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It is widely believed that sensory andmotor processing in the brain is
based on simple computational primitives rooted in cellular and
synaptic physiology. However, many gaps remain in our understand-
ing of the connections between neural computations and biophysical
properties of neurons. Here, we show that synaptic spike-time-
dependent plasticity (STDP) combined with spike-frequency adapta-
tion (SFA) in a single neuron together approximate the well-known
perceptron learning rule. Our calculations and integrate-and-fire
simulations reveal that delayed inputs to a neuron endowed with
STDP and SFA precisely instruct neural responses to earlier arriving
inputs.Wedemonstrate thismechanismonadevelopmental example
of auditorymap formation guided byvisual inputs, as observed in the
external nucleus of the inferior colliculus (ICX) of barn owls. The
interplayof SFAandSTDP inmodel ICXneuronsprecisely transfers the
tuning curve from the visual modality onto the auditory modality,
demonstrating a useful computation for multimodal and sensory-
guided processing.

delta learning rule | Hebbian learning | sensory fusion | synaptic
potentiation | supervised

Many of the sensory and motor tasks solved by the brain can
be captured in simple equations or minimization criteria.

For example, minimization of errors made during reconstruction
of natural images using sparse priors leads to linear filters rem-
iniscent of simple cells (1, 2), minimization of retinal slip or
visual error leads to emergence and maintenance of neural
integrator networks (3–5), and optimality criteria derived from
information theory can model the remapping dynamics of
receptive fields in the barn owl midbrain (6).
Despite these advances, little is known about cellular physio-

logical properties that could serve as primitives for solving such
computational tasks. Among the known primitives are short-term
synaptic depression, which can give rise to multiplicative gain
control (7), or spike-frequency adaptation (SFA), which may
provide high-pass filtering of sensory inputs (8, 9).
Here, we explore biophysical mechanisms and computational

primitives for instructive coding. Instructive coding is a compu-
tation that allows the brain to constrain its sensory representa-
tions adaptively by exploiting intrinsic properties of the physical
world. The example we consider here is that sound sources and
salient visual stimuli often co-localize (e.g., when a dried branch
cracks under the footstep of an animal). In the barn owl, a highly
efficient predator, this auditory–visual co-localization is well
reflected by registration of auditory and visual maps in the
external nucleus of the inferior colliculus (ICX) and the optic
tectum (OT). The instructive aspect of this registration is that it
is actively maintained by plasticity mechanisms: When the visual
field of owls is chronically shifted by prisms, neurons in ICX and
OT develop a shift in their auditory receptive fields that corre-
sponds to the visual field displacement (10, 11). Hence, visual
inputs to these areas are able to serve instructive roles for
auditory spatial representations.
In the computational literature, instructive coding has been

linked to the perceptron rule, a learning rule for one-layer neural
network models (12, 13). This rule guarantees that the firing rate
approaches the target rate and is one of the simplest expressions

of an almost infinite class of learning algorithms that go under
the name of gradient descent algorithms. Although the percep-
tron rule and gradient descent algorithms have been broadly
applied to network models of brain function (14–16), to our
knowledge, they have not been derived from first principles and
abundant experimental evidence for their existence is still lack-
ing. One of the most prominent criticisms is that these algo-
rithms depend on the existence of an explicit error signal, for
which convincing evidence is scarce in most neural systems.
A special case of instructive coding, cross-modal spatial trans-

formations, can be formed by spike-time-dependent plasticity
(STDP) rules when driven by multimodal inputs (17, 18). Although
STDP by itself does not seem to be capable of supporting arbitrary
instructive coding (19), we identify a possible scenario for the
implementation of the perceptron rule, namely, in cells that display
both SFAandSTDP.For a large rangeof parameters, the interaction
of these common cellular and synaptic properties gives rise to the
perceptron rule and represents a robust mechanism for supervised
learning in biological systems. Most importantly, the error signal in
our STDP–SFA scenario is implicit rather than explicit, which alle-
viates the exploratory urge to identify such signals experimentally.

Results
To explore a possible relationship between firing adaptation,
STDP, and error signals, we studied a spiking neuronmodel based
on the organization of the owl midbrain and on physiological
responses. Our (ICX) model neuron is an adapting conductance-
based leaky integrate-and-fire unit in which SFA is modeled by an
after-hyperpolarizing potassium conductance (20).
The unit receives excitatory sensory input a from a fast-acting

auditory pathway and input v from a slower acting visual pathway
(Fig. 1). The auditory-input synapses are subject to STDP,
whereas the visual-input synapses are fixed.
Our results are based on numerical simulations, and, to avoid

exhaustive parameter testing, wefirst show analytical results inwhich
we use the method of time averaging to replace spike trains with
average firing-rates (see Analytical Derivation in Methods). This
approximation is valid as long as neurons operate over a range of
firing rates inwhich the slopesof theirF-I curvesdonot changemuch.

SFA Can Encode an Implicit Error Signal. First, we examine the effects
of SFA on bimodal neural responses.We stimulate the neuronwith
auditory and visual stimuli that are step functions of duration T. To
model the slower visual pathway, visual inputs ( v ) have afixed onset
lag of Tlat = 70ms, corresponding to estimates in the barn owl (22).
When driven by auditory or visual input in isolation, the neuron
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exhibits a transient response that adapts within a few milliseconds.
When both inputs are simultaneously presented, however, the
adaptation elicited by early auditory responses persists and leads to
suppression of subsequent visual responses (Fig. 2A).
Mathematically, this interaction of bimodal responses can be

expressed in terms of scalars A and V representing auditory and
visual responses. The auditory response, A, is the average firing
rate of the neuron in the time interval [0, T], and the visual
response, V, is the average firing rate in [Tlat, T + Tlat]. For short
stimuli, T ≤ Tlat, there is no temporal overlap between auditory
and visual responses, allowing us to describe our findings
unambiguously in terms of A and V.
Assuming a nonadapted state at stimulus onset, A is purely a

function of auditory input. In contrast, V depends not only on the
visual-input current, IV, but also on A because of preceding adapta-
tion.Our calculation shows thatV is a linear functionofboth IVandA:

V = c0 + c1IV − c2A; [1]

where c0–c2 are constants set by cellular and synaptic properties (see
Analytical Derivation).
The linear relationship in Eq. 1 is exact under the condition

that IV is large enough to override the adaptation current and to
drive spike responses in the cell. Expressed in terms of V and A,
the range of validity of Eq. 1 becomes

V ≥ c3A; [2]

where c3 is a constant that depends on cellular/synaptic parameters
(see Analytical Derivation). Note that when the condition in Eq. 2 is
violated, the response V might be either delayed by more than Tlat
or completely suppressed, implying a nonlinear relationship
between V, A, and IV. Nevertheless, even in this nonlinear regime,
we found the linear relationship in Eq. 1 to be a good approxima-
tion of the response behavior of the cell (Fig. 2B).
Next, we show that under the influence of STDP, this antago-

nism of auditory and visual responses leads to potentiation or
depression of auditory input synapses in such a way that A con-
verges to a term proportional to IV (assuming c0 is small), which is
the condition of alignment of auditory responseswith visual inputs.

Interplay Between SFA and STDP Leads to the Delta Learning Rule.
We endowed auditory synapses with a standard form of Hebbian
STDP. According to the STDP rule, the joint occurrence of a
presynaptic spike at time tj and a postsynaptic spike at time ti
leads to a change in synaptic conductance, Δg, that depends
solely on the time interval Δt = ti − tj:

Δg= gmaxW ðΔtÞ; [3]

where the function W(Δt) is the STDP pairing function (Fig. 1B)
and gmax is the upper limit of synaptic conductance. We chose a

negative net area under the STDPpairing function, thereby impos-
ing a tendency of the auditory synaptic strength to depress (23).
To explore the interplay between SFA and STDP, we assumed

zero initial synaptic conductance (gA = 0) and repeatedly stimu-
lated the neuron with step-like auditory and visual inputs of fixed
strengths and duration T. The interstimulus intervals were long,
such that the adaptation conductance decayed to zero between
stimulus repetitions. Initially, the neuron responded only to visual
inputs but not to auditory inputs (A= 0). As the auditory afferents
carried spikes just before the visual response, the auditory syn-
apses started to strengthen, because afferent auditory spikes were
followed by visually elicited spikes (Fig. 3A). With further
strengthening of the auditory synapses, auditory responses started
to appear. Once the neuron displayed robust auditory responses,
the visual responses started to decline because of SFA. This
decline, in turn, reduced the amount of synaptic potentiation,
because afferent auditory spikes were now followed by fewer
postsynaptic spikes. In addition, because adaptation shortened
auditory responses relative to the afferent drive, there were many
auditory afferent spikes that were not followed by postsynaptic
spikes, imparting an additional depressing tendency in the syn-
apses (Fig. 3B). In combination, there existed a balanced regime in
which the synaptic depression induced by transient auditory
responses equaled the potentiation induced by delayed visual
responses (Fig. 3 C and D). This balanced regime did not depend
on the initial synaptic conductance and was also reached when the
initial conductance was set to gmax instead of zero.
To calculate the synaptic weight change as a function of all

parameters in the model, we replaced the spike trains under the
STDP pairing function with the neuron’s firing rate function, R(t),
which represents the time-dependent spike probability (Poisson
spike trains). To make calculations tractable, we simply summed
over multiple spike pairs inside a given pairing window; under
this condition, the total conductance change, Δg, associated with
one stimulus presentation becomes the integral

Δg= gmax

ð∞
−∞

W ðt′Þγðt′Þdt′; [4]

where γðt′Þ= Ð∞−∞ aðtÞRðt+ t′Þdt is the cross-correlation as a
function of the time lag t′ between the auditory input rate
function, a(t), and the firing rate, R(t).
When we evaluated Δg in Eq. 4 for a(t), a step function with

peak value a, we derived the learning rule:

Δg= gmaxðc4V − c5AÞa; [5]

where the terms c4 and c5 depend on model details (see Analytical
Derivation). We further transformed Eq. 5 by replacing V with IV,
using Eq. 1, to yield
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Fig. 1. A single-neuron model for instructive coding. (A) Neuron receives auditory input (a) of short latency and visual input (v) of longer latency. (B)
Auditory-input synapse is subject to STDP, i.e., it strengthens when the neuron fires action potentials after presynaptic spikes (positive time difference) and
weakens in the contrary case. The STDP pairing function shown has exponential tails. (C) Conductance-based integrate-and-fire neuron exhibits SFA, illus-
trated by its response to a 50 ms step input. The spike rate in response to the onset of the step input is high but then quickly adapts.
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Δg= gmaxðc6IV − c7AÞa; [6]

which is formally equivalent to the delta rule of the perceptron
learning theory. Namely, the term (c6IV − c7A) is the deviation
of the auditory response, A, from the target rate (c6/c7)IV and
corresponds to the postsynaptic error, and the term a is the
presynaptic firing rate. Hence, mathematically, STDP and SFA
jointly prescribe synaptic weight changes that are proportional
to the postsynaptic error times the presynaptic rate. Because the
delta rule corresponds to gradient descent on the square error

between the neural response and the target response (12, 13),
the effect of repeated application of the rule is to make auditory
responses equal to visual inputs (with a fixed proportionality
factor between them).
Note that Eqs. 5 and 6 are valid for a sufficiently large visual

response, V [as specified in Inequality (Eq. 2)]. Nevertheless,
numerical evaluation of Eq. 4 revealed that these equations
remained approximately valid even in the full-range V ≥ 0 (Fig.
3D). Also, Eq. 5 was in good agreement with weight changes
obtained in spiking-neuron simulations (Fig. 3 C and E).

ICX Map Formation. When we extended our model to an ICX
neuron that received auditory input from pools of spatially tuned
and topographically laid out neurons [mimicking the central
nucleus of the inferior colliculus (ICC)], we found that, in
equilibrium, ICX auditory tuning curves were approximately
Gaussian-shaped and in register with visual tuning curves (Fig.
4). Hence, under STDP and SFA, the visual tuning from OT can
be precisely transferred onto auditory response tuning in ICX, in
excellent agreement with the delta rule (for details, see Formation
and Registration of Auditory–Visual Maps in the Avian Midbrain in
SI Text).

Discussion
Our work shows that SFA can be viewed as a mechanism for
instructive error signaling in sensory neurons when these
are driven by sparse multimodal inputs in a slow pathway and a
fast pathway. SFA trades off between slow (“late arriving”)
responses of one modality and fast responses of another
modality in an approximately linear fashion (Fig. 2B). The
consequence is that the late sensory responses can be viewed as
instructive or error signals that convey the need to respond to
the earlier arriving inputs.
When we endowed early-input synapses with STDP, we

found that synaptic changes were well described by the delta
learning rule (21, 24); our implementation does not rely on an
explicit neural representation of the error term. Rather, the
error is implicitly computed through the interplay of SFA
and STDP.
Our calculations showed that the emergence of the delta rule

under SFA and STDP is remarkably robust. In conductance-
based model neurons, the delta rule was well approximated,
irrespective of cellular parameters, provided that the visual drive
arrived no later than τ+ (potentiation window size) after offset of
auditory responses (or else there are no pre-post spike pairings
that fall into the STDP window). Also, for adaptation to give rise
to an implicit error signal (Fig. 2B), the adaptation time constant
needed to be long enough to prevent recovery from adaptation
before arrival of visual inputs (i.e., τK > ≈Tlat).
Under special circumstances, when τ− < τ+, we found that the

delta or perceptron rule can also be derived for neurons without
SFA (see end of Mathematical Derivation of the Perceptron
Learning Rule in SI Text). However, because τ− < τ+ has not
been reported experimentally, it remains to be seen whether this
scenario is biologically relevant.
In previous models of collicular map formation based on

Hebbian plasticity (18, 25), temporal correlations and response
latencies were not considered, leaving out the potential significance
of delayed inputs for instructive coding. By contrast, we interpret
latency differences as a computational strategy of the brain,
agreeing with the notion that latency coding is very prominent in
the visual system and can be found as early as in the retina (26).
In our simulations and derivations, we assumed sparseness of

auditory and visual inputs (long dead time between consecutive
inputs). In this regime, SFA helps to reduce a known instability of
STDP (unrestrained potentiation) that arises from very brief inputs
(see SFA Helps to Reduce Unrestrained Potentiation for Short and
Sparse Inputs in SI Text).

A

B

Fig. 2. Under SFA, visual responses, V, to a multimodal stimulus report the
alignment of preceding auditory responses, A. (A) (Top) Auditory and visual
input currents, IA and IV (solid lines), are approximated as step functions of
duration, T (dashed lines). Tlat, visual latency. (Middle) Firing rate, R(t),
adapts during the auditory input and leads to reduced firing during the
equally strong visual input. U(t), membrane potential. (Bottom) Fast buildup
and slow decay of the adaptation conductance, gK. (B) Visual response, V, is a
linear decreasing function of the auditory response, A. The different curves
correspond to visual input current (IV), varying from 0.95 to 6.35 nA in 1.35
nA increments along the direction of the arrow. This analytical relationship
between A and V (Eq. 1) is linear for large IV values. The linear relationship is
also a good approximation outside this bound (the bound of the linear
range in Eq. 2 is indicated by the dotted line, and the extrapolation of the
linear relationships is indicated by the dashed lines).

4724 | www.pnas.org/cgi/doi/10.1073/pnas.0909394107 D’Souza et al.

http://www.pnas.org/cgi/data/0909394107/DCSupplemental/Supplemental_PDF#nameddest=STXT
http://www.pnas.org/cgi/data/0909394107/DCSupplemental/Supplemental_PDF#nameddest=STXT
http://www.pnas.org/cgi/data/0909394107/DCSupplemental/Supplemental_PDF#nameddest=STXT
www.pnas.org/cgi/doi/10.1073/pnas.0909394107


During complete absence of instructive visual inputs (e.g., at
night), synaptic weights in our model decayed down to zero, in
agreement with the perceptron learning rule. A mechanism to
counteract such undesirable synaptic decay could arise from the
existence of an additional source of delayed input to ICX neurons,

with function similar to the delayed visual inputs. For example,
feedback loops between the ICX and OT (27–29) could act as a
delay line, giving rise to delayed auditory inputs with similar tuning
as the preceding ICX auditory responses, thereby promoting syn-
aptic stability (see also Stability of Learned Synaptic Weights when

A B

Fig. 4. Map formation in the ICX. (A) We model a single ICX neuron receiving auditory inputs from pools of ICC neurons and visual inputs from a pool of OT
neurons. The auditory and visual tuning functions, a(θ) and υ(θ), respectively, are bell-shaped. (B) Equilibrium ICX auditory response tuning, A(θ), (dashed line)
is roughly proportional to OT tuning curves, υ(θ), (full line, with a suitable scaling factor α), thereby qualifying OT inputs as perceptron-like teacher signals.

A B

C D E

Fig. 3. The combinationof STDPand SFA implements thedelta learning rule. (A)Whenafferent synapses areweak, auditory inputs donot elicit auditory responses.
As a result, the neuron [with membrane potential U(t)] responds strongly to the visual input, thus leading to strengthening of the synaptic conductance, gA, of a
representative auditory synapse. (B) When auditory afferent synapses are strong, the neuron’s firing adaptation to auditory inputs results in more post-pre spike
pairings, and thus leads to depression of synaptic strength. (C) Spiking-neuron simulation result of vector field illustrating the interplay between synaptic weight
changes and auditory–visual responses. The lengths of the arrows are proportional to the absolute value ofΔg (arbitrarily scaled units), and their directions indicate
the effectsΔg has on auditory responses,A, and visual responses,V. For example, an arrowpointing to the left indicates a negativeweight change (depression)with
the effect of reducingA, and an arrow pointing to the lower right indicates a positive weight change (potentiation) that increasesA and decreases V. Contour lines
of Δg (solid lines, in increments of 5 × 10−16 S) are roughly parallel to bV − A, where b = 0.143 is a constant. Along the contour line, 0, potentiation balances
depression (equilibrium point). This plot was produced for the fixed presynaptic firing rate a = 250 Hz and looked qualitatively similar for values of a in the range of
50–350 Hz. (D) Contour lines as in C but based on numerical evaluation of Eq. 4. The bound (Eq. 2) for which the delta rule (Eq. 5) is exact is indicated by the dotted
line. For small V, the extrapolation of the linear relationships in Eq. 5 (dashed lines) is a good approximation of the true nonlinear behavior. (E) Synaptic weight
changes, Δg, depend linearly on the presynaptic firing rate a (in Hz) for different values of V − A (spiking-neuron simulations).

D’Souza et al. PNAS | March 9, 2010 | vol. 107 | no. 10 | 4725

N
EU

RO
SC

IE
N
CE



Visual Inputs Are Absent in SI Text). Such a scenario could also
apply to cortex, where SFA and STDP coexist (30–33) and where
decay of feedforward connections could be prevented by delayed
inputs arising from feedback loops via higher cortical areas (34, 35).
In computational learning theories, STDP has been linked to

temporal difference learning (36) and to maximization of mutual
information (37). Here, we extend this list of computational
functions of STDP to include gradient-descent error minimization.
By establishing a connection between the delta rule and simple
neuron biophysics, our work strengthens the links between com-
putational learning rules and adaptation and plasticity in biological
systems. Along with similar efforts (38), our work suggests that
learning rules derived from computational insights may be more
compatible with simple neuron biophysics than previously thought.

Methods
Integrate-and-Fire Neurons. The leaky integrate-and-fire model (ICX) neuron
with membrane potential U(t) satisfies

Cm
dU
dt

= − IL + Is − IK + Ib; [7]

where Cm = 0.5 nF is the membrane capacitance, IL = gL(U − EL) is the leakage
current, Is is the total excitatory synaptic input current from auditory and
visual afferents, IK is a firing-rate adaptation current, and Ib is a background
input current (see Additional Details on Methods in SI Text). The threshold
potential is Eθ = −50 mV, the reset/resting potential is EL = −70 mV, and the
leakage conductance is gL = 20 nS. When the membrane potential reaches
Eθ, the neuron produces an action potential and the membrane potential is
reset to EL. There is no refractory period.

SFA. The adaptation current IK = gK(U − EK) in Eq. 7 models calcium-activated
potassium channels, where gK is the potassium conductance and EK =
−70 mV is the potassium reversal potential. The potassium conductance, gK,
is a step-and-decay function driven by the neuron’s spike train, ρ(t) (sum of
delta functions):

dgK
dt

+
1
τK

gK =ΔgKρðtÞ; [8]

with increment ΔgK
= 80 nS on every spike, and a decay time constant τK =

110 ms (Fig. 2A). The decay time constant was inferred from the work of
Gutfreund and Knudsen (20).

Auditory and Visual Inputs. The synaptic current, Is, onto the neuron stems
from populations of visual and auditory afferents:

Is = ∑
j
gAj s

A
j ðtÞðU −EexÞ+ gV sV ðtÞðU −EexÞ; [9]

where sAj ðtÞ is the synaptic activation of the jth auditory afferent and sV(t) is
the summed synaptic activation from a pool of visual neurons. The con-
nection strength, gA

j , is modified according to an STDP rule and constrained
to 0 ≤ gA

j ≤ gmax; with gmax = 1.25 nS. The visual-input synapses are of fixed
strength, gV = 3 nS; because they convey inputs from independently firing
visual neurons, we represent their synaptic activation variables by the single
variable sV(t), describing the entire pool. All synapses are excitatory with
reversal potential, Eex = 0 mV. Synaptic activations, s(t), are step-and-decay
functions. Each time an input spike arrives, s(t) is incremented by 1. Between
spikes, s(t) decays exponentially to zero according to τsds/dt = −s, with a time
constant of τs = 10 ms (39).

The auditory and visual step-input amplitudes (firing rates) for simulations
in Figs. 2 and 3 varied from a = 0–350 Hz and υ = 0–250 Hz, respectively.

STDP. The STDP pairing function in Eq. 3 is defined by WðΔtÞ=
A+ e−Δt=τ+ for Δt > 0 and WðΔtÞ= −A− eΔt=τ− for Δt ≤ 0: We set the half-
widths of the pairing function to τ+ = 50 ms and τ− = 110 ms and the amount
of potentiation per spike to A+ = 0.001. The amount of depression per spike
was chosen according to the relationship B = A−τ−/A+τ+ = 1.05, which implies
that the net area under W is negative. The half-widths of the pairing
function were chosen to be within the range of the correlation time of
auditory and visual inputs. The value for τ− on the order of 100 ms is typical
in cortex (40, 41), whereas measured cortical values for τ+ tend to be smaller

than 50 ms (on the order of 20 ms). However, our findings also applied to
such small τ+ values, provided that τ− was small as well or that auditory
stimuli were sufficiently far away from the animal (>10 m) to provide for
pre-post spike pairing within τ+ (Fig. S8).

Note on Parameter Choice. In our ICX–neuron simulations, we tried to
constrain model parameters by existing data. When this was not possi-
ble, we adhered to the constraint that simulated ICX rates should
match those of experimentally recorded ICX responses (22). To produce
Figs. 2B, 3 C–E, and 4, we set the visual stimulus duration to 50 ms
and the auditory stimulus duration to 70 ms. Our results were insensi-
tive to these and similar differential changes of auditory and visual
stimulus durations.

Analytical Derivation. The perceptron learning rule in Eq. 5 is a generic
consequence of the interplay between adaptation and STDP and does
not depend on model details. In fact, Eqs. 1 and 5 can be derived ana-
lytically by simplifying the conductance-based model equations (Eqs. 7–
9) using the method of time averaging (24) and simplifying Poissonian
assumptions (42, 43). In the following, we briefly outline this derivation
assuming that EK = EL and that the duration, T, of auditory–visual stimuli
is smaller than the visual latency (T ≤ Tlat). This latter assumption implies
that the neuron’s auditory and visual responses, A and V, do not tem-
porally overlap, and thus are unambiguously defined. The detailed
derivation is provided in SI Text (Mathematical Derivation of the Per-
ceptron Learning Rule).

Derivation of V = c0 + c1IV − c2A: The method of time averaging consists of
replacing the neuron’s spike train, ρ(t), in Eq. 8 by the average firing rate,
R(·), which is a good approximation, provided that the time scale of spike-
frequency adaptation (τK = 110 ms) is much longer than the membrane
time constant (τm = 25 ms). For integrate-and-fire neurons (Eq. 7), this
firing-rate function, R(I), is an approximate threshold-linear function of
the total membrane current I = gL(EL − Eθ) + gK(EL − Eθ) + IV + IA:

RðIÞ=
( I
CmðEθ −ELÞ for I ≥ 0;

0 otherwise;
[10]

where IA and IV are the synaptic input currents from auditory and visual
afferents, respectively, in Eq. 9. More specifically, Eq. 10 is an excellent
linear approximation of the exact (nonlinear) expression for R(I) for
large suprathreshold input currents: I ≫ Iθ where Iθ = (gL + gK) (Eθ − EL) is
the sum of leak and adaptation currents at firing threshold (absolute
values)

Under the approximation (Eq. 10), the adaptation conductance, gK(t),
in Eq. 8 turns into a low-pass-filtered copy of the average firing rate,
R(t); mathematically, gK(t) obeys a simple first-order linear differential
equation. When we analytically solve this linear differential equation for
gK(t) and R(t) and then compute A=

Ð T
0 RðtÞdt and V =

Ð T +Tlat
Tlat

RðtÞdt; we
find the desired linear relationship between A, V, and IV, as given by Eq.
1, with

c0 = −
cgL
Cm

; c1 =
c

CmðEθ −ELÞ; and c2 =
τ2eff
cτ1T

e−
Tlat −T

τK ;

where 1=τeff = 1=τ1 + 1=τK; τ1 =Cm=ΔgK ; and c= τeff=τK + τ2eff=τ1T : Note that V
in Eq. 1 depends linearly on the constant visual input υ, because to first-order
approximation IV is proportional to υ ði:e:; IV = − ÆU ægV τsNυ;where ÆU æ is the
average ICX membrane voltage and N is the number of neurons in the OT
pool). For our choice of parameters, the offset c0 in Eq. 1 can be neglected
because it is small (6 Hz) when compared with the range of υ (1–250 Hz). The
linear relationship in Eq. 1 is exact only in a range of sufficiently large visual
responses [Inequality (Eq. 2)] because of the threshold nonlinearity in Eq. 10.
In practice, however, we found that Eq. 1 provides a reasonably good
approximation of visual responses as a function of preceding auditory
responses also in the full range, V ≥ 0 (Fig. 2B).

Derivation of V ≥ c3A as the Range of Linear Behavior. For IV ≥ Iθ, the neuron
immediately responds to the visual input in spite of its adapted state; in such
a case, the integral V =

Ð T + Tlat
Tlat

RðtÞdt is straightforward to compute and
leads to a linear relationship between A and V. Solving the differential

equation for gK, we find that its value, gK =Ae− Tlat − T
τK Cmτeff=cτ1, just before

the arrival of the visual input is a function of the auditory response, A.
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Combining this with the fact that V is linear in IV, using Eq. 1, we arrive at
Inequality (Eq. 2), with the constant c3 given by

c3 =
�
τeff
τ1

−
τ2eff
cτ1T

�
e−

Tlat −T
τK :

Note that when IV < Iθ, the response V is either delayed by more than Tlat
or completely suppressed and the relationship between A and V be-
comes nonlinear.

Derivation of Δg= gmaxðc4V − c5AÞa. Assuming step functions for inputs a(t)
and υ(t), the neuron’s response, R(t), is a simple sum of constants and
exponentials in time, t. As a consequence, the integration in Eq. 4 can be
easily performed, and we find the desired perceptron learning rule of Eq. 5,
with constants c4 and c5 given by

c4 =A+
τeffτ2+ e

− Tlat
τ+

c

"
4sinh2ð T

2τ+
Þ

τK
+
τeffðeT=τ+ − 1Þ
τ1ðτ+ + τeffÞ

#
;

c5 = − c2c4

−A+
τeffτ+

c

"
Tð1−BÞ+ τ+ ðe−T=τ+ − 1Þ−Bτ− ðe−T=τ− − 1Þ

τK

+
τeff
τ1

 
τeff − τ+ e

− Tlat −T
τK e−

Tlat
τ+ ðeT=τ+ − 1Þ

τ+ + τeff
−B

 
1−

τ‒e−T=τ−

τ− − τeff

!!#
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