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Introduction

What are the mechanisms underlying the emergence of mind from the activity 
of groups of neurons? This is a dif� cult question that has to be addressed at 
many levels of neural organization, all of which need to be integrated. The fol-
lowing discussion of the set of neural mechanisms, neural activity patterns, and 
animal behaviors sketches a few simple, but general and robust, neural mecha-
nisms at all the different levels ranging from synapses to neurons, to networks 
and behavior, and is illustrated using experimental observations primarily from 
cortical and hippocampal activity patterns during behavior. The focus is on a 
few key mechanisms such as energy-ef� cient  sparse codes of mental represen-
tations, need for synchrony among sparse codes for information transmission, 
and the contribution of recurrent connections between excitatory and inhibi-
tory neurons in generating synchronous activity, oscillations, and competition 
among networks to facilitate fast and � exible behavior.

At the level of the mind, animals can perceive different components of a 
rapidly changing natural scene such as luminance, contrast, local features (e.g., 
lines), and global features (e.g., shapes). Similarly, when an animal navigates 
in the world, neurons can � exibly represent the position of the animal in a 
given environment, the composition of the environment, the head direction, the 
running speed, etc. These mental representations of the world are � exible and 
dynamic, determined and modulated by a range of environmental, behavioral, 
and neural parameters.

What are the mechanisms by which the brain generates these � exible men-
tal representations? How do these mental representations across different brain 
regions interact to generate perception and decision making?
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What Is the Right Anatomical Level of Investigation?

The � exible behaviors outlined above depend on common features of the neu-
roanatomical substrates underlying these mental representations. Historically, 
models of cortical circuits have been designed to capture a speci� c feature of 
the experimental data. An alternative strategy that leads to a “predictive  con-
nectivity” starts with the assumption that there is a basic (“ canonical”)  circuit 
common across the entire neocortex (see Figure 9.1). This assumption justi� es 
the use of the rich cache of structure, function, and neurochemistry to build 
more biologically realistic models. The models can then be challenged to pro-
vide an explanation of cortical activity patterns. To the extent that the simula-
tions are successful, the model can quantitatively predict the connectivity pat-
tern of the circuits in that area. The ability to test a prediction about structure 
is a radical departure from the traditional descriptive and anatomical methods 
of circuit analysis. In combination with new tools for tracing pathways and 
combining structure with function, this predictive structural modeling will not 
only greatly accelerate circuit analysis in neocortex, but will provide a far more 
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Figure 9.1 (a) Canonical circuit of neocortex. Three populations of neurons interact: 
the inhibitory, GABAergic population indicated by smooth cells; the excitatory popu-
lation by a super� cial layer population (P2+3 (4)); and a deep layer population (P5 + 
6). The connections between them are indicated by edges and arrows. The functional 
weights of the connections are indicated by the thickness of the edges. (b) Graph of the 
dominant interactions between signi� cant excitatory cell types in neocortex and their 
subcortical relations. The nodes of the graph are organized spatially; vertical dimension 
corresponds to the layers of cortex and horizontal to its lateral extent. Edges and arrows 
indicate the relations between excitatory neurons (P: pyramidal) in a local patch of neo-
cortex, which are essentially those described originally by Gilbert and Wiesel (1983) 
and Gilbert (1983) for visual cortex. Thin edges indicate excitatory connections to and 
from subcortical structures and inter-areal connections. Thal:  thalamus; Sub: other sub-
cortical structures, such as the basal ganglia.
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comprehensive and synthetic explanation of the computational strategies used 
in different cortical areas.

There are several common features of cortical anatomy shared across many 
brain regions. The  neocortex is organized in a number of layers and columns. 
Major elements of the  canonical cortical  microcircuit of a column have been 
well described. For example, the excitatory, pyramidal neurons within  layer 
2/3 in a neocortical column are recurrently connected, as are the neurons with-
in  layer 5/6. The thalamic inputs arrive primarily in  layer 4 whereas layers 
5 and 6 send the output of a cortical column to other brain areas. Further, 
synaptic inputs are exquisitely organized on the extensive pyramidal neuronal 
dendrites, which have nonlinear properties. Also, there are neuromodulatory 
inputs speci� c to different layers, which could play a key role in information 
processing, as will be discussed later.

In addition to many other features of the canonical cortical circuit, there 
is one common feature in all of these layers, namely the presence of a wide 
variety of GABAergic inhibitory interneurons. While these inhibitory neu-
rons comprise only about 20% of the neural population, they strongly control 
cortical activity because  of their recurrent connections to excitatory neurons. 
Inhibitory synapses are often found near the soma, which can in� uence all ex-
citatory inputs � owing from the dendrites to soma. Further, not only are the ex-
citatory neurons recurrently connected to each other within and across layers, 
so are the inhibitory neurons. Such recurrently connected  excitatory-inhibitory 
networks (denoted E-I networks) are ubiquitous: They are found not only in 
most parts of neocortex and hippocampus, but in many other structures as well.

In addition, cortical circuits receive powerful neuromodulatory inputs. 
Monoamine  neuromodulators dopamine, norepinephrine, and serotonin are 
released by cells in discrete nuclei in the  brainstem and midbrain that project 
heavily to basal ganglia and cortical regions. Most psychotherapeutic and psy-
choactive drugs, which have profound effects on cognition, act on receptors of 
monoamines. These include antidepressant and antipsychotic drugs as well as 
hallucinogens and stimulants such as amphetamine, cocaine, and methylphe-
nidate. This suggests that monoamines are a critical component of neuronal 
machinery underlying perception and complex behaviors. The topography of 
their projections to cortical regions, as well as their targeted receptors, is quite 
diverse. For example, dopamine projections tend to be heavier to deeper corti-
cal layers whereas norepinephrine projections are heavy in super� cial layers. 
The receptor type and the signal transduction mechanisms used by these neuro-
modulators are diverse, with the exception of one of the subtypes of serotonin 
receptors—G-protein coupled receptors. The localization of these receptors is 
also specialized. For example, some subtypes of serotonin receptors are pri-
marily localized on GABA interneurons. In addition, monoamine receptors, 
especially the dopamine receptors, are mostly localized extrasynaptically, sug-
gesting that they produce slow and somewhat sustained effects on the state of 
cortical microenvironments. In the case of dopamine, the density of dopamine 
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transporters in cortical areas is sparse and thus the release of dopamine has the 
capacity to diffuse away from presynaptic sites and act more diffusely.

For generality, the following discussion will be focused on how generic 
E-I networks process information and how  neuromodulators in� uence the pro-
cess, keeping in mind that this is a simpli� cation. The precise details, such as 
various intrinsic properties of the different cell types, their dendritic geometry, 
and the exact connectivity patterns within and across cortical columns, would 
need to be investigated in the future to understand the neuroanatomical basis 
of perception. The goal is to probe the system at progressively more detailed 
biological levels, while deciphering the emergent properties of the system at 
each level, which can be robustly tested both experimentally and theoretically.

How Do E-I Neural Networks Oscillate?

Converging evidence suggests that the E-I network is balanced; that is, the 
total amount of excitation and inhibition are comparable most of the time, 
even though the total amount of activity can vary over a wide range. In the 
absence of stimuli, under most conditions, cortical neurons are active at a low 
rate with an ensemble average of about 0.1 Hz, which varies systematically 
across layers. When stimuli arrive, a small fraction of the excitatory stimu-
lus-responsive neurons increase their instantaneous �ring rates to 10 or even 
100 Hz. This increased activation of pyramidal neurons drives the feedback 
inhibitory neurons, which in turn brie�y shut down the pyramidal neurons. 
This reduces the excitatory drive onto inhibitory interneurons which generates 
release from inhibition synchronously across a number of pyramidal neurons. 
Consequently, pyramidal neurons increase their spiking activity in synchrony. 
A key parameter governing the frequency of such E-I network synchronized 
oscillations is the time constant of the inhibitory  GABAA receptors of 10–30 
ms, resulting in about 30–100 Hz gamma frequency  oscillations. Thus, oscilla-
tions in the gamma range can be a signature of cortical activation. Notably, this 
simple description for generating  gamma  oscillations applies only to excitatory 
neurons connected recurrently to inhibitory ones. The additional recurrent con-
nections within the populations of neurons of the same type would profoundly 
in�uence the strength and frequency of oscillations.  Synchronization of oscil-
lations across different E-I networks is another, even more complex process.

Thus, in a simple scenario, stimulus-driven elevation in the �ring of ex-
citatory neurons can have two concurrent effects: (a) elevated �ring of the 
excitatory and inhibitory neurons, and (b) synchronized oscillations. Notably, 
both the oscillation frequencies and the degree of synchronicity between oscil-
lations in�uence neural information processing.

It is important to discuss the following four points: the range of oscillation 
frequencies, alternative mechanisms for generating oscillations, mechanisms 
that modulate oscillation frequency, and synchrony without oscillations.
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Oscillations with frequencies ranging from 0.1–200 Hz have been common-
ly observed in several neocortical areas as well as in the hippocampus and the 
olfactory system. Here, the focus is on oscillations that occur on the timescales 
relevant for processing natural stimuli (i.e., less than about half a second), so 
that they can modulate neural processing. This means that the focus will be 
on frequencies greater than about 2 Hz. Synchronized oscillations of a variety 
of frequencies appear in numerous brain regions during  perception,  attention, 
working memory, motor planning,  sleep,  epilepsy and  Parkinson’s disease. For 
example, 4–12 Hz   theta oscillations are prominent in the rodent and primate 
hippocampus during spatial exploration. They have been reported in visual, 
parietal, and prefrontal cortices during maintenance of information in working 
memory. Somewhat higher frequencies, 10–30 Hz or beta frequency  oscilla-
tions, have been reported in the visual and motor cortices. The 40–120 Hz 
gamma  oscillations are induced by visual stimuli in numerous visual cortical 
areas and  prefrontal cortex, and they also occur in the hippocampus. In addi-
tion, bursts of 140–250 Hz ripple oscillations occur in the hippocampus during 
quiet wakefulness. The focus here is on the theta and gamma oscillations that 
appear in the neocortex and hippocampus during cognitive tasks.

The E-I network is not the only mechanism that can generate synchronized 
oscillations. Neurons are endowed with a variety of conductances and intrinsic 
mechanisms which can also make them respond rhythmically when a � xed 
amount of current or neuromodulators are applied, even when isolated from 
a network.

The key issue is: How do groups of oscillating neurons get synchronized? 
Invariably, this is achieved through their  coupling with the rest of the network. 
For example, neurons in the reticular nucleus of  thalamus oscillate in isola-
tion, whereas these oscillations are synchronized through coupling between 
these neurons directly or through the thalamocortical loop. This mechanism is 
thought to  generate  sleep spindles. Similarly, septal neurons oscillate in isola-
tion and are likely synchronized by their recurrent connection to the hippo-
campus, resulting in synchronous theta oscillations. Finally, even when the 
E-I network in a cortical column oscillates at gamma frequency, an important 
question is: How do  oscillations of different cortical columns  synchronize? In 
all these cases, further questions arise: How do these oscillators respond to a 
stimulus? Does an excitatory spike from another oscillator speed up the sub-
sequent spike from a given oscillator or delay it? In other words, how do the 
oscillations change as a function of the phase at which inputs arrive from other 
oscillators? Thus, it is important to study how oscillations change as a function 
of the phase at which inputs arrive. Such dependence is called a  phase resetting 
curve and has been investigated for a variety of physical and neural systems.

The frequency of neural oscillations can be modulated by several means. 
For example, neuromodulators can generate a threefold change in the effec-
tive time constant of  GABAA receptors, resulting in a concomitant change in 
the frequency of gamma oscillations. Further, cholinergic levels alter spike 

Chapter from "Dynamic Coordination in the Brain: From Neurons to Mind," edited by C. von der Malsburg, W. A. Phillips, 
and W. Singer. Strüngmann Forum Report, vol. 5. ISBN 978-0-262-01471-7. Cambridge, MA: The MIT Press.



138 M. Mehta et al. 

frequency adaptation of pyramidal neurons, which would in� uence the E-I 
balance and spike timing in an E-I network. The levels of neuromodulators 
change with behavioral state and attention, resulting in state-dependent modu-
lation of amplitude, power, and synchrony of neural oscillations. For example, 
neuromodulators can raise the membrane potential of neurons. This can make 
it easier for the neurons to respond to a small amount of stimulation, and may 
make the E-I network more likely to oscillate.

Finally, two important features of  oscillations need to be distinguished: 
 synchrony and rhythmicity. Synchrony can occur without rhythmicity and 
vice versa. In particular, synchronous activation of groups of neurons oc-
curs almost invariably, often without oscillations, when a strong stimulus is 
abruptly activated.

Neural synchrony is important for ef� cient and rapid transmission of infor-
mation between brain regions. For example, individual neurons in a cortical 
column receive information from only about 100 thalamic neurons. To inte-
grate this input and generate a spike, a cortical neuron typically needs to be 
depolarized by about 20 mV. Given the small amplitude (�1 mV) and short du-
ration (~10 ms) of cortical excitatory, AMPAR-mediated postsynaptic poten-
tials, this small amount of thalamic neurons can only activate an entire cortical 
column if the inputs are synchronized within a 10 ms time window.

There are several advantages of transmitting information using synchro-
nous activity. First, only a small number of active neurons, or a sparse code, is 
suf� cient to transmit information from one area to another, as opposed to asyn-
chronous transmission which would require more activity. Given that spike 
generation consumes energy, sparse synchronous codes are energy ef� cient. 
Second, compared to the asynchronous systems, synchronous  sparse codes can 
be brief, allowing the system to respond rapidly to changing stimuli. Finally, 
the synchrony-based codes allow the system to be � exible, requiring only small 
changes in the relative timings of groups of neurons to make one group drive 
the downstream neurons more effectively than through asynchronous codes.

Synchronous activity can be generated by two different mechanisms. 
Synchrony can be evoked by a transient stimulus or through dynamic interac-
tions between internal temporally organized activity patterns, such as oscil-
lations. The latter can generate synchronous activity across multiple cycles 
of oscillation. Subsequent sections will discuss computational advantages of 
this process.

Why Aren’t Gamma Oscillations Always 
Observed during Behavior?

The E-I network is ubiquitous, and synchronized oscillations are a likely mode 
of the E-I networks, yet there are instances in which oscillations are not ap-
parent. There are several reasons for this. It is often dif� cult to detect gamma 
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oscillations in the spike train of a single neuron because, even when modulated 
by gamma oscillations, neurons often do not spike at suf� ciently high rates 
to be active on every gamma cycle. Also, neurons often join the population 
rhythm for only brief epochs. This probabilistic � ring and rapidly changing 
neural assembly can appear to be nonrhythmic when analyzing the activity 
of single units in isolation. An alternative method for detecting synchronized 
oscillations of ensembles of neurons is through the measurement of the  lo-
cal � eld potential (LFP) and the analysis of its power spectrum. Notably, the 
power in the LFP spectrum decays inversely with the increase in frequency, 
which makes it more dif� cult to detect activity in the gamma band than in the 
lower frequencies. Here, analysis methods that compensate for this systematic 
tendency of power spectra can improve the ability to detect gamma oscilla-
tions. Further, the nature of the electrode used to measure the LFP in� uences 
the power of the measured oscillations: sharp, high-impedance electrodes in-
tegrate activity over a small pool of neurons, which may not be suf� cient to 
detect synchronous oscillations above the electrical noise. Signals can be im-
proved by using blunter electrodes, which additionally allow the detection of 
synchronous gamma activity in multiunit activity.

Presentation of visual stimuli within a receptive � eld, such as moving bars 
or gratings, are likely to generate synchronized gamma oscillations for at least 
several seconds in anesthetized animals. Similar oscillations may be more dif-
� cult to detect in behaving animals because the � xations last shorter as eyes 
move on average three times a second, moving the stimuli rapidly in and out 
of the receptive � elds. This may augment the � uctuations of neural activity, 
resulting in rapid � uctuation of gamma power and frequency, and making de-
tection by standard methods dif� cult. Time-frequency domain analyses may 
counter this problem by estimating the strength of gamma oscillations in small-
er, relatively unperturbed windows of time.

Additionally, one should measure the gamma activity in a region that is 
likely to be critically involved in processing of the presented stimulus such that 
neurons are likely to be driven at high rates. A more strongly driven E-I circuit 
is more likely to be accompanied by strong gamma oscillations.

Finally, as discussed above, an E-I circuit will not always generate syn-
chronous gamma oscillations. Nevertheless, information processing based on 
precise synchronization in sparse cortical circuits may take place. One possible 
reason is that synchronized activity patterns do not always follow limit-cycle 
attractors, characteristic of regular oscillations, but instead more irregular, 
maybe even chaotic   attractors. As a consequence of the more broadband nature 
of these processes, auto-correlograms often show the familiar, a few milli-
seconds wide center peak � anked by troughs but lack satellite peaks. Another 
possibility is that synchronous events could occur through syn� re chain mech-
anisms, which do not require regularly repeating activation of neurons. Both, 
chaotic  attractors and  syn� re chains represent internal mechanisms of synchro-
nization (induced  synchronization) as they do not require precise locking to 
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stimulus events. Finally, synchrony can also be evoked by an external input. 
For example, a � ashed visual stimulus or an auditory “click” can trigger syn-
chrony. In these cases the synchronous activity is locked in time to the stimulus 
and can be detected in a peri-stimulus time histogram (PSTH).

How Do Gamma Oscillations Interact with 
Lower Frequency Oscillations?

Generating gamma oscillations in an  E-I network requires a fair amount of 
activity, which costs energy and would be dif� cult to sustain continuously. One 
way to bring that network to an oscillatory state is by driving these neurons 
externally, as discussed above. Here, it is important to synchronize gamma 
oscillations across multiple interacting modules. This can be a dif� cult task 
when the modules are far apart, where the transmission delays, combined with 
complex  phase resetting curves, may make it dif� cult to generate synchrony. 
This raises the question: Are there other, transmission-delay independent ways 
to increase the long-range synchrony of gamma oscillations?

One possibility to make gamma oscillations more prominent is to suppress 
the lower frequency oscillations, thereby increasing the signal-to-noise ratio. 
The power spectra of neural activity show ~1/f dependence on frequency f, 
with a large amount of power in low frequency signals. A small suppression 
of low frequency signals can signi� cantly improve the relative contribution 
of the gamma power, making the gamma oscillations more effective in modu-
lating spiking activity. This enhancement of gamma ef� cacy induced by low 
frequency suppression has been reported in several sensory cortical areas dur-
ing attention and voluntary movements. Further, cortical activity is modulated 
by synchronous activity in the  delta band (0.5–3 Hz) during quiet wakefulness 
and sleep, and this low frequency activity disappears during active engagement 
in a task and in conjunction with an increase in the gamma power.

Mechanisms also exist under which lower frequency oscillations can fa-
cilitate synchronization of gamma power � uctuations across large distances. 
Neurons in the hippocampus oscillate synchronously at theta frequency and 
project to a majority of neocortical areas. During the phase of  theta  oscillation, 
in which the hippocampus is more active, it can activate the target neocortical 
neurons, thereby enabling gamma frequency oscillations in those neocortical 
areas. The reverse happens at the phases of theta oscillations where hippocam-
pal neurons are less active. Thus, the power of neocortical gamma oscillations 
would be modulated by the phase of hippocampal theta oscillations. This has 
been observed in behaving animals, including humans. Similarly, the phase of 
lower frequency oscillations modulates the power of neocortical gamma oscil-
lations during  slow-wave sleep, with higher gamma power appearing during 
the more depolarized phase of slow oscillations.
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Thus, lower frequency oscillations can modulate gamma oscillations in two 
different ways. First, removal of the incoherent lower frequency oscillations 
can enhance gamma power. Second, the coherent lower frequency oscillations 
can facilitate synchronous modulation of gamma power across neocortical ar-
eas. Neuromodulators can also in� uence this process, in some cases removing 
low frequency oscillations and in others, facilitating them. This suggests that 
some form of optimization may occur, adjusting the balance between low and 
high frequency oscillations to maximize the ef� cacy of information process-
ing. As a � rst step toward understanding how oscillations in� uence informa-
tion processing, this interaction is discussed at the level of single neurons, of 
ensembles of neurons, and ensembles of neuronal networks.

How Do Oscillations In� uence the Neural 
Representation at a Single Neuron Level?

Neurons respond in a graded fashion to sensory stimuli by altering their av-
erage activity levels: optimal stimuli evoke greater amount of activity than 
suboptimal stimuli. This is the classic  rate code. For example, hippocampal 
place cells change their �ring rates as a function of the spatial location of an 
animal, and neurons in the primary visual cortex change their mean � ring rates 
as a function of the orientation of a stimulus. Further, hippocampal place cell 
activity is modulated by synchronized theta rhythm, and visual cortical activity 
is modulated by gamma rhythm. Thus the neural responses are modulated by 
two very different forces: by stimuli anchored in physical space and by inter-
nally generated  oscillations. The former contain information about the external 
world, the latter about internal processing and timing. How do the stimulus-
driven responses interact with synchronized oscillations? Would such interac-
tion serve any purpose?

In the simplest scenario, the neuron will simply sum up the two inputs and 
generate a spike when this input exceeds a threshold. Thus, when the stimulus-
based input is low, the neuron would spike at only that phase of oscillation 
when the oscillatory input is high so that the total input is suf�cient to reach 
spike threshold. On the other hand, when the stimulus-evoked input is high, 
the neuron can spike even at the phase of oscillation when the oscillatory in-
put is minimal. Thus, an interaction between the input and oscillation gener-
ates a  phase code: When the inputs are strong, neurons will respond at every 
phase of oscillation; when the inputs are weak, neurons can respond only at 
the peak of oscillation when the oscillatory drive is maximal. At intermediate 
values of input, the outcome is a combination of phases. Thus, interaction be-
tween rate-coded inputs and synchronized oscillations would generate a phase-
coded output.

Such phase-code and rate-phase, or rate-latency transformation has been 
observed in the hippocampus and is called  phase precession (i.e., the phase of 
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theta  oscillation at which place cells spike varies systematically as a function 
of the animal’s position).  For example, on linear tracks, a place cell � res spikes 
near the trough of theta oscillation as the animal enters the place � eld, and the 
theta phase of spike precesses to lower values as the animal traverses farther 
in the place � eld.  Phase precession has been observed in several parts of the 
 entorhinal–hippocampal circuit, along with correlated changes in � ring rates. 
Recent studies have shown a mathematically similar phase code in the visual 
system where neurons spike at an earlier phase of gamma oscillation when 
driven maximally by the optimal stimulus, but at later phases of gamma oscil-
lation when driven by suboptimal stimuli. Further, rate-latency transformation 
can be detected in the structure of spatiotemporal receptive � elds of direction-
selective visual cortical neurons when probed using randomly � ashed bars. 
Similar measurements in other structures are likely to detect similar phase 
codes. Further, when slowly rotating oriented bars are presented to visual cor-
tex, they may generate gamma-phase progression, and so may single bars pass-
ing over a series of direction selective receptive � elds in area MT or V1.

These  phase codes have several computational and functional advantages. 
First, they enable the postsynaptic neuron to decode the stimulus parameters 
by simply measuring the phase of the oscillation at which the presynaptic neu-
ron spiked. This phase or latency is clearly de� ned by the period of the oscil-
lations. This is in contrast to a rate code where one has to specify arbitrarily 
the interval of time over which spike count has to be averaged to obtain an 
estimate of a rate code. Second, stimulus-evoked activation of groups of neu-
rons that represent stimuli in a sequence several seconds long would generate 
a compressed version of the stimulus sequence within an oscillation cycle due 
to the rate-phase transformation, possibly allowing these stimuli to be bound 
together and perceived as a chunk. Third, this temporally precise sequence of 
activation of neurons would facilitate the induction of spike timing-dependent 
plasticity, thereby generating a permanent record of the group of coactivated 
neurons in terms of the strengths of synapses connecting them. This would not 
only involve strengthening of synapses, but also weakening of synapses, espe-
cially the ones that correspond to nonsequential activation.

This mechanism of rate-phase transformation can thus be used to learn tem-
poral sequences that occur over a timescale of a second, even though  synaptic 
plasticity mechanisms operate on timescales of milliseconds. Similar learning 
of sequences may occur in other scenarios as well, where oscillations are im-
posed by other means. For example, systematic movements of the eyes across 
a natural scene every third of a second could induce oscillations where se-
quentially perceived views of the scene are brought together to form a stable, 
coherent percept using short- and long-term synaptic plasticity mechanisms. 
In addition to the relative timing of spikes between the stimulus-selective ex-
citatory neurons, inhibitory spikes and neuromodulatory inputs are likely to 
determine the pattern of synaptic modi� cations.
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While these mechanisms would work well for learning sequences of events 
that occur over a period of about a second, it remains to be determined how 
sequences of events that occur several minutes or hours apart can be learned 
via hitherto unknown mechanisms. Further, the above discussion of neural 
responses assumed that they are � xed and can be described in terms of a re-
ceptive � eld. Next we question this assumption and discuss the possibility of 
dynamic receptive � elds.

Are Neural Representations Static or Dynamic?

In a typical study of neural information processing, the experimenter measures 
the changes in neural activity in response to a variety of stimuli. The neurons 
may respond strongly to one set of stimuli and less so to others. The pattern of 
neural responses to stimuli de� nes the neuron’s receptive � eld.

The notion of a  receptive � eld guides our thinking on how single neurons 
represent information but also has several limitations:

1. There are an in� nite number of possible stimuli, varying across many 
dimensions. Hence, it is dif� cult to � nd the stimulus or set of stimuli 
that drive the neuron optimally within a � nite amount of time.

2. Internal variables, such as arousal and neuromodulatory state, modu-
late neural responses.

3. Not only the stimuli within the receptive � eld, but even stimuli outside 
the classical receptive � eld modulate the responses.

4. The responses of many neurons in the visual system are affected by the 
attentional level and the reward value of the stimulus.

5. Most importantly, during natural behavior, stimuli are not static and do 
not appear in isolation. Instead, a large number of visual stimuli typi-
cally appear simultaneously and the stimulus con� guration changes 
rapidly.

As a consequence of these � ve in� uences, the classical receptive � eld of a 
neuron can change dramatically between situations. For example, transient in-
activation of the somatosensory cortex or of a sensory organ generates a large 
reorganization of the sensory map—a process that occurs within a second. In 
the hippocampus, past experience can result in a complete reorganization of 
the spatial selectivity of place cells. This reorganization is called remapping. 
Remapping can occur even on short timescales (~minutes), not just over days. 
In addition, when stimuli are presented in a sequence, visual cortical neurons 
not only respond to the onset of the stimulus but the responses depend on the 
sequential position of the stimulus as well: some neurons � re maximally to the 
presentation of the � rst stimulus in the sequence, irrespective of the identity of 
that stimulus. Finally, recent experiments show that hippocampal neurons � re 
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in a sequence even when the animal is sleeping or is running without changing 
its position (i.e., in a � xed running wheel).

These results suggest that neural responses are dynamic and can change 
rapidly with changes in stimulus con� gurations and internal variables, such as 
past experiences. This should not be surprising. As discussed earlier, to be en-
ergy ef� cient, neuronal codes need to be  sparse and synchronous. Depending 
on the  connectivity state of the network, recent history of neural and synaptic 
activity, and the nature of stimuli, different groups of neurons and synapses 
may become synchronously active and may hence drive different downstream 
neurons. Short-term dynamics of neurons and synapses can play an important 
role in generating such  dynamic receptive � elds.

This raises the question of how the downstream neurons interpret the mes-
sages sent by dynamically changing upstream neurons. Clearly, the postsyn-
aptic neurons not only respond to just one presynaptic neuron but to an en-
tire ensemble. Thus, dynamic reorganization of neural responses should be 
coordinated across an ensemble of neurons. The following discussion sketches 
an oscillation-based mechanism of dynamic coordination of neural codes 
across ensembles.

Neural Attractors, Cell Assemblies,  Synaptic  Assemblies, 
Oscillations, and Dynamic Coordination

Information  is thought to be represented by the activity patterns of groups of 
neurons. Fault tolerant, stable, content addressable, and associative representa-
tion of stimuli across an ensemble of neurons can be implemented using the 
 Hop�eld  attractor dynamics. For �xed point  attractors, there are large energy 
barriers between the different representations, represented by local energy 
minima, whereas the energy required to make transitions between stimuli along 
some other dimension may be negligible in the case of continuous attractors. 
The stability and convergence of attractor dynamics are achieved through it-
erative processing of information in a  recurrent network of excitatory neurons. 
Recent studies show that  attractor dynamics can work even in sparsely active 
E-I networks. Such networks may show attractor dynamics with or without 
oscillations. It remains to be seen if the oscillations can facilitate the attractor 
dynamics.

How can the attractor dynamics generate �exible and dynamic neural re-
sponses? The answer may lie in ef� cient networks with short-term dynamics. 
As discussed above, energetically it is ef�cient for a small group of neurons 
to �re a few spikes synchronously to drive the postsynaptic neuron. Estimates 
show that in a period of about 20 ms, a suf�cient period for the postsynaptic 
neuron to integrate the inputs and �re a spike, only about 500 neurons may 
need to be coactive out of a population of 300,000 CA1 neurons. Similarly 
sparse representations of stimuli are also present within neocortical circuits, 
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given the similarly low mean � ring rates of principal cells in various neo-
cortical layers. Experiments in vitro indicate that within this time window, 
pyramidal cells can linearly integrate the activity of hundreds of presynaptic 
inputs and then discharge. The minimum number of presynaptic neurons may 
be even an order of magnitude smaller if presynaptic neurons terminate on the 
same dendritic segment and discharge within a time window <20 ms. Further, 
in the hippocampus, inhibitory interneurons respond much more effectively 
than principal cells and hence, a single action potential of a presynaptic prin-
cipal cell may be suf� cient to discharge an interneuron. Release from potent 
inhibition would generate synchronous computation in a population of target 
excitatory neurons.

The ef� cacy of a handful of neurons in driving the downstream neuron will 
therefore depend on several parameters. For example, if the synapses from 
these neurons are located near each other on the downstream neuron’s den-
drite, synchronous activation of these synaptic inputs may cooperate to gener-
ate a dendritic spike. This would increase the effective strength of such groups 
of synapses, thereby altering the structure of the attractor and increasing the 
ability of a small number of input neurons to drive the downstream neuron. 
Similarly, the amount of synchrony, within a 20 ms window, between the ac-
tivation of these synapses would strongly in� uence their effective strength in 
driving the downstream neuron. Recent studies show that although neural re-
sponses, as a function of input strength, are threshold-linear in an asynchro-
nous condition, neural responses are sigmoidal in the synchronous condition: 
low synchrony results in no response, and above some threshold amount of 
synchrony the result is a maximal response. Thus, small changes in the input 
synchrony may activate different sets of neurons. This can be rapidly reorga-
nized by recent history, which would in� uence the synaptic strength via short-
term plasticity, resulting in convergence to different attractors. This dynam-
ics could explain the rapid reorganization of hippocampal and somatosensory 
maps with past history or with small changes in stimuli. Further, synchronous 
inhibition in an E-I network would synchronously release excitatory neurons 
from inhibition during gamma oscillations, thereby allowing the neurons to 
change rapidly their response to inputs in a dynamic fashion. Finally, neuro-
modulators could alter the ef� cacy and timing of these synapses, which would 
result in dynamic reorganization of neurons responsiveness to stimuli based on 
internal variables.

 Neuromodulators act broadly on neural circuits, and they are typically 
thought to act on slow timescales. The in� uence of neuromodulators can be 
focalized and accelerated by the following hypothesized extracellular mecha-
nism: A region of the brain with higher activity could contain a larger amount 
of glutamate in the extracellular medium, and the clearing of the neuromod-
ulators (e.g., through glial processes) may be altered by the level of gluta-
mate. This may result in rapid changes in in� uence of neuromodulators on 
neural ensembles.
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In this scenario of ef� cient and synchronous networks, activity would prop-
agate rapidly across processing stages, and the relevant parameter would be the 
group of coactive neurons within a gamma cycle or the roughly 20 ms taken 
to activate the postsynaptic neurons. This group of temporarily synchronous 
neurons is referred to here as a  cell assembly. Due to the mechanisms depicted 
above, the cell assembly can change rapidly with stimuli and internal variables. 
In other words, membership in a cell assembly is highly � exible. In a Hop� eld 
network, for example, each gamma cycle may contain a cell assembly that 
primes the formation of another assembly in the next cycle of iteration toward 
convergence. In a  recurrent network with short-term synaptic dynamics, this 
could lead to transitions between attractors and the generation of temporally 
sequential activity of ensembles of neurons.

Experiments show that the assembly of coactive hippocampal neurons, de-
� ned within a period of about 20 ms, can change rapidly. This is partly re-
lated to phase precession. As the rat walks through the environment,  place 
cells � re a series of spikes at different phases of the theta cycle. The group of 
coactive cells within any 20 ms period depends not only on the phase of the 
theta rhythm and position of the animal but also on other variables (e.g., run-
ning speed, head direction). Thus, a multimodal, dynamic, and rapidly evolv-
ing representation emerges.

Two additional mechanisms by which cell assemblies can become dynamic 
are asynchronous background activity and top-down in� uence. These factors 
can raise the level of depolarization of the cell, thereby altering its responsive-
ness to short, ef� cient bursts of synchronous inputs. This is particularly effec-
tive when these inputs target the fast-spiking interneurons, which can then en-
train a subset of pyramidal cells, and could explain the in� uence of top-down 
inputs on the rapid reorganization of neural responses.

In such scenarios, it is conceivable that the relevant parameter for describ-
ing the network dynamics is not the group of synchronously active cells, or 
cell assembly, but the group of synchronously active synapses or a synapse 
assembly through which the information � ows. Neuromodulators and their re-
ceptors, located extra-synaptically, can directly modulate the activity pattern of 
the synapse assembly, which is not restricted to a single cell and which may or 
may not result in the modulation of the cell assembly. Theoretical studies are 
needed to determine how such a dynamic synaptic assembly can also be stable 
and noise tolerant. In addition, experimental studies are needed to determine 
the structure of synaptic assemblies.

These cellular and synaptic assemblies in the oscillating and balanced  E-I 
networks are examples of  dynamic equilibrium, in which a network is kept 
maximally responsive  to changing patterns of inputs, while keeping energy 
expenditures low. Such self-organized systems are often characterized by a 
power-law spectrum of event amplitudes. Supporting evidence may be found 
in the neural systems in terms of the power-law-shaped spectra of the activity 
of ensembles, such as the LFP or EEG. However, these systems occasionally 
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produce very large events, which would be catastrophic for neural systems. 
Perhaps the strong, fast, and reliable feedback within an E-I circuit can help 
prevent such runaway events while keeping the system more responsive, near 
a critical point, through the generation of neural oscillations.

How Does the Brain Dynamically Select Cell 
Assemblies to Make a Decision?

Decisions are likely to occur by coordinated activity patterns in neural ensem-
bles across different regions. These cell assemblies across regions can coordi-
nate or compete in a number of ways to generate a winner assembly that drives 
the decision. First, the long-range excitatory-excitatory connections between 
the E-I assemblies in different regions can synchronize their activities and in-
crease their �ring rates, thereby making a selected group more active than oth-
ers. Second, the excitatory-inhibitory connections between two different E-I 
assemblies could raise the level of inhibition and suppress the activity of the 
inhibited population. Third, the long-range inhibitory-inhibitory connections 
could either decrease or increase the �ring rates of an E-I circuit. It would seem 
that this inhibitory transmission between cell assemblies may result in reduced 
activity of the second assembly. However, it has been shown that in  recurrent 
E-I networks, under some parameter regimes, increased inhibitory inputs re-
sult in increased overall activity due to suppression of inhibition via recurrent 
inhibitory synapses. Thus, inhibitory connection between two cell assemblies 
may serve a dual purpose of (a) synchronizing their gamma rhythmic activity 
and (b) increasing their overall �ring rates, thereby allowing this group of cell 
assemblies to drive the downstream group of neurons toward decision.

In addition to these mean �ring rate-based effects and mechanisms, precise-
ly timed inhibitory inputs could synchronously release distant cell assemblies 
from inhibition, thereby making them coactive in brief windows of time. Here, 
oscillations could facilitate this rapid synchrony and competition by synchro-
nously activating and inactivating large neural ensembles across multiple brain 
areas. Thus, the decision-making process may be a phase-dependent rather 
than a rate-dependent process.

Neuromodulators could play a key role in these processes by altering the 
E-I balance and rhythms, thereby generating state-dependent synchrony of cell 
assemblies that determine the winner ensemble. The above mechanisms ad-
dress direct competition between assemblies. An advantage is energy ef� cien-
cy. However, it is possible that competition between assemblies occurs at the 
level of their ef�cacy in driving a downstream structure, such as the prefrontal 
cortex, resulting in competition between synaptic assemblies, which in turn 
can bias information processing in the upstream network. Such a recurrent pro-
cess of decision making across networks could be slow, but can be speeded up 
through the use of a  phase code, where the top-down and bottom-up in� uences 
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can arrive at different phases of oscillations, thereby determining a winner 
ensemble within an oscillation cycle.

Conclusions

Our discussion emphasizes a few key mechanisms of neural information pro-
cessing. At the heart of this discussion is the ubiquitous neural circuit of recur-
rently connected groups of excitatory and inhibitory neurons. The E-I circuit 
can remain at a dynamic equilibrium, allowing it to respond rapidly to inputs. 
The E-I module can be easily replicated to generate larger circuits, perhaps 
during  evolution, with each component using a similar language. Further, the 
dynamic equilibrium would allow a small number of inputs to alter the state of 
the network and make neurons respond. Thus, the network could have sparse 
activity, thereby making it energy ef� cient. In such sparsely active E-I net-
works, synchronous activity would be transmitted ef� ciently and rapidly.

Under many conditions, this E-I circuit oscillates. Interaction between these 
oscillations and inputs from external stimuli would generate a phase-coded 
representation of input that is rapid, ef� cient, and malleable; one that can facili-
tate learning via mechanisms of spike time-dependent  synaptic plasticity. Such 
 phase codes could bind multiple neural representations for brief periods in a 
� exible fashion and determine the computational interactions between differ-
ent signals. The duration of each syllable in an E-I network phase code, called a 
cell assembly, would be about 20 ms, corresponding to a gamma cycle. Cell as-
semblies across multiple gamma cycles can either converge to a Hop� eld-like 
attractor, in the presence of stationary stimuli, or generate history-dependent 
responses with dynamic stimuli; alternatively, in the absence of stimuli, it can 
spontaneously transition across a sequence of cell assemblies due to short-term 
dynamics. The oscillations of E-I circuit can be synchronized across different 
regions, allowing dynamic coordination of phase codes across brain regions. 
Other processes, such as lower frequency oscillations and neuromodulators, 
can in� uence coordination and competition between the E-I assemblies, gener-
ating a state-dependent winning ensemble or decision. While some tantalizing 
support is available for these mechanisms of the emergence of mind from neu-
rons, much remains to be theoretically understood and experimentally tested.
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