exhibited occasional EPSP failures (second

trial, F = 5%). The variability of synaptic responses calculated from

their CV was similar for the E–E and E–I connections, as

illustrated in Fig. 4A, C (CV = 0.34 and 0.4, respectively). On

average, E–E and E–I EPSPs differed significantly in their mean

amplitudes (0.3860.35 mV, n = 11 and 1.5461.55 mV, n = 8,

respectively, P = 0.017 Mann-Whitney U-Test), but had similar

CVs (0.42460.155, n = 7 and 0.33260.154, n = 7, respectively,

P = 0.49 Mann-Whitney U-Test) and percentage failures

(20625%, range 5–74%, n = 7 and 17628%, range 0–68%,

n = 7, respectively, P = 0.21 Mann-Whitney U-Test).

A comparison of the averaged size and variability of EPSPs and

IPSPs is shown in Fig. 5 A–D and is summarized in Table 1. The

most prominent difference between the synapses was that EPSP

amplitudes of E–I synapses were significantly larger than E–E

synapses (P = 0.017 Mann-Whitney U-Test). Although the CV and

percentage failures of IPSPs (I–E) tended to be smaller than those

of the EPSPs (E–E and E–I), these differences were not significant

(P.0.1 Mann-Whitney U-Test).

We examined the relationship between the synaptic variability

and amplitude of all individual synapses. The plot of CV against

the PSP amplitude (Fig. 5E) shows that the highest CVs were

measured in the smallest EPSPs and the lowest CVs were

measured in the largest PSPs (E–I or I–E). However, most PSPs

had amplitudes between 0.2–1 mV and within this range they

were not correlated with the CV. The largest amplitude EPSPs

and IPSPs had the lowest percentage failures (Fig. 5F) and

commonly exhibited no failures at all, while the smallest PSPs

Figure 2. Reconstructed 3D morphology of layer 4 pairs. A–E illustrating 5 E–E pairs. A, B pairs of spiny stellate neurons. C, D, E pairs of star
pyramidal neurons. Preynaptic excitatory cells are cyan colored and their axons colored black. Postsynaptic excitatory cells are colored blue and their
axons grey. F–J illustrates 5 pairs of excitatory and inhibitory neurons connected via an E–I synapse. In F–I the presynaptic neuron was a spiny
stellate, in J a star pyramid. The postsynaptic neurons in F–J are all basket cells. Presynaptic excitatory cells are colored blue and their axons black,
postsynaptic basket cells are colored red and their axons green. K–O Pairs of basket cells contacting excitatory spiny stellate (K–M) or star pyramidal
(N–O) cells. Note the dense local ramifications of the basket cells’ axons. Presynaptic basket cells are red and their axons green, postsynaptic stellate
and star pyramidal cells are blue and their axons grey. For presentation purposes all dendrites and axons were drawn with the same line thickness.
Cell pairs F and I were reciprocally connected.
doi:10.1371/journal.pone.0040601.g002
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exhibited the highest percentage failures. However, most of the

PSPs between 0.2–1 mV (approximately 20 PSPs) had few failures

(,10%) and did not obviously correlate with the PSP amplitude.

The PSP amplitude is a product of the number of release sites,

the release probability (p) and the postsynaptic response, also

termed the quantal size (q). The CV and failures plots suggest that

very small PSPs might also have low release probabilities and

fewer release sites, and conversely for the largest EPSPs. However,

the fact that most of the PSPs at the mid-range amplitudes did not

exhibit such a correlation suggests the involvement of postsynaptic

factors such as the quantal size and electrotonic filtering. It is also

possible that different determinants are involved at each connec-

tion type. To investigate this possibility further, we determined the

number of contacts per connection based on the LM reconstruc-

tion of 15 reconstructed pairs of connected neurons (see last

section). The number of contacts was small; on average 3, 2 and 5

contacts per E–E, E–I and I–E connection, respectively. Assuming

these contacts to be actual release sites, and assuming identical p

and q for each release site, we used the binomial model to calculate

the release probability (see Methods), which was similar for all

synapses (0.6760.15, n = 7; 0.8360.13, n = 7; 0.7260.14, n = 9

for E–E, E–I and I–E, respectively). Thus, it seems likely that I–E

connections tend to be more reliable because they are formed by a

greater number of release sites. The quantal size (q) of the E–I

Figure 3. Inhibitory synapses. A. An AP evoked in the presynaptic inhibitory neuron and the simultaneously recorded IPSP (average of 15 traces,
each) from the postsynaptic excitatory neuron at two membrane potentials. The IPSP was hyperpolarizing at a Vm of 250 mV but depolarizing at
275 mV. B. The IPSP amplitude plotted as function of the membrane potential (Vm). The data were fitted with a straight line (dashed) intercepting
the x-axis (indicated by an arrow) at 265 mV. C. In 7 subsequent traces, IPSP amplitudes varied in response to single presynaptic APs, but no failures
were observed. The postsynaptic Vm was held at 250 mV D. A histogram of the IPSP amplitudes (filled bars) was constructed from 60 traces and the
background noise (empty bars). The IPSP histogram was fitted with a Gaussian distribution with a median at 20.53 mV (arrow) and a s of 0.36 mV.
doi:10.1371/journal.pone.0040601.g003
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synapses was much larger than that of the E–E or I–E synapses

and was more strongly correlated with the E–I EPSP

(0.9760.79 mV, n = 7 Corr. = 0.99; 0.1860.1, n = 7, Corr. = 0.44;

0.1760.1 n = 9 Corr. = 0.73). These calculations suggest that the

more dominant determinants of the PSP size appear to be the

number of release sites and the quantal size. These calculations

are, however, confounded by the inaccuracy of determining N

from contacts identified in the light microscope and by the

uncertainty in the adequacy of the quantal model for describing

layer 4 synapses.

The PSP amplitudes were not correlated with the horizontal

distance between the pre- and postsynaptic neuron somata

(Fig. 5G, correlation coefficient 20.002), suggesting that the mean

synaptic strength of a connection remains constant over the

distances examined (,100 mm).

Kinetics of Excitatory and Inhibitory Synapses
The kinetic properties of somatically measured PSPs are

determined by the kinetics of the underlying synaptic conductance

and by forward propagation of the PSP along the dendrites to the

Figure 4. Reliability of E–E and E–I synapses. A. Fluctuations in the EPSP amplitudes at an E–E connection. The upper trace illustrates a
presynaptic AP and the 7 subsequent traces show the response evoked in the excitatory postsynaptic cell. B. The EPSP amplitude histogram (filled
bars) has a median at 0.24 mV and a s of 0.152 mV. Black dots in A and B indicate spontaneously occurring EPSPs prior to stimulation. C. Fluctuations
in the EPSP amplitudes at an example E–I connection. The upper trace illustrates a presynaptic AP and the 7 subsequent traces show the response
evoked in the inhibitory postsynaptic cell. D. A broad distribution of the E–I EPSPs, with a median at 0.84 mV and a s of 0.435 mV.
doi:10.1371/journal.pone.0040601.g004
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soma. Together, these determinants influence the total somatic

charge contributed by the synapse, the time window in which it

peaks, and hence strongly influence somatic summation and AP

generation.

Somatic PSP traces were aligned to the peak of the presynaptic

AP and averaged PSP kinetic parameters, such as latency, rise

time, decay time constant and half width were measured from the

aligned-averaged PSPs. Aligned averaged PSPs from typical E–E,

E–I and I–E synapses are plotted in Fig. 6 A. The time of the

presynaptic APs peak (plotted above each PSP) and the time at

which the EPSP reached 10% are depicted by dashed lines,

arrowheads point to the 10% and 90% PSP amplitudes. Clearly,

the E–I connection presented here had the shortest latency and

fastest rise- and decay- kinetics (0.5, 0.9 and 16 ms, respectively).

In comparison, the E–E EPSP and I–E IPSPs had longer latencies

(0.8 and 0.9 ms, respectively) and slower rise times (1.7 and

3.6 ms, respectively).

The EPSP latencies (Fig. 6B) for the E–I connections were

significantly shorter (0.5460.14 ms, n = 7) than the E–E and the

I–E connections (1.460.34 ms, n = 7 and 0.9860.25 ms, n = 9,

respectively, P,0.0001 Kruskal-Wallis U-Test). The mean rise

time (Fig. 6C) of E–I synapses was the fastest at 0.8260.4 ms

(n = 7) compared with 2.861.6 ms (n = 7) for E–E EPSPs and

3.561.34 ms (n = 9) for I–E IPSPs (P = 0.001 Kruskal-Wallis U-

Test). Although E–I EPSPs tended to have faster decay time

constants and shorter half-width (Table 2, Fig.6 C, D), they were

not significantly different from the E–E and I–E PSPs (P.0.1

Kruskal-Wallis U-Test. The single I–I IPSP recorded had slow

onset and decay kinetics, similar to the I–E synapses. The

postsynaptic membrane input-resistance (Rin), which also may

influence the PSP rise- and decay-kinetics, was tested in a subset of

the paired neurons and was similar for all connection types

(Table 2, 73638 MV n = 5, 90620 MV n = 4 and 72638 MV
n = 3, for E–E, E–I, I–E respectively, P = 0.7 Kruskal-Wallis U-

Test). Thus, the significantly faster onset kinetics of E–I synapses

could not be accounted for by a lower somatic Rin value.

Most surprising was the difference in kinetics between the E–E

and E–I synapses, which are formed by the same presynaptic

neurons. This raises the possibility that postsynaptic parameters

are critical in creating this difference. The two parameters likeliest

to affect the EPSP kinetics are the synaptic conductance and the

synaptic location. A faster synaptic conductance could mediate the

E–I EPSPs, as previously demonstrated in other E–I synapses

[34,35] and thereby reduce the E–I EPSP rise and decay times.

Shorter electrotonic distances of the E–I synapses on the

postsynaptic dendritic tree would reduce the transmission time

Figure 5. Variance analysis of E–E, E–I and I–E synapses. A–C. The averaged (6s.d.) PSP amplitude (A), CV (B) and percentage failures (C) were
compared among the three connection types. The EPSP amplitudes of E–I connections were significantly larger than E–E EPSPs or I–E IPSPs (p,0.05).
I–E connections had on average lower CVs and percentage failures, but these were not statistically significant. D. The average horizontal distances
between the pre- and postsynaptic neurons were short for all connection types: E–E 47614, n = 10; E–I 40614, n = 8, I–E 2765, n = 8. E–F. The CV and
percentage failures of individual synapses were plotted against their average PSP amplitude. In, general, larger PSP amplitudes were correlated with
lower CVs and percentage failures and smaller PSP amplitudes correlated with the higher CVs and percentage failure. Among medium-sized PSPs no
obvious correlations with the CV or percentage failures were observed. G. PSP amplitudes were plotted against the horizontal distance between the
pre- and postsynaptic neurons. No correlation could be observed between these parameters (cor. Coeff. = 20.08).
doi:10.1371/journal.pone.0040601.g005
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of the EPSP to the soma and also sharpen the EPSP measured at

the soma [36]. The overall dendritic branching pattern and the

local dendritic morphology at the synaptic location would also

shape the local dendritic EPSP and therefore its waveform in the

soma [37,38]. To test this possibility we simulated EPSP

propagation in realistic dendritic trees of the postsynaptic

excitatory and inhibitory neurons in E–E and E–I synapses, based

on our detailed 3D reconstructions. We asked whether a different

morphoelectrotonic distance of these synapses can explain their

kinetics and whether the underlying synaptic conductance also

needs to be different.

Compartmental Simulations of EPSPs onto Smooth and
Spiny Stellates

We used simulations to explore whether dendritic attenuation

and synaptic location might account for the fast recruitment and

kinetics of the E–I synapses. The morphologies and passive

properties of six excitatory (5 spiny stellate cells and a star

Figure 6. Synaptic Kinetics. A. Averaged PSPs from 3 individual connections illustrate the differences in synaptic kinetics of the various connection
types. The presynaptic APs were aligned at their peak (depicted by the long dashed line). The short dashed lines on every PSP denote the time at
which the PSP rose to 10%. The latency between the presynaptic AP peak and the 10% PSP was 0.8, 0.5 and 0.9 ms for the E–E, E–I and I–E synapses,
respectively. The arrowheads point towards the 10% and 90% values of the PSP amplitude and the delay between them is defined as the rise time.
Vertical scale bar represents potential and was 80 mV for all three APs and 0.13 mV, 0.85 mV and 0.2 mV in the E–E, E–I and I–E PSPs, respectively. B–
E. E–I connections have significantly shorter latencies and faster rise times compared with E–E and I–E connections. All bar graphs represent the
averaged values 6s.d.
doi:10.1371/journal.pone.0040601.g006

Table 2. EPSP/IPSP kinetics.

Charge (mV*ms) Latency (ms) RT (ms) Decay t (ms) HW (ms) Rin post (MV)

E–E 12617 (0.95–50)
[n = 7]

1.460.34 (0.92–1.98)
[n = 7]

2.861.6 (1.43–5.2)
[n = 7]

33612 (13–54) [n = 7] 2067.5 (9–28) [n = 7] 73638 (33–136) [n = 5]

E–I 20622 (1–52)
[n = 8]

0.5460.14 (0.38–0.7)
[n = 8]

0.8260.4 (0.52–1.76)
[n = 8]

1468 (4–29) [n = 8] 965 (3–17) [n = 8] 90620 (60–102) [n = 4]

I–E 16615 (2–42)
[n = 9]

0.9860.25 (0.7–1.4)
[n = 9]

3.561.34 (2–6.5)
[n = 9]

2168 (11–39) [n = 9] 2265 (13–29) [n = 9] 72638 (33–110) [n = 3]

I–I 35[n = 1] 1[n = 1] 3.44 [n = 1] 22 **[n = 1] 47 [n = 1] 21 [n = 1]

Latency, time from AP peak to 10% EPSP/IPSP; RT, rise-time 10–90%; Decay t, single-exponential; HW, half-width; Rin, input resistance. Means are presented 6 s.d,
**fitted with a a function with 2exponents. Ranges from min to max values are written in parentheses and number of observations in square brackets.
doi:10.1371/journal.pone.0040601.t002
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Figure 7. Compartmental model simulations of synaptic kinetics. Electrotonic attenuation of the synaptic current along the dendrites en
route to the soma, results in smaller and slower somatic EPSPs. A, E. A single synaptic contact with a conductance of 3.8 nS was simulated on (A) a
spiny stellate or (E) a basket cell dendrite at the location where a putative contact was identified (arrows in B and F, respectively). The decay time
constant (t2) of the conductance in E was faster than in A (1 ms vs. 2.3 ms). The simulated EPSCs and the resulting EPSPs at the synapse are drawn in
a thin line. The same EPSPs measured in the soma are drawn with a thick line. In (A) the somatic potential trace was multiplied (630) to allow direct
comparison of the kinetics. The 10% and 90% EPSP amplitudes are marked by the blue lines. Note that the more distal contact simulated in A is more
strongly delayed, slowed and attenuated than the proximal contact simulated in E. B–H. A single synaptic activation was simulated successively in all
compartments of the spiny stellate (B–E) and smooth basket (F–H) neurons. In each compartment, the latency of the EPSP arrival at the soma and
the somatic 10%–90% EPSP rise times were analyzed and compared with the experimentally observed values. The somatic and dendritic
compartments were then colored according to the following categories: Black: simulated values lower than the smallest experimentally observed
latency or rise time. Grey: simulated values larger than the largest experimentally observed latency or rise time. Blue: simulated values within the
range between the smallest and the largest observed values. Red: Mean EPSP latency (average6s.d.). Yellow: Mean EPSP rise time (average6s.d.).
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pyramid) and four inhibitory (basket) neurons were used as

templates for these simulations. Our general approach was to try

to model the experimental data as closely as possible by using only

those neurons for which we had the full data set of morphological

and passive biophysical properties. We attached a single excitatory

synapse successively to each dendritic compartment and measured

the simulated EPSP evoked at the soma.

Examples of the simulated EPSC and EPSPs evoked at the

synapse (indicated by an arrowhead in the lower cell plot) and at

the somata of the spiny stellate cell (7A) and the smooth basket cell

(7E), respectively. Although in both cells the amplitudes of the

somatic EPSPs were attenuated and their waveform slowed, this

effect was far more pronounced for the distal synapse on the spiny

stellate neuron. The somatic EPSP latency and rise time were

analyzed and plotted against the dendritic location (distance from

soma). Those dendritic compartments in which the experimentally

measured average EPSP latencies and rise times were reproduced,

were colored red and yellow, respectively. Compartments where

both parameters were simultaneously satisfied were colored green.

Compartments in which the latencies or rise times were within the

experimentally observed range (min-max) were colored blue, black

and grey represent values either below (black) or above (grey) the

measured ranges. In the example spiny stellate neuron plotted in

Fig. 7B–D only distal compartments yielded somatic EPSPs with

experimentally-observed latencies (Fig. 7B). However, rise times

within the experimental range could be evoked from the entire

dendritic tree, with the exception of the most proximal dendritic

branches and the soma (Fig. 7C). The green overlap regions

(Fig. 7D) were thus distal and determined by the latencies. In

contrast, latencies within the experimentally observed range for E–

I synapses were evoked from the soma and the proximal (100 mm)

dendrites in the smooth basket cell plotted in Fig. 7F. EPSP rise

times within the experimentally observed range could only be

evoked when a faster synaptic conductance was simulated. Even

with a faster synaptic conductance, only very proximal dendritic

compartments yielded sufficiently fast somatic-EPSPs (Fig. 7G).

The overlap region for this inhibitory neuron is thus constrained

by the rise times to the proximal compartments (Fig. 7H).

These simulations were repeated in additional neurons, showing

that latencies in the basket cells (Fig. 7K) (average:

0.64760.19 ms, range 0.425–1.25 ms, n = 638 compartments)

were slightly shorter than in the spiny neurons (Fig. 7I) (average:

0.87560.343 ms, range 0.4–2.675 ms, n = 2733 compartments,

compartments of a single apical dendrite .400 mm were omitted

for presentation purpose). The EPSP rise times in the basket

neurons (Fig. 7L) were faster than in the spiny neurons (Fig. 7J),

mainly due to the faster kinetics of the underlying simulated

synaptic conductance (See Methods for details). When the same

‘‘slow’’ synaptic conductance was simulated in the spiny and

smooth neurons, the same range of rise times was observed in both

cell types. In the spiny neurons (Fig. 7I, J), compartments satisfying

both the latency and rise time requirement of the E–E connections

(‘‘overlap’’ compartments) were located more distally (mean

163633 mm, range 94–291 mm, n = 458) than the overlap

compartments of the smooth basket neurons (Fig. 7K, L), which

reproduce the E–I kinetics (mean 49626 mm, range 3.5–136 mm,

n = 312, P,0.0001, T-test). This difference between the smooth

and spiny neurons did not depend on the existence of spines in the

latter, since simulations performed without scaling for spines,

yielded nearly identical latencies and rise times in the spiny

neurons. These simulations suggested that a proximal versus distal

location of the E–I and E–E synapses, respectively, is most likely to

explain the differences in their kinetics, rather than the different

morphology or local passive membrane properties of spiny and

smooth basket cells.

Putative Synaptic Location
The compartmental simulations supported the hypothesis that

the reason for the fast recruitment of E–I synapses was their

proximity to the soma. To assess this possibility we reconstructed

15 pairs of neurons making an E–E, E–I or I–E connection (5 of

each type) and identified in the light microscope the sites of

contacts between the presynaptic axons and the postsynaptic

dendrites, examples of which are shown in Fig. 8A–C. We

identified a total of 15 E–E, 9 E–I and 36 I–E contacts (Fig. 8D–F),

whereby the relatively small number of E–I contacts reflects the

incomplete morphological recovery of inhibitory dendrites. On

average E–E contacts were located on higher order dendrites

compared with E–I and I–E contacts (4th, 2nd and 3rd, respectively,

range for all was 1st –5th order). The I–E contacts made by basket

cells were in all but one case found on basal and apical dendrites,

but not on the soma of the target cell. The E–I contacts were

located at an average distance of 41633 mm from the soma (n = 9,

Fig. 8G). In contrast, E–E and I–E contacts were located

significantly (p = 0.002, Kruskal-Wallis U-Test) more distally at

average distances of 116654, n = 15 and 92647 mm n = 36,

respectively (Fig. 8G).

We measured the axonal distance from the presynaptic cell

soma to the contact on the postsynaptic dendrite and found that

the axonal distance of the presynaptic boutons were not different

between the EE and EI synapses (196680 mm n = 13 and

2376147 mm n = 9, respectively, P = 0.7 Mann-Whitney U-Test).

Given the dendritic locations of the various connections we

could now estimate the synaptic conductances underlying each

PSP, assuming there was a synapse at the site of contact (See

Methods for details). The synaptic conductance was on average:

0.57 nS, 0.34 nS and 2.06 nS per contact of the E–E, E–I and I–E

connections. Comparison of the synaptic conductance values to

the measured somatic PSP amplitudes emphasizes the impact of

the synaptic location on the somatic voltage and hence on the

neuronal output. On the other hand, local excitatory/inhibitory

interactions at the dendrites would be sensitive to the relative size

and timing of the conductances which implies that under some

conditions the I–E connections could exert strong shunting

inhibition at the dendrites despite a seemingly small postsynaptic

hyperpolarization at the soma [39].

A Recurrent Network Model with Fast E–I Synapses
Can the 2–3 ms-faster recruitment of E–I synapses bear

significant implications for the neural activity in the highly

recurrent network of visual cortex L4?

Green: Overlapping compartments in which both rise-times and latencies were within the average range. B, F. Latency plots. C, G, Rise time plots. D,
H, overlap plots of latencies and rise times. The scale bar is 100 mm. I–L. Simulations were repeated in 5 spiny stellate cells and 1 star pyramid (I, J)
and 4 basket cells(K, L) neurons, each presented by a different symbol. I, K, Somatic EPSP latencies plotted against the dendritic distance from the
soma for all spiny neurons (I) and basket cell (K) dendrites. J, L, Plots of the rise times at different dendritic distances from the soma. The dashed lines
represent the experimental values of the corresponding average+s.d. Red symbols represent the overlap compartments for the latency and rise times
in each neuron. Spines in A–D, I–J, were incorporated by scaling Cm and Rm in the dendrites. A faster conductance (as in E) was simulated in F–H,
K–L.
doi:10.1371/journal.pone.0040601.g007

Cat Area 17 Inhibition

PLoS ONE | www.plosone.org 13 July 2012 | Volume 7 | Issue 7 | e40601



Cat Area 17 Inhibition

PLoS ONE | www.plosone.org 14 July 2012 | Volume 7 | Issue 7 | e40601



To address this question, we generated a model recurrent

network composed of excitatory and inhibitory LIF neurons driven

by thalamic input (Fig. 9A). We compared three versions of this

model: First, a feedforward model in which E–E and E–I synapses

were silenced but T-E, T-I, I–E and I–I were activated (Fig. 9A1).

A second model, in which recurrent excitatory synapses were

activated and excitatory recurrent synapses (E–E, E–I) had the

same rise and decay kinetics and the same activation latencies

(Fig. 9A2). The third model, was similar to the second but E–I

synapses were modified to have faster kinetics and shorter

latencies, reflecting our experimental findings (Fig. 9A3). Raster

plots of neurons spike times (Fig. 9B) and the corresponding mean

firing rates (Fig. 9C) during the simulation, show that activation of

equal recurrent excitatory synapses (model 2, blue lines and

symbols) strongly increased the number and rates of spikes

generated in response to the feedforward input. In the second

model (red lines and symbols), recurrent excitation also resulted in

amplification of the feedforward input. However, this amplifica-

tion was weaker and its duration shorter than in the third model

due to the earlier onset and peak of the inhibitory current in the

third model. (Fig. 9C, inset). Thus the simulations show that fast

recruitment of E–I synapses provides a powerful mechanism for

entrainment of activity in a recurrent network while allowing for

amplification of the feed forward input.

As neurons in the visual cortex are tuned to various stimulus

parameters, such as orientation, we next examined the neurons

tuning function in each of the network models. The frequency of

the feedforward input to both excitatory and inhibitory neurons

followed a Gaussian-like tuning function (refer to Methods for

calculations). Recurrent excitatory connections (models 2 and 3)

amplified the output firing rates over most of the tuning function

(Fig. 9E). The tuning bandwidth however, was narrowed only in

model 3 (Fig. 9F). Thus fast E–I synapses, enabled amplification

and sharpening of the tuning response curve simultaneously.

Theoretical and experimental work suggested that intracortical

inhibition can control the activity in the excitatory recurrent

network and modify its input-output function [14,40–45]. The

simple models which we used demonstrate that fast recruitment of

E–I synapses can be an effective way of achieving this balance and

enhancing visual responses while restoring or even enhancing the

tuning of the feedforward input.

Discussion

Network Connectivity
Excitatory neurons in this study were classified as star pyramidal

or spiny stellate cells according to their dendritic trees, while

inhibitory neurons (all of which had fast action potentials), were

classified mainly by their axonal morphology as basket cells.

Interestingly, synaptic pairs involving slow or regular firing

inhibitory neurons (of bipolar morphology) were not found, in

contrast to their apparent abundance in layer 4 of the rat

[6,46,47]. This may reflect the scarcity of such inhibitory neurons

in cat layer 4. Most of the basket cells we recorded closely resemble

a specific subgroup of small basket cells of layer 4 termed ‘‘clutch

cells’’ [48], which have axons that form a dense local axonal

cluster.

Previous studies of layer 4 in cat visual cortex [6,7,9–13,49] and

in rodent [18,46,47,50–53] revealed a strong recurrent connec-

tivity within the excitatory population and between excitatory and

inhibitory neurons. The general view emerging is that in the cat

most of these synapses produce moderate-to-large and reliable

PSPs, and that excitatory connections onto fast spiking inhibitory

neurons are largest in amplitude [6,12,46]. Inhibitory synapses

tend to have the lowest variability, probably due to the multiple

contacts that comprise each connection [10,11]. Our electrophys-

iological data are in good agreement with these reports and

expends on them by revealing novel properties of the synaptic

kinetics and timing. Our morphological data and simulations

extend previous reports to show that the number of synapses per

connection and their dendritic location contribute strongly to the

differences in synaptic strength among the various connection

types in layer 4.

Synaptic Properties
Synaptic strength and variability. The E–E connections

we recorded with the patch clamp technique have lower

amplitudes and higher CVs compared with the same type of

connections previously studied in thick slices (400–500 mm) with

sharp pipettes [7,9,13]. While the dendritic trees of spiny stellate

and pyramidal neurons are largely conserved, in the thinner slices

we used (300 mm) the axons are more severely truncated. It is

therefore likely that the number of contacts per connection in the

E–E pairs is smaller in our study. Consistent with this interpre-

tation is our observation that the amplitudes and CVs of E–I and

I–E connections recorded were comparable with those previously

reported in thick slices [12], suggesting that the closest range

connections (E–I and I–E) are relatively better preserved in the

thin slices we used. The release probability was high, in agreement

with previous studies [7,9,13].

Synaptic Kinetics. Patch clamp recordings allowed us to

perform detailed and precise measurements of the PSP kinetics.

The results show that E–I synapses have the fastest rise- and decay

kinetics and shortest latencies. The PSP rise and decay times are

determined by the synaptic conductances, their electrotonic

distance and by the membrane time constant (tm). Given that

tm of all cell types was similar, it is unlikely to be the reason for the

faster kinetics of E–I synapses. While the electrotonic location of

the synapses can strongly affect their kinetics, our simulations

indicated that only a fast conductance could mimic the kinetics of

the experimentally measured E–I EPSPs, even at the closest

distances from the soma. Previous studies in rat neocortex had

shown that EPSPs onto fast spiking inhibitory neurons are

mediated by AMPA receptors containing the GluR1 and GluR4

subunits, which have particularly fast kinetics and are calcium-

permeable [34,54,55]. Immunostaining of glutamate receptor

(GluR) subunits in the cat visual cortex showed a prevalence of

GluR1 subunits in inhibitory neurons of layers 2–5 [56],

suggesting that they could mediate the fast EPSPs we observed

in the inhibitory neurons. In contrast, the slower kinetics of the E–

Figure 8. Location of LM contacts. Contact sites seen at LM between the presynaptic axon and the postsynaptic dendrites were determined for
all reconstructed pairs. A–C illustrates examples of an E–E, E–I and an I–E pair. The presynaptic soma of the spiny stellate cell is colored cyan and the
axon is black. The basket cell’s soma and dendrites are colored red and the axon green. Postsynaptic spiny stellate cell is colored blue. For clarity,
axons were trimmed to a sphere of about 400 mm diameter around the soma, but complete dendritic trees are presented. Putative contacts are
marked by yellow-filled circles. Scale bar is 200 mm. D. Dendrograms of excitatory cells (somata indicated by blue circle) and inhibitory cells (somata
indicated by red circle). Position of contacts on the dendrites are indicated by cyan (E–E) and red (E–I) rectangles. I–E contacts are indicated by black
circles. Open arrowheads indicate three apical dendrites clipped at 300 mm E. The averaged distance of E–I contacts was significantly lower than E–E
and I–E (P,0.05).
doi:10.1371/journal.pone.0040601.g008
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E synapses could reflect a higher content of slow-gating NMDAR-

channels [51,57] and the existence of GluR2/3 subunits of the

AMPA receptors [56]. In addition, the distal location of these

synapses significantly contributes to extending the time course of

the EPSP, as is expected from theoretical work [36,58,59] and is

shown by our own simulations.

Inhibitory neurons in cortex are GABAergic and their

postsynaptic targets express mainly GABAA receptors [60]

Figure 9. Effects of fast E–I recruitment on the activity and tuning curves of a model recurrent L4 network. Three models were used to
simulate activity in the recurrent network. All models included excitatory (E) and inhibitory (I) L4 neurons and feedforward thalamic (T) input synapses
and were identical in all but the recurrent excitatory synapses. Excitatory and inhibitory synapses were drawn with arrows and filled circles,
respectively. A1. The feedforward model in which E–E and E–I synapses were silenced. A2. The second model incorporating recurrent E–E and E–I
synapses with identical kinetics and latencies. A3. The third model is structurally identical to A2 but E–I synapses have faster kinetics and shorter
latencies. Models 1, 2 and 3 and all the results are colored black, blue and red, respectively. A–D, Responses of all three models to the same
feedforward synaptic input (Fin = 29.5 Hz). B. Raster plots of the excitatory (E) and inhibitory (I) spike times, dashed line marks stimulus start. C. Peri-
stimulus histogram of the firing rates of the excitatory (solid lines) and inhibitory (dashed lines) neurons binned at 10 ms intervals. D. Mean excitatory
(positive to 0) and inhibitory (negative to 0) currents to the excitatory L4 neurons. Current is given in arbitrary units. The inset shows the mean
inhibitory current between t = 40 and 80 ms from simulation start. The arrowheads point towards the earlier onset and faster rise of the current in
model 3 compared to model 2. Scale bars are 10 ms and 0.03 I. E–F. Tuning curves of the excitatory neurons. E. Mean firing rates as a function of the
stimulus parameter a, note the many-folds amplification of the responses in models 2 (blue) and 3 (red) in respect to model 1(black). F. The mean
firing rates normalized to the maximal response as a function of a. The lines represent the best Gaussian fits to the normalized responses. The grey
line is the normalized input frequency. Note the narrowing of the tuning curve in model 3.
doi:10.1371/journal.pone.0040601.g009
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forming fast-gating channels [29,30,61]. GABAA IPSCs rise within

,1 ms and decay within less than 10 ms [62]. The I–E synapses

we recorded are most likely to be of the GABAA type, based on

their neural morphology, Cl2 sensitivity and kinetics. Thus the

synaptic conductance underlying E–I synapses might be faster

than those mediating E–E and I–E synapses, which have similarly

slow kinetics. The difference in PSP latencies, however, could not

be accounted for by the various conductances, but were likely

determined by the dendritic location of the synapses. Presynaptic

parameters such as axonal conduction time and the synaptic delay

to transmitter release could, in theory, contribute to the PSP

kinetics and latencies (reviewed in [63]. However, axonal

conduction time is unlikely to underlie the differences between

the E–E and E–I connections, since these are located at similar

distances along the presynaptic excitatory axons. Synaptic delays

at high release-probability synapses are fast (0.1–0.3 ms) [55,64–

66] and thus cannot account for the 1 ms latency differences

between the E–I and the E–E synapses.

Our simulations, buttressed by the morphological analysis of

putative synaptic contacts, suggest that excitatory synapses are

located on distal portions of other excitatory neurons, but on more

proximal dendrites of inhibitory cells. Exactly this distribution was

previously shown in our anatomical studies of spiny stellate cells

[67] and small basket cells [68] in layer 4 of cat visual cortex.

Inhibitory neurons in layer 4 of cat [48] and monkey [69] visual

cortices, specifically target dendritic shafts and spines of excitatory

neurons. Consistent with these studies, our morphological analysis

showed that the axons of the basket cells contacted the distal

dendrites of neighboring spiny cells. Functionally, it implies that

inhibitory synapses on spiny neurons in layer 4 locally oppose

excitatory synapses rather than exert, primarily, a peri-somatic

inhibition of the summed dendritic excitation. Dendritic propa-

gation of IPSCs mediated by the fast GABAA conductance

prolongs their duration at the soma and hence converts them into

slow hyperpolarizing currents. This property is considered

important for explaining direction selectivity in the visual cortex,

which was so far assigned to the slow GABAB conductance [70].

However, experimental evidence shows that pharmacological

blockade of GABAA but not GABAB, reduces or abolishes

direction selectivity [71–73]. Hence, the existence of distal

dendritic inhibition with its slow somatic time course might help

resolve this discrepancy.

A Sensitive Dynamic Control of Recurrent Excitation
A number of theoretical studies predict that in order to prevent

run-away recurrent excitation, the total inhibitory conductance

has to be several fold larger than the excitatory conductance

[14,70,74,75]. Although single inhibitory synapses may indeed

have a larger conductance than excitatory ones, there are fourfold

more excitatory synapses. This places constraints on the ability of

inhibition to control excitation in strongly recurrent networks. Our

simulations show how the fast recruitment of E–I synapses eases

these constraints and allows even smaller inhibitory conductances

to control excitation. Numerous studies have demonstrated that

local inhibition profoundly changes the amplitude of responses to

visual stimuli in the cortex [41–45,71–73]. Some of these studies

have also shown that local inhibition can modify the response

curves of cortical neurons to visual stimuli. Broadening of

orientation tuning curves and reduction of direction selectivity

has been reported [42,44] after block of inhibitory synapses. Our

network simulations show that inhibition can exert both of these

actions: response gain control and sharpening of response tuning

curves, if it is rapidly recruited by the recurrent cortical network.

Our data suggest that spatial and temporal properties of

excitatory and inhibitory synapses in layer 4 of the visual cortex

may be precisely tuned to provide an efficient modulation of the

recurrent network. However, the possible roles in vivo of the precise

localization and timing of these synapses, their involvement in the

construction of receptive field specificity, including basic features

like orientation and direction selectivity and contrast invariance,

remain to be examined in networks models based on realistic

biophysical measurements.

Supporting Information

Appendix S1 Differential equations for the Leaky Inte-
grate & Fire neurons of the network models. Excitatory

and inhibitory neurons were modeled as current-based leaky

integrate-and-fire (LIF) point neurons receiving three types of

inputs: thalamic (T–E or T–I), excitatory (E–E, or E–I) and

inhibitory (I–E or I–I). Each synapse is described by a double-

exponential a function with distinct kinetic parameters. The

Appendix describes the differential equations of the synaptic

currents.
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