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Complex tasks often require the memory of recent events, the knowledge about the context in which they
occur, and the goals we intend to reach. All this information is stored in our mental states. Given a set of
mental states, reinforcement learning (RL) algorithms predict the optimal policy that maximizes future
reward. RL algorithms assign a value to each already-known state so that discovering the optimal policy
reduces to selecting the action leading to the state with the highest value. But how does the brain create
representations of these mental states in the first place? We propose a mechanism for the creation of mental
states that contain information about the temporal statistics of the events in a particular context. We suggest
that the mental states are represented by stable patterns of reverberating activity, which are attractors of the
neural dynamics. These representations are built from neurons that are selective to specific combinations of
external events (e.g. sensory stimuli) and pre-existent mental states. Consistent with this notion, we find
that neurons in the amygdala and in orbitofrontal cortex (OFC) often exhibit this form of mixed selectivity.
We propose that activating different mixed selectivity neurons in a fixed temporal order modifies synaptic
connections so that conjunctions of events and mental states merge into a single pattern of reverberating
activity. This process corresponds to the birth of a new, different mental state that encodes a different
temporal context. The concretion process depends on temporal contiguity, i.e. on the probability that a
combination of an event and mental states follows or precedes the events and states that define a certain
context. The information contained in the context thereby allows an animal to assign unambiguously a value
to the events that initially appeared in different situations with different meanings.

© 2010 Elsevier Inc. All rights reserved.
Introduction

When we execute complex tasks, we often need to store
information about past events in order to decide how to react to a
particular stimulus. If the task is familiar, we know what information
to store and what to disregard. At the moment we make a decision
about our response to a particular event, we are in a specific mental
state that contains all the information that we know to be relevant to
react to that event. This information is typically about our perception
of the environment, our physical position, our memories, our
motivation, our intentions, and all the other factors that might be
relevant to reach a particular goal. In other words, every mental state
is our most general disposition to behavior. In many cases the
execution of a task can be considered as a series of transitions from
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one mental state to the next, each triggered by the occurrence of a
particular event.

In order to understand the neural mechanisms underlying the
execution of complex tasks we need to answer two important
questions: (1) How do we create the neural representations of mental
states that contain all the relevant information to execute a task? (2)
How do we learn which mental state to select in response to a
particular event? Reinforcement learning (RL) algorithms (see e.g.
(Sutton and Barto, 1998)) have provided an elegant theoretical
framework to answer the second question. In particular, they provide
prescriptions for the policy of mental state selection that maximize
reward and minimize punishment. In RL algorithms, values that
represent future cumulative reward are assigned to the mental states.
The value increases as the agent moves closer to a pleasant outcome,
like the delivery of reward. The table of values of mental states
thereby determines the optimal policy. One has simply to select the
action that induces a transition to the state with highest value.
However, most RL algorithms presuppose that the set of mental states
contain all the relevant information for performing a task, and hence
chanism for the formation of context representations, NeuroImage
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they do not provide an answer to the first question, on how the
mental states are created.

In this paper, we make an attempt to answer this question by
proposing a mechanism for the creation of mental states in context-
dependent tasks, in which the optimal policy for maximizing reward
is different in different contexts. In particular we will consider all the
situations in which the information about temporal context can be
used to create mental states that unequivocally determine the state of
the environment and the actions to be executed. In other words, if the
occurrence of an event in two different contexts requires different
policies, we need to react to that event in two different ways that will
be encoded in two different sets of mental states. We propose in our
paper a mechanism that leads to the formation of different sets of
mental states for different contexts.

A paradigmatic experiment

To illustrate the principles behind our proposed mechanism, we
will present a neural network model that performs an extended
version of an appetitive and aversive trace conditioning task used in
recent neurophysiological recording experiments (Paton et al., 2006;
Belova et al., 2007; Salzman et al., 2007; Belova et al., 2008; Morrison
and Salzman, 2009). In those experiments, monkeys learned whether
an abstract fractal image (conditioned stimulus, CS) predicted liquid
reward or aversive air-puffs (unconditioned stimulus, US) after a brief
time (trace) interval. Single unit recordings in the amygdala and
orbitofrontal cortex (OFC) revealed the existence of cells encoding the
learned value of the CSs (rewarded or punished). After a variable
number of trials, the CS-reinforcement contingencies were reversed
and monkeys had to learn the new contingencies. In the experiments,
the CS–US associations were reversed only once. However, in
principle, the two contexts defined by the sets of CS–US associations
could be alternated multiple times. In this situation, it is possible that
the animal at some point creates two representations corresponding
to the two contexts and it can switch rapidly from the optimal policy
for one context to the optimal policy for the other. This switch is
qualitatively different from learning and forgetting the associations as
it would not require any synaptic modification. The two independent
context representations would be simultaneously encoded in the
pattern of synaptic connectivity.

The model of a neural circuit performing the trace conditioning
task with multiple reversals will be used to illustrate the mechanism
for the formation of context representations. The single unit
recordings from experiments (in which there is a single reversal),
will be used to support our assumptions about the initial response
properties of the model neurons.

The proposed model architecture: the Associative Network (AN) and the
Context Network (CN)

In modeling data from this task, we assume that there are two
interacting neural circuits. The first one is a neural circuit that we
name AN (Associative Network) similar to the one proposed by (Fusi
et al., 2007), that learns simple one-to-one associations between CSs
and USs. The second one, the CN (Context Network) observes the
activity of the AN, in particular when the AN has already learned the
correct associations, and abstracts the representations of temporal
contexts. These representations can then be used by the AN to predict
more efficiently the value of the CSs when the context changes and
the AN has to learn the new associations.

Learning and forgetting associations: the function of the AN

In every trial the AN starts from a "wait state." The CS biases a
competition between the populations of neurons representing two
different mental states, one that predicts the delivery of reward, and
Please cite this article as: Rigotti, M., et al., Attractor concretion as a me
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hence has a positive value, and the other that predicts punishment
and has a negative value. The delivery of reward or punishment resets
the AN to the wait state. The AN encodes the CS–US associations by
making CS triggered transitions to the state that represents the value
of the predicted US. The CS–US associations are learned by biasing the
competition between the positive and the negative state. In particular,
the competition bias is learned bymodifying the synaptic connections
from the neurons that represent each CS and the positive and negative
value coding neurons.When the associations are reversed, the learned
synaptic strengths are overwritten by the new values. The AN can be
in one of the three states (wait, positive, negative), and can
implement only one set of CS–US mappings at a time. In the two
contexts the AN implements two different “policies,” as the same CS
induces different transitions. Notice that the CS–US associations are
learned independently for each CS. The AN does not store any
information about the relations between different CS–US associations,
and in particular about the fact that all associations are simulta-
neously modified when the context changes. This means that, for
example, when the context changes, the AN cannot infer from the
modification of one of the CS–US associations, the value of the other
CS. This type of inference requires information about the temporal
statistics of the CS–US associations which are collected by the CN. We
propose that this type of inferential information is stored in the
representations of the temporal contexts, which are built from the
statistics of the sequence of events and mental states.

The formation of representations of temporal contexts: the main idea

In the trace conditioning task, the first context is characterized by
the fact that the sequence CS A-Reward is most often followed either
by itself or by CS B-Punishment. Analogously the second context is
defined by the elevated probability of the transitions between CS A-
Punishment and CS B-Reward. The animal observes rarely that CS A-
Reward is followed by CS B-Reward or CS A-Punishment. In other
words, if we look at the matrix of transitions between these
sequences, we can clearly identify two clusters of sequences that
are connected by significantly larger transition probabilities. These
two clusters define the two relevant contexts. The idea sounds simple,
but the detailed implementation turned out to be more difficult than
expected because initially, the neural circuit does not know that it
needs to consider the CS–US associations as the building blocks of the
context representation. The neural circuit observes a series of several
events and mental states and it has to abstract autonomously what is
relevant for the formation of context representations.

The neural basis of the formation of context representations

In the detailed implementation, the learning process that takes
place in the CN iteratively merges the neural representations of
temporally contiguous events and mental states. The first compounds
that are created represent short temporal sequences, or, more
generally, groups of events and mental states that tend to be
temporally contiguous. Compounds that often follow each other can
also merge into larger compounds. In this sense the process of
merging is iterative, and at every iteration the compounds grow to
represent larger groups of events that are temporally contiguous to
each other. In more technical terms, the temporal statistics of the
compounds define a new Markov process that is a coarse grained
representation of the Markov process of the previous iteration,
similarly to what has been studied in (Weinan et al., 2008). The
iterative process stops when all the transition probabilities between
the compounds go below a certain threshold. In the specific case of the
trace conditioning task, the first representations that merge are those
that represent temporally contiguous events like CS A and the mental
state predicting a positive value. The parameters are chosen so that
the merging process stops when CS A-Reward and CS B-Punishment
chanism for the formation of context representations, NeuroImage
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belong to a single compound representing context 1, and CS B-Reward
and CS A-Punishment belong to a second compound that represents
context 2. The neural mechanisms that could underlie this iterative
learning process are described in detail in the Methods, and the
simulations are illustrated in the Results.

The initial conditions: mixed selectivity in theory and experiments
The neurons of the CN are randomly connected to the neurons of

the AN and the parameters are chosen such that they respond to
conjunctions of external events (CS A or B, reward, punishment) and
states of the AN (neutral, positive, negative). The neurons therefore
may be described as having mixed selectivity, even before the
learning process of the CN starts. We observed these types of neurons
both in the amygdala and in orbitofrontal cortex of monkeys
performing the trace conditioning task of Paton et al. (2006). We
report in this manuscript the statistics of their response properties.

From temporal sequences to context representations: attractor
concretion

In the model, the temporal statistics of the mixed selectivity
neurons depend on the sequence of patterns of activation of the AN.
For example consider a trial in which CS A is followed by reward. The
ANwould start in a wait state with neutral value and CS A would steer
the activity toward a positive state. The US would reset the AN activity
back to the neutral state. In the CNwewould observe the activation in
sequence of the following populations that are selective to conjunc-
tions of states and events: neutral-CS A, CS A-positive, positive-
reward, reward-neutral. Initially, each conjunction induces a transient
activation of the CN neurons. The synapses between CN neurons that
are activated simultaneously are strengthened (Hebbian component
of synaptic plasticity), so that the neural representations of individual
conjunctions become stable self-sustaining patterns of persistent
activity that are attractors of the neural dynamics (see e.g. (Hopfield,
1982; Amit, 1989)). These patterns remain active until the occurrence
of the next event and the activation of a new input from the AN. A
second component of the synaptic plasticity, which we call temporal
sequence learning (TSL), strengthens the connections between
neurons that are activated in succession, similar to what has been
proposed for learning of temporal sequences (Sompolinsky and
Kanter, 1986) and temporal contexts (Brunel, 1996; Griniasty et al.,
1993; O'Reilly and Munakata, 2000; Rougier et al., 2005; Yakovlev et
al., 1998). This component causes the merging (concretion) of
attractors that are activated in a fixed temporal order, leading to the
formation of the representations of temporal contexts.

From context representations to the creation of mental states
At the beginning of the learning process, the CN simply reflects the

activity of the AN, and hence the entire AN-CN system has the same
number of mental states as the sole AN (neutral, positive, negative). At
the end of the learning process, the CN can represent both contexts,
with one being the “active context.” Hence, the entire AN-CN system
has two sets of the three AN states, one for the first context and one for
the second. As the AN receives feedback from the CN, it can then easily
disambiguate between the CS–US associations of the first context
from those of the second. We will show that at the end of the learning
process the full AN-CN system can work more efficiently than the AN
alone after a context switch. Indeed, it can predict the correct value of
a CS when the other is already known. We will then discuss
quantitative predictions about the behavior and the neural activity
that can be recorded.

Materials and methods

We first describe the details of the trace conditioning task that has
been used in neurophysiological experiments and its extended
version, which we used in all model simulations. We then describe
Please cite this article as: Rigotti, M., et al., Attractor concretion as a me
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the Associative Network (AN) and the Context Network (CN). The
model of the AN has already been introduced in Fusi et al. (2007).
Here we summarize briefly its neural and synaptic dynamics and we
show simulations of the specific case of the trace conditioning task.
We then describe the novel neural and the synaptic dynamics of the
CN. The description of the learning behavior and the explanation of
the mechanisms are deferred to Results. Finally, we describe the
details of the analysis of neurophysiological data that we use in
Results to motivate the model assumptions about the initial response
properties of the neurons.

The experimental protocol

The appetitive and aversive trace conditioning task described in
Paton et al. (2006), Belova et al. (2007), Salzman et al. (2007), Belova
et al. (2008), Morrison and Salzman (2009) uses a trace conditioning
protocol (a type of Pavlovian conditioning) to train an animal to learn
the relationship between abstract visual stimuli (conditioned stimuli,
CS) and rewards and punishments (unconditioned stimuli, US). While
a monkey centers its gaze at a fixation point, CSs are presented
followed by a trace interval (a brief temporal gap), and then US
delivery. In the experiments (Paton et al., 2006; Belova et al., 2007;
Salzman et al., 2007; Belova et al., 2008;Morrison and Salzman, 2009),
the animals demonstrated their learning of CS–US contingencies by
licking a reward tube in anticipation of reward and blinking in
anticipation of the delivery of the air-puff. After a variable number of
trials, the CS–US associations were reversed without any notice and
the animals had to learn the new contingencies.

In the version of the task that is simulated in this paper, we will
consider two CSs, A and B, and two possible outcomes, reward and
punishment, which are delivered after a brief time interval, as in the
original task of (Paton et al., 2006). The CS–US associations are
reversed multiple times, switching from context 1 in which CS A is
paired with reward, and CS B with punishment, to context 2 in which
CS A is paired with punishment and CS B with reward. The blocks of
context 1 and context 2 trials are approximately 120 trials each, and
they are alternated multiple times.

The Associative Network (AN): structure and function

The AN learns the associations between CSs and USs. This
Associative Network (AN) receives feed-forward plastic inputs from
the neural populations that represent external events (CSs, reward
and punishment). The neurons of the AN are grouped in three
different populations: two excitatory populations representing
positive and negative value compete through a population of
inhibitory neurons (see Fig. 1). The synaptic connections between
these three populations are chosen as in Wang (2002) and Fusi et al.
(2007), so that there are only three stable states: a wait state in which
the AN is quiet (neutral value state), and the other two corresponding
to the activation of one of the two excitatory populations (positive
and negative state). The presentation of the CS generates an input that
initiates and biases the competition between the positive value and
the negative value coding populations of neurons. The delivery of the
US brings the network back to the neutral value state (see Fig. 2 for a
description of the AN dynamics). Initially, when the CS is novel and
the associated US is still unknown, the CS activates an unbiased
competition between positive and negative value coding populations
and one of the two values is chosen randomly with equal probability.
This behavior reflects the fact that the animal is already familiar with
the experimental protocol and can predict that the CS will be followed
in half of the cases by reward and in the other half by punishment
(Fusi et al., 2007). The synaptic weights between the neurons
encoding the CS and the AN neurons are modified in every trial
depending on whether the prediction of the AN (positive or negative)
matches the actual US that is delivered (reward or punishment) or
chanism for the formation of context representations, NeuroImage
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Fig. 1. The two networks of the simulated neural circuit: the Associative Network (AN,
top right), and the Context Network (CN, bottom right). The AN and the CN receive
inputs from the neurons encoding external events (conditioned and unconditioned
stimuli). The AN network contains two populations of neurons, +, −, that encode
positive and negative values respectively. These neurons are activated by external
events (CSs) in anticipation of reward and punishment. The inhibitory population
(INH) mediates the competition between the two populations. The connections from
the CS neurons to the AN neurons are plastic and encode the associations between the
CS and the predicted US. The CN neurons receive fixed random synaptic connections
from both the AN and the external neurons. The neurons in the CN respond to
conjunctions of external events and AN states and they are labeled accordingly. The
recurrent connections within the CN are plastic and they are modified to learn context
representations. After learning, the CN neurons encode the context, and they project
back to the AN (described later, in Fig. 4).
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not. When the prediction is correct (i.e. when the CS activates the
positive state and it is followed by reward, or when the CS activates
the negative states and it is followed by punishment), the synapses
from the CS neurons to the correct value encoding population are
strengthened (learning rate q+

R=0.042, see Fusi et al. (2007)) for the
details of the synaptic dynamics), and the synapses from the CS
neurons to the other value population are weakened (q−R=0.073).
These modifications reinforce the bias in the competition between
positive and negative populations towards the correct prediction.
When the prediction is incorrect, we assume as in Fusi et al. (2007)
that all synapses from the CS neurons to the AN neurons are rapidly
depressed (q-NR=0.99). This reset forces the AN to choose randomly
the value of the CS the next time it is presented. The learning rates qs
have been chosen tomatch the learning curves reported in Paton et al.
(2006). In particular we chose them so that the simulated AN reaches
90% of the value prediction performance in 10 trials on average.
Fig. 2. Simulated activity of the AN during two trials of the trace conditioning task of
Paton et al. (2006). During the first trial CS A is presented, followed by a reward. The AN
network is initially in the neutral state “0” in which all populations are inactive (the
activity is color coded: blue means inactive, red means active). The presentation of CS A
initiates a competition between the positive coding AN population “+” and the
negative coding population “−” which, in this simulation, ends with the activation of
population “+.” The delivery of reward resets the AN to the “0” state. In the second trial
CS B activates population “−” and punishment resets it.

Please cite this article as: Rigotti, M., et al., Attractor concretion as a me
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The Context Network (CN): the architecture

The Context Network is made of neurons that are randomly
connected to both the neurons encoding the external events and the
excitatory neurons of the AN. The synapses between CN neurons are
plastic and they are modified by the learning rule described below in
order to create context representations. The random connections are
Gauss distributed and the parameters are chosen so that a large
number of the CN neurons respond to conjunctions of external events
(CS A,CS B, reward, punishment, denoted by A, B, R, P, respectively)
and the state of the AN (positive, negative, neutral, denoted by +, −,
0, respectively). For simplicity, we will consider in our simulations
only the neurons that respond to simple conjunctions of one external
event and one state. For example, some neurons would respond to CS
B only when the AN switches to a negative state. We will label these
neurons with “B−.” In Fig. 3 we show the simulation of a rate model
neuron that behaves like a typical CN neuron with mixed selectivity.
These simulations are for illustrative purposes only and to motivate
our assumptions about the response properties of the CN neurons.
This type of model neuronwill not be used in the rest of the paper (see
Materials and methods about the neural dynamics for the model
neurons that will be used). The simulated neuron receives synaptic
inputs with equal weights from the neurons that are activated by CS B
and from the negative value coding neurons of the AN (simulated as in
Fusi et al. (2007)). The firing rate is a sigmoidal function of the total
synaptic input. Although the choice of equal synaptic weights might
seem special, the behavior illustrated in Fig. 3 is actually the typical
behavior of neurons with randomly chosen synaptic weights. The
probability that a randomly connected neuron exhibits significant
mixed selectivity depends on the specific model of the neuron and on
the neural representations of the events, but it can be as large as 1/3
(Rigotti et al., submitted for publication).

The neurons with mixed selectivity are the building blocks of
context representations and they are assumed to be present in the CN
from the very beginning, before any learning process takes place. In
Results, we will support this assumption with experimental data.

The neural dynamics of the CN

The activity of the AN drives the CN network, which is composed of
N populations of neurons which are either active or inactive. We
denote by ξi the activity of population i. As we consider only the
randomly connected neurons that respond to simple conjunctions of
external events and state of the AN, we have in total N=12 different
types of populations responding to the following combinations: 0A, 0B,
A+, A−, B+, B−, R0, P0, +R,−R, +P,−P. Not all these combinations
are necessary for the formation of context representations, but we
simulate all of them for completeness, as they are all assumed to be
present in the neural circuit. For simplicity we ignore neurons that
respond to combinations of three or more events and AN states. We
assume full connectivity within the CN. The average strength of the
excitatory synaptic connections from neurons of population j to
neurons of population i is denoted by Jij, and it can vary from 0 to 1.
Every CN population inhibits all the others through a pool of inhi-
bitory neurons. Thenet effect is to include a constant negative coupling
(gI=0.5) between the excitatory populations. Additionally, every
population i receives a constant current θi and an external input hi
from the AN neurons. More quantitatively, the activity ξit of
population i at time t is given by the following discrete time
evolution equation:

n
t
i = Θ

1
N

XN

j=1

Jij − gI
� �

n
t − 1
j + hti + θi

0
@

1
A; i = 1; N ;N; ð1Þ

where Θ is the Heaviside function with Θ(x)=1 if xN0, and Θ(x)=0
otherwise (in our case θi=0).
chanism for the formation of context representations, NeuroImage
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Fig. 3. Illustrative firing-rate simulations of a typical CN neuron which exhibits mixed selectivity to the conjunction of an external event (CS B) and an AN value state (negative). (A)
The top panel shows the firing rate as a function of time for two simulated neurons in response to CS B. The blue trace represents the response of an external neuron encoding CS B,
which is flat until the presentation of visual stimulus B. The red trace represents the response of a negative value coding neuron of the AN. CS B is already familiar and its value is
correctly predicted by the AN. When CS B is shown, the negative value population is activated, and it remains active until the delivery of the US. In the bottom panel, we show the
activity of a CN neuron that, by chance, is strongly connected to CS B external neurons and to the negative value coding AN neurons. The response is significantly different from
spontaneous firing rate only when CS B is presented and the negative value AN state wins the competition. (B) Mixed selectivity to CS B and negative value. The cell is selective to
both the value and the identity of the CS as the neuron responds only to the CS B-Negative combination and not to the other combinations (CS A-Positive, CS A-Negative, CS B-
Positive). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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During the learning process, the single or multiple CN populations
can become attractors of the neural dynamics (stable patterns of self-
sustaining activity). These patterns will be the building blocks for
context representation, as illustrated in the Results. Once activated by
the AN and external input, the attractors remain active indefinitely, or
at least until the arrival of the next sufficiently strong input. To avoid
the simultaneous activation of all CN populations, we need to
guarantee that the external input can overcome the recurrent CN
input and shut down previously activated stable patterns. This might
be important also for weak external inputs that would normally be
ignored by the CN. For this reason we complemented the described
neural dynamics with a reset signal that inhibits the whole network
every time an external input ht targets at least one population which
is not already activated by the recurrent input. Such a signal is
important not only to reset the activity but also to learn only when the
activity pattern of the CN is modified (see next section). In the time
step that follows the reset signal, the activity of the network is entirely
determined by the external input h.

The synaptic dynamics of the CN

The CN “observes” the activity of the neurons representing the
external stimuli and the neurons of the AN. The context representa-
tions are created from the temporal statistics of the patterns of activity
of the AN and the external neurons. Here we describe the equations
and the details of the synaptic dynamics that lead to the formation of
Please cite this article as: Rigotti, M., et al., Attractor concretion as a me
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the context representations, but we explain the mechanism and we
show simulations only in Results.

The synapses are modified by two mechanisms: (1) a Hebbian
mechanism strengthens the synapses of simultaneously active
neurons, and depresses the synapses connecting an active to an
inactive neuron. Analogously to the mechanism introduced in
Hopfield (1982) and, more recently, in Amit and Brunel (1995), it
stabilizes the CN activity that is initially imposed transiently by the
external input and the AN. If the synapses between co-activated
neurons become strong enough, the neurons of the activated CN
population can excite each other to the point that the transient
activity becomes self-sustaining (attractor of the neural dynamics).
(2) the TSL (Temporal Sequence Learning) mechanism, which links
together patterns of activity that are activated in sequence. This
component of the synaptic dynamics is responsible for merging
attractors that are often temporally contiguous. It basically strength-
ens the synapses between two neurons that are activated sequentially
one after the other. Moreover, it depresses the synapses between
active neurons and neurons that are inactivated at the next time step.

Both mechanisms are activated only when the competition
between the positive and negative populations in the AN is strongly
biased, indicating that the AN has already learned the associations. As
the neurons have only two levels of activation, we monitor the total
synaptic input to them, and we modify the synapses of the CN only
when the current driving the winning population exceeds a threshold
θL=0.25 (to be compared to the total synaptic input, i.e. the argument
chanism for the formation of context representations, NeuroImage

http://dx.doi.org/10.1016/j.neuroimage.2010.01.047


6 M. Rigotti et al. / NeuroImage xxx (2010) xxx–xxx

ARTICLE IN PRESS
of the Heaviside function in Eq. (1)). In a more realistic implemen-
tation with rate neurons, we could set a threshold for the firing rate of
the AN neurons.

The Hebbian mechanism
The modifications of the synapses from population j to

population i depend on the current pre and post-synaptic activity
ξi,jt and on the post-synaptic recurrent synaptic input Ii

t (i.e. the
input from the neurons that belong to other populations within the
CN):

Iti =
1
N

XN

j=1

Jij − gI
� �

n
t
j + θi: ð2Þ

In particular we have:

ΔJsij = Θ γs − nti I
t
i

� �
qsþ 1− Jij

� �
ntin

t
j − qs− Jij 1− nti

� �
ntj

h i
: ð3Þ

Eq. (3) describes a modified version of the perceptron learning
algorithm (Rosenblatt, 1958). The synapse Jij is potentiated when
both the pre- and the post-synaptic neuron are simultaneously
active (ξitξjt) and depressed when the pre-synaptic neuron is active
and the post-synaptic neuron is inactive (the (1−ξit)ξjt term). The
two terms containing Jij, and (1− Jij) impose a soft-bound on the
synaptic weights and keep them between zero and one, as in Senn
and Fusi (2005). The synapses are not updated when the post-
synaptic neuron is active and the total recurrent input is sufficiently
large (Θ(γs−ξitIit), where γs is a positive number which is related to
the stability parameter (Gardner, 1987)). This term prevents the
synapses from being updated when the recurrent input is sufficient
to activate the post-synaptic neuron in the absence of the external
stimulus. In other words, the synapses are not updated if the pattern
of activity can already sustain itself. This term prevents the
correlated parts of different attractors from dominating the neural
dynamics and hence allows the network to generate attractors that
are correlated (see e.g. Senn and Fusi (2005)). Moreover, if γs is
sufficiently large, it increases the stability of the attractors (Krauth et
al., 1988).

This type of learning prescription can be implemented with
realistic spike-driven synaptic dynamics (Brader et al., 2007). The
factors q+

s and q−
s are the learning rates for potentiation and

depression, respectively. The parameter values are: γs=5×10−4,
q+
s =7.5×10−2/n q-

s=15×10−2/n, where n is the number of time
steps in one trial (in our simulations n=15).

Temporal sequence learning (TSL)
The second learning component, temporal sequence learning

(TSL), is meant to strengthen the synaptic connections between
neurons that are repeatedly activated one after the other in a fixed
temporal order. At every time step t we calculate how many inactive
populations are activated by the new incoming external input ht and
we divide this quantity by the total number of populations N:

Δt =
1
N

XN

i=1

Θ hti
� �

Θ 1− nt − 1
i

� �
: ð4Þ

This is a measure of the global mismatch between the pattern
imposed by the external stimulation at time t and the network activity
at the previous time t−1. When this quantity is different from zero, it
is an indication that the neural activity of the CN has beenmodified by
the external input. In such a case a reset signal is delivered to the CN
(see neural dynamics), and the synaptic connections from population
Please cite this article as: Rigotti, M., et al., Attractor concretion as a me
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j and population i are modified according to:

ΔJaij = ΔtΘ γa − Θ hti
� �

It − 1
i

� �

� qaþ 1− Jij
� �

n
t − 1
j Θ hti

� �
− qa− Jijn

t − 1
j 1− Θ hti

� �� �h i
; ð5Þ

The term in square brackets contains two terms: one potentiates
the synapses and the other one depresses them. In particular, the
synapses are potentiated when the post-synaptic external current hit

is positive and the pre-synaptic neuron was active at the previous
time step (ξjt−1). The synapses are depressed when the post-synaptic
external current hi

t is negative, and the pre-synaptic neuron was
active at the previous time step. The Jij dependent terms implement a
soft boundary as in the case of the Hebbian term. The presence of a
soft boundary is in general important to estimate probabilities
(Rosenthal et al., 2001; Fusi et al., 2007; Soltani and Wang, 2006),
and in our specific case to estimate the probability that a particular
event is followed by another one. The parameters are: γa=0,
q+
a =1.0 and q-

a=7.5×10−2.
At every time step the synaptic weights are updated according to:

JijpJij + ΔJaij + ΔJsij: ð6Þ

When the reset signal is delivered, first the weights are updated
and then the activity is reset.

The feedback from the Context Network to the Associative Network

The information about the current context contained in the CN
activity after learning can be used by the AN to predict more
efficiently the value of the stimuli. For example, when the CN-AN
knows that the CS–US association has changed for CS A, it can predict
that the CS–US association for CS B has changed as well. In order to do
so, we need to introduce some form of feedback from the CN to the
AN. In principle, CN neurons could project directly to the AN neurons,
as the CN neurons contain all the information that the AN neurons
need to know about the current context. However, this feedback input
cannot produce the desired context-dependent bias on the AN
competitive dynamics unless we introduce an intermediate popula-
tion of neurons that mixes the external input and the CN activity (see
Fig. 4). This is a general requirement for many systems in which there
is a dependence on context (Rigotti et al., submitted for publication).
Indeed, without this intermediate layer of neurons, there is no set of
synaptic weights that would produce the correct prediction. The
general proof is in Rigotti et al. (submitted for publication); here we
give an intuitive argument for our specific case. Consider two input
neurons: an external neuron that is active when CS A is presented and
inactive for CS B, and a CN neuron that is active for context 1 and
inactive for context 2. The AN “output” neuron encoding a negative
value should be inactive for CS A+Context 1 (both input neurons
active=11), and CS B+Context 2 (00). At the same time it should be
inactive for CS A+Context 2 (10), and CS B+Context 1 (01). This
mapping of the input to the output is equivalent to the implemen-
tation of the logical operation “exclusive or” (XOR) and it is known
that it is not possible to build a single layer network that implements
it (see e.g. Minsky and Papert (1969)). The solution proposed in
Rigotti et al. (submitted for publication) is to introduce an
intermediate layer of randomly connected neurons. If the number of
these neurons is sufficiently large, the problem equivalent to the XOR
explained above can be solved. For this reason we introduced an
additional population of neurons whose activity depends on the input
from the CN populations and the external neurons. Analogously to the
CN neurons, which are also connected by random synaptic weights to
the AN, most of the neurons of the additional population respond to
pairs of CN-external neurons activations. We therefore assume that
the feedback population is composed of neurons responding to the
chanism for the formation of context representations, NeuroImage
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Fig. 4. The learning dynamics of the CN to AN feedback. This signal is mediated by a layer of feedback neurons selective to the CN state, encoding the context, and the external input
activity. The synapses connecting the feedback neurons to the AN are modified with learning dynamics similar to the ones used for the AN synapses (see Fusi et al. (2007) and the
description of the AN dynamics in Materials and methods). A circled $+$ indicates that the synapses are potentiated. Synapses marked $=$ remain unchanged, and $–$ indicates
synaptic depression. Left panel: the AN-CN system predicts a negative value for CS A, which instead is followed by Reward (context 1). The synapses connecting active feedback
neurons to the AN are all depressed. Right panel: the AN-CN system correctly predicts a negative value (context 2) which is followed by punishment. The synapses from active
feedback neurons to the active AN neurons are potentiated.
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2×N possible CS-CN population combinations (2 CSs multiplied by
the N populations of the CN). These neurons project back to the AN
neurons with plastic synapses that are modified with the same
synaptic dynamics as the connections from the external neurons to
the AN neurons, except that the learning rates are significantly smaller
(q+R =2×10−4, q−R =0, q−R 4×10−4). These feedback connections are
initialized to zero, and the learning rates are chosen to be small, so
that the synaptic input from the CN affects the AN dynamics only at a
late learning stage, when the CN context attractors are formed and
stable. The AN sees the information about the current context coming
from the CN as an additional input that would operate in the same
way as a constantly present contextual cue.

We stop modifying the CN synapses when the feedback input
becomes too strong compared to the external input. This prevents the
CN from learning from its own activity, with the danger of effects that
are difficult to control. For example, if the CN learns rapidly one of the
two contexts of the trace conditioning task, and it starts dominating the
ANbehavior, then it becomes difficult to create the representationof the
secondcontext because theANwill not havea chance to learn theCS–US
associationsof the secondcontext. Indeed, itwill constantly bedrivenby
the CN, which represents and will continue to represent only the first
context. In the simulationsweblock theCN learningdynamicswhen the
synaptic input to the AN coming from the CN feedback is more than 2.5
times larger than the direct feedforward external input.

The analysis of recorded OFC and amygdala cells

Our assumption that the neurons of the CN are initially selective to
conjunctions of external events and AN mental states (mixed
selectivity) is supported by the analysis of neurophysiological record-
ings. We analyzed the cells recorded during the trace conditioning task
with a single reversal described at the beginning of the Methods. It is
reasonable to assume that this situation (i.e., the single reversal) reflects
what happens in the initial or early stages of the learning process that
leads to the formation of context representations. Analyses were
performed on spike data from two time intervals during the trial: the
CS interval (90–440ms after image onset formonkey L; 90–390msafter
image onset formonkey R) and the trace interval (90–1500ms after the
image turned off). These time intervals were chosen becausemore than
90% of visual response latencies exceeded 90 ms as established by an
Please cite this article as: Rigotti, M., et al., Attractor concretion as a me
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analysis of latencies, described previously (Paton et al., 2006; Belova et
al., 2007, 2008; Morrison and Salzman, 2009).

In order to determine the degree to which neural responses are
modulated by reinforcement contingencies (image value) or by the
sensory characteristics of the CSs themselves, we performed a two-
way ANOVA with image value and image identity as main factors. The
ANOVA was performed separately on spike counts from the CS and
trace intervals for each cell, as cells could encode image value at
different times during the trial. If there was a significant effect of
image value in either or both intervals (pb0.01), the cell was classified
as value-coding. We found a few cells that had opposite image value
preferences in the CS and trace intervals, and these were excluded
from further analysis. Neurons in OFC and the amygdala that were
categorized as “non-value-coding” exhibited a variety of responses to
conditioned stimuli; these included neural responses that were
similar for all conditioned images, as well as responses that were
strongest (or weakest) for the stimulus associated with a weak
reward. In addition, a substantial proportion of OFC and amygdala
neurons, both value-coding and non-value-coding, showed a signif-
icant main effect of image identity in the ANOVA, or an interaction
effect of image value and image identity (pb0.01).

We performed an additional analysis to determine whether in the
trace conditioning taskwith a single reversal (presumably the situation
preceding the formation of context representations) there are cells that
encode the context in the sameway as the CNneurons at the end of the
learning process. As we will see in the simulation results, the CN
neurons that represent the context after learning are selective to the
context in every interval of the trial (in thepresence or in the absenceof
external events like the CS or theUS). In particular, their activity should
be significantly different in the two contexts for all the individual CS–
USassociations. In practice, in the specific case of the trace conditioning
task, there should be a threshold that separates the activity recorded in
CS A-Positive and CS B-Negative trials (context 1) from the activity
recorded in CS A-Negative and CS B-Positive trials (context 2).
Moreover, the difference between context 1 and context 2 activities
should be significant. We imposed these conditions by considering all
pairs of CS–US combinations. In particular, in order to meet the
criterion for a “context cell,” the average activity of the neuron in the CS
A-Positive trials (μA+) had to be significantly different (pb0.05, t-test)
from the average activity in theCSA-Negative trials (μA−).Moreover,we
chanism for the formation of context representations, NeuroImage
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required that the differences μA+−μB+, μB−−μA− and μB−−μB+
be significant. Additionally, we required that all four differences
μA+−μA−, μA+−μB+, μB−−μA− and μB−−μB+ have the same sign
(we always subtract context 2 (reversal) epochs from context 1
(initial) epochs). A cell qualified as a context cell if it satisfied all
these criteria at least in one of the two analyzed intervals (the
interval during CS presentation and the trace interval).

Results

We present the results as follows: we first explain the assumptions
of themodel about themixed selectivity of the neurons, andwe provide
experimental evidence to support them. In particular, we show how
neurophysiological data recorded in the amygdala and orbitofrontal
cortex of monkeys during appetitive and aversive trace conditioning
supports the hypothesis that neurons havemixed selectivity to external
events like the CSs and innermental states encoding the predicted value
of the stimuli. The model neurons are assumed to exhibit the same
response properties before the process of creation of context repre-
sentations starts. We then illustrate the proposed mechanisms
underlying the formation of context representation by describing the
simulations of a model neural network performing a trace conditioning
task. In particular, we show how transient events can generate patterns
of sustained activity that bridges the gap between two successive
relevant events. We then explain the iterative process of merging of the
neural representations of short temporal sequences (attractor concre-
tion) that leads eventually to the temporal contexts. Simulations show
that these representations can significantly improve the prediction of
the value of a stimulus when the context changes. Finally, we use the
model to make specific predictions for the patterns of neural activity
that would be observed given new experimental manipulations.
Fig. 5. Recorded activity of OFC and amygdala cells that respond as expected in AN (A,B) a
conditioning task for the four possible CS–US pairings. The continuous traces show the act
Negative). The dotted traces show the activity after learning of Context 2 (A-Negative, B-Po
value of the CS. These cells have been observed both in the OFC (A) and amygdala (B). The
the amygdala (D).
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Learning context representations

The initial situation: experimental evidence for neurons with mixed
selectivity

In our model, we assume that the neurons of the CN have mixed
selectivity to the mental states of the AN (positive, negative,
neutral) and external events (CSs, USs). They should exhibit this
form of selectivity to the conjunction of mental states and events
even before the learning process leading to the formation of context
representation starts. The assumption is based on two considera-
tions: (1) these conjunctions contain the basic elements that
characterize the contexts. For example, selectivity to CS A would
not allow the network to discriminate between the two contexts, as
the very same stimulus A is presented in both contexts, in which it
would activate the neuron in exactly the same way. However, a
neuron that responds to CS A only when the following mental state
of the AN is positive would activate only in one context and not in
the other. (2) Neurons with this form of mixed selectivity can be
easily obtained with random connections, and hence without any
learning procedure (see Methods and Rigotti et al. (submitted for
publication)). Indeed, neurons that are connected with random
synaptic weights to the neurons of the AN, which represent the
mental state, and to the neurons representing the external events,
are very likely to respond only to the simultaneous activation of
these two populations, provided that the threshold for activating the
neuron is large enough. Neural representations of patterns of
activity across several randomly connected neurons are analogous
to random projections and they can encode efficiently the
information contained in both the external and internal inputs
(e.g. the Johnson and Lindenstrauss lemma (Dasgupta and Gupta,
2002)).
nd CN (C, D). The activity was recorded while the monkey was performing the trace-
ivity after the monkey had learned the associations defining Context 1 (A-Positive, B-
sitive). The AN cells show sustained activity during the trace interval that encodes the
CN cells are selective to specific combinations of CS and value, both in the OFC (C) and

chanism for the formation of context representations, NeuroImage
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Fig. 6. First learning phase: from transient events to attractors. (A) The scheme of two
consecutive trials. In the first trial the presentation of CS A is followed, after a delay, by
the delivery of reward. In the second one, CS B is followed by punishment. (B) Color
coded activity of the AN (red=active, blue=inactive) as a function of time in response
to the events depicted in panel A. The simulation starts in an inactive state with neutral
value (0). The presentation of CS A induces a transition to a state in which the neurons
encoding positive value (+) have self-sustained activity. The activity is shut down by
the delivery of reward. Analogously for the CS B-Punishment case. (C) Color coded
activity of the CN populations as a function of time (red=active in the presence of
external input, yellow=active in the absence of external input, light blue=inactive,
blue=inactive because of the strong inhibitory input generated by a reset signal). Each
row represents the activity of one population that is labeled according to its selectivity
(e.g. 0A is a neuron that responds only when the AN is the neutral state and CS A is
presented). The external events together with the activation of positive and negative
states of the AN activate the populations of the CN (red bars). Every time a different
population is activated a reset signal is delivered (blue stripe). (D) First CN attractors:
the synapses within each repeatedly activated population are strengthened to the point
that the activity self-sustains also after the event terminates (yellow bars).
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Neurons with the assumed mixed selectivity (in the CN) and with
the expected response properties for the AN have been observed in
various areas of the brain. For example, the CSs are assumed to evoke
value-dependent sustained activity in the AN. We observed neurons
with these response properties both in the OFC and in the amygdala
while the animal was performing the trace conditioning experiment
(see Figs. 5A, B). The activity can be sustained throughout the trace
interval (see the cells of Paton et al. (2006)), for a limited time
(Fig. 5A), or it can ramp up in anticipation of reinforcement (Fig. 5B).

The CN neurons are assumed to respond to conjunctions of events
and the internal states of the AN. In the trace conditioning experi-
ment, we expect to observe in the first context neural representations
of themixtures, such as CS A-Positive or CS B-Negative, whereas in the
second context, the patterns represent CS A-Negative or CS B-Positive.
We have often observed neural responses reflecting this type of mixed
selectivity in the amygdala and OFC. We recorded and analyzed 216
cells in OFC and 222 from the amygdala (recorded from two
monkeys). We used a two-way ANOVA to determine whether image
value, image identity or an interaction between image value and
identity accounted for a significant portion of the variance in neural
firing. For this analysis, we excluded the first five trials of the
experiment of each type of trial, as well as the first five trials of each
trial type after reversal. We did this to exclude trials in which neurons
were changing their firing rate during learning about reinforcement
contingencies. Of particular interest to our proposed model, a
substantial number of neurons in both the amygdala and OFC had a
significant effect of the interaction between image identity and value
(66/216 OFC neurons, and 87/222 amygdala neurons, pb0.01, 2-way
ANOVA). Neurons with a significant interaction term indicate that
responses to images are modulated in an unequal manner by
reinforcement contingencies, which is the precise type of response
profile postulated by the model. Two examples of these types of
neurons are depicted in Figs. 5C, D. Notice that in each case, neurons
represent the conjunction between a particular image and a particular
reinforcement. In these two cases, image identity and image value do
not have a significant effect on responses, but many of the cells with
significant interactive effects also show significant effects of a main
factor in the ANOVA.

The first learning phase: from transient conjunctions of events and
mental states to attractors

We assumed that the CN initially receives a strong excitatory input
from the AN and the neurons representing the external events only
when particular events (the CSs A and B, the USs Reward and
Punishment) are preceded or followed by specific states of the
Associative Network, AN (neutral, positive, negative). For example,
consider a trial in which CS A is associated with reward (first trial in
Fig. 6A). We assume that the AN has already learned the correct
association, and the presentation of CS A induces a transition from a
state with neutral value (0) to a state with a positive value (+) (see
Fig. 6B). The neurons encoding a positive value have sustained activity
until reward is delivered and the activity of the AN is shut down. The
CN neurons observe the following sequence of AN states and events:
Neutral-A, A-Positive, Positive-Reward, Reward-Neutral. The
corresponding populations of neurons are transiently activated in
the same order (0A, A+, +R, R0, see Fig. 6C). Analogously, in a trial in
which CS B is associated with punishment, we have Neutral-B, B-
Negative, Negative-Punishment, Punishment-Neutral (see Fig. 6,
second trial). For simplicity, we assumed in our simulations that
each conjunction like Punishment-Neutral activates a single popula-
tion of the CN.

The Hebbian component of learning strengthens the synaptic
connections between the CN neurons that are repeatedly co-activated.
Moreover, it depresses the synapses from active to inactive neurons
(see Methods for the detailed equations). As a consequence, all
patterns of activity of the CN that are activated a sufficient number of
Please cite this article as: Rigotti, M., et al., Attractor concretion as a me
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times become attractors of the neural dynamics. At the end of the first
phase, we have the situation illustrated in Fig. 6D. Each conjunction of
events and AN states activates a population of the CN, and the activity
remains elevated even after the event terminates. However, every
time the AN activates a population of CN neurons that was inactive, or
deactivates a population of CN neurons that was active, we assumed
that a reset signal is delivered and the previous pattern of
reverberating activity is shut down by a strong inhibitory input
(blue stripes in the figure).

The second learning phase: concretion of temporally contiguous
attractors

Now that the representations of the conjunction of events and AN
states are attractors of the neural dynamics, the time gap between one
event and the next one is bridged by the self-sustained patterns of
reverberating activity. Two successive conjunctions of events belong-
ing to the same or different trials become temporally contiguous. This
enables the temporal sequence learning (TSL) mechanism to modify
synaptic weights and to link two successive patterns of activity, so
that the process of attractor concretion can start. The TSL mechanism
operates only when the pattern of activity of the CN changes because
it is modified by the AN input, and it strengthens the synapses
between an active pre-synaptic neuron and a neuron that is activated
at the successive time step. Moreover it depresses the synapses
between active neurons and neurons that are inactivated at the
successive time step. If the synapses between two populations, say a
chanism for the formation of context representations, NeuroImage
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and b, are sufficiently potentiated, then the activation of a causes also
the activation of b, leading to the merging of the two attractors
(attractor concretion).

The process of formation of the context representations requires a
few iterations, and the typical phases that we observe in the
simulations are illustrated in Fig. 7. The iterative process generates
representations of progressively longer temporal sequences. To
illustrate this process, consider the same two trials considered in
Fig. 6. The CN dynamics are now simulated at different stages of the
learning process (Figs. 6B–E). A scheme representing the temporal
statistics of the activation of the CN populations that are relevant for
the concretion process is shown in the right column. Although this
scheme does not allow us to make quantitative predictions about the
detailed neural dynamics, it is useful to describe the dynamics of the
concretion process, and in particular to understand how the temporal
statistics of the events and mental states are related to the probability
that two attractors merge into a single representation. Each arrow
links two CN populations, and its thickness represents the propensity
of these populations to merge. The propensity depends on both the
parameters of the learning dynamics and the temporal statistics of the
activation of the two populations. In particular, the arrow connecting
two generic populations, say a to b, is proportional to the probability
that a is followed by b, multiplied by the number of times that a is
Fig. 7. Second learning phase: attractor concretion. (A) Scheme of two trials and color coded a
propensities to concretion, scheme of attractors following concretion, Color coded activity o
describe different iterations of the concretion process (see the text for a detailed descriptio
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activated within a certain time interval, which depends on the
parameters of the learning dynamics. This is motivated by the fact that
the synapses between a and b are potentiated by the TSL mechanism
every time that a is activated, and then it is followed by b. They are
depressed when a is followed by a population different from b. The
stronger a synapse becomes, the higher the probability that a activates
b, and hence that the two populations merge into a single
representation. The propensity to concretion depends also on other
details of the TSL mechanism (see the Methods for the description of
the full dynamics), but also and more strongly on the effects of the
Hebbian mechanism. In particular, the Hebbian component of
synaptic dynamics strengthens the synapses within population a
every time a is activated, and it depresses the synapses from a to all
the other populations, including b. This effect of stabilization of a
increases with the time that the CN spends in a state in which a is
active. This means that the strength of the connections between a and
b, and hence the propensity to concretion, should decrease with the
time that a is active. This is valid only when a and b are not already
co-activated, because in such a case the Hebbian term actually
strengthens their connections. For these reasons, the propensity is
inversely proportional to the fraction of time that the CN spends in a
when b is inactive, multiplied by the ratio between the Hebbian
learning rate and the TSL learning rate. Summarizing, the propensity
ctivity of the AN as a function of time as in Fig. 6. (B, C, D, E) From left to right: Scheme of
f the CN populations as a function of time as in Fig. 6 following the concretion. B, C, D, E
n).
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of a to merge with b is high when a is activated repeatedly and it is
often followed by b. However it is reduced if the CN spends a large
fraction of time in a, or if the CN is often driven to states other than b.

The largest propensities drive the first concretions. For example
Fig. 7B shows that +R and R0 are the first population to merge into a
single attractor. Indeed +R is consistently followed by R0 in both
contexts. Notice that also A+ is always followed by +R, but the
propensity to merge is smaller because A+ is activated on average
half of the times that +R is activated. The result of this first concretion
is illustrated in the simulations of Fig. 7B. The activation of +R now
turns on also the R0 population, and from now on, the two
populations will always co-activate since they are part of a new
compound.

The next iteration is again driven by the concretion propensities;
however, now there are new attractor states in the CN, and all the
propensities must be recalculated. The new scheme of propensities is
shown in Fig. 7C. The next concretions are again predicted correctly by
the propensities. The same process is iterated in Fig. 7D and in E,
where we finally obtain the representations of the two contexts.
Notice that at every iteration the width of the arrows progressively
decreases. This is due to the fact that the CN spends more and more
time in the new attractors and hence the propensity to concretion
with other attractors decreases because of the Hebbian component of
learning. At some point the process of concretion stops because the
propensity is too small to induce a concretion. We chose the learning
rates to stop the process as soon as we have the representations of the
two contexts (but see also Discussion for a different choice of
parameters). The full simulations of the learning process are shown in
Fig. 8.

Predicting context-dependent values: the expected behavior
After the learning process described in the previous section, the CN

contains a representation of the current context. When the CS–US
associations are reversed, the first time a CS is presented, the value is
predicted incorrectly by the AN. This resets the synapses from the
neurons representing the external events to the AN, and the
transitions to the positive and negative states become random with
equal probability (Fusi et al., 2007). At the same time a “surprise”
signal is generated in the CN and the attractor representing the
context is reset. If the AN selects by chance thewrong value state, then
it keeps selecting the state randomly. As soon as the AN selects the
correct value, then it also activates the correct context in the CN, and
the AN-CN system starts predicting the correct values for all CSs.
Although it is not possible for our neural circuit to switch with 100%
probability from one context to the other in one trial, it is still possible
to harness the information contained in the context representation of
Fig. 8. Full learning simulation. Color coded activity of the CN populations as a function
of time as in Fig. 6. Red and blue bars above the plot indicate context 1 and 2,
respectively. Temporally contiguous attractors merge into single representations of
short temporal sequences (attractor concretion). Eventually, the context representa-
tions emerge, and they are demonstrated by the coactivation of the attractors
representing all conjunctions of events and AN states in each context (e.g. 0A, A+, +R,
R0, 0B, B−, −P, P0 for context 1).

Please cite this article as: Rigotti, M., et al., Attractor concretion as a me
(2010), doi:10.1016/j.neuroimage.2010.01.047
the CN in order to improve the prediction of the US. Indeed, as soon as
the AN guesses the correct value for one CS, say CS A, the CN also
selects the correct context and then it is possible to predict the US that
follows CS B with certainty. Summarizing, as soon as the context
changes, the AN predicts the wrong value. The surprise signal resets
the CN context, and then the AN-CN system selects randomly one of
the two possible contexts until it guesses the correct one. This strategy
is less efficient than switching to the alternative context as soon as
one knows that the context has changed, but it is still more efficient
than learning independently the associations, as it allows the AN-CN
system to predict correctly the value of all the CSs once it knows the
new value of one CS.

This mechanism is implemented in our neural circuit by the
feedback from the CN to the AN, as described in Materials and
methods. The CN and the external neurons project to a population of
randomly connected neurons which represent mixtures of the CN
context representations and the external events. These neurons
contain the information about the current context and the occurring
event. The synapses between these neurons and the AN are plastic,
and they are modified in the same way as the synapses from external
neurons to the AN, which encode simple Pavlovian associations. As
soon as the context is correctly determined by the CN, it is simple to
predict the values of both CSs, as the AN sees the CN as an additional
input that represents explicitly the current context. Indeed, Fig. 9
shows the percentage of correct predictions of the value of one CS
when the neural circuit has already guessed correctly the value of the
other CS. In otherwords, we quantify the ability of the neural circuit to
use the context information to infer the value of one CS once the value
of the other CS is known. In the absence of context information, this
percentage is at a significantly lower level, which depends on the
specific sequence of events (left). In the presence of the CN feedback,
this percentage is close to 100% (right). This behavior is in principle
observable in an experiment, and the plot of Fig. 9 provides us with a
behavioral criterion for establishing the existence of context
representations.

Experimental predictions about the response properties of recorded cells

As the process of concretion takes place, the neural representa-
tions evoked by events like the presentations of the CSs or the delivery
of the USs become progressively more similar in the CN. For example,
the activation of CS B and Negative (B−) should eventually evoke the
activation of the attractor representation of context 1. Neurons that
initially were activated by CS B and Negative only are predicted to be
activated also by CS A and Positive. In particular, as the process of
attractor concretion starts from the events that follow each other with
the highest probability, the first compounds that form are likely to be
[+R, R0], [−P, P0], followed by [0A, A+], [0B, B−], for context 1, and
[0B, B+], [0A, B−] for context 2 (see Fig. 10).
Fig. 9. Harnessing the feedback from the CN to the AN: percent of correct predictions of
the value of one CS when the new value of the other CS is already known. The
performance is estimated immediately after a context switch. In the absence of the
context information provided by the CN, the performance is significantly worse (left)
than in the presence of CN feedback, when the performance is close to 100%.

chanism for the formation of context representations, NeuroImage
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Fig. 10. Predictions on the correlations between neurons that respond to conjunctions
of events. The probability that two populations of neurons of CN are co-activated is
computed by running the simulation several times and it is plotted as a function of the
number of blocks of context 1 (top) and context 2 (bottom) trials. Different colors
denote different co-activated populations. Initially the probability is zero, as we
assumed that in the CN there are only populations that respond to simple conjunctions
of events and AN states. As learning progresses, the probability of co-activation of
populations that represent events of the context increases. For example, in context 1,
neurons that initially respond only to CS A and Positive (A+), after 15 reversals (block
16), respond also to CS B and Negative (B−). The corresponding compound is denoted
by [A+, B−]. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
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This prediction can be tested experimentally by single unit
recordings. We predict that the fraction of recorded cells that are
activated by events that belong to the same context should increase
monotonically with the total number of trials that the animal
experiences. Notice that in the simulations of Fig. 10 we assumed that
there are initially no neurons that already respond to conjunctions of
more than two events. In the brain theremight beneurons that from the
very beginning respond already to those conjunctions of events that
represent the contexts in the CN. The probability of finding those
neurons is predicted to be significantly smaller than the probability of
finding neurons that respond to simple conjunctions of events, like
those that we simulated, but in general we cannot exclude that they are
already present before the learning process starts. Consistent with our
predictions, in the trace conditioning experiment we observed 11/216
cells in OFC and 15/222 cells in the amygdala that are significantly
selective to the conjunctions of events that represent the context (see
Materials and methods for the details of the analysis). Our analysis
shows that these cells may only be significantly selective by chance, or
they may simply be a very small fraction of the recorded cells. In both
cases, our assumption that the majority of cells responds to simple
conjunctions of events is correct.

Discussion

We proposed attractor concretion as a possible mechanism for
creating representations of contexts. The formation of these representa-
tions leads to the generation of newmental states thatwere not present
in the initial AN-CN system. Indeed, the CN, at the end of the learning
process, operates as an additional input to the AN that contains
information about the active context. When the AN-CN system is
considered, the number of mental states eventually doubles, as for each
AN state there are two states of the CN. In practice, two new sets of
Please cite this article as: Rigotti, M., et al., Attractor concretion as a me
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mental states are generated as soon as the CN starts encoding the two
contexts. In the intermediate stages of the iterative process that leads to
the formation of the new states, the CN neurons are activated by short
sequences, which generate a number of mental states that is larger than
the final one. However, the temporal statistics of these sequences are
not correlated with any useful information about the contexts. In
particular, they donot allow theAN to disambiguate between the CS–US
associations of the twodifferent contexts. Indeed in thefirst three stages
(in Figs. 7B, C, D) there is no evidence of the existence of temporal
contexts, both in the transition probabilities and in the propensities. It is
only at the end of the concretion iterative process that the CN can detect
a clustered structure in the transition probabilities (i.e., large probabil-
ities tomake a transitionwithin the context, and small ones to switch to
a different one). We believe that the kind of merging behavior we
observed in the casewe analyzed is very general and it applies to awide
variety of tasks in which the information about temporal contexts is
important to improve the performance.

In ourmanuscript we analyzed a particularly difficult case, because
the CSs and the USs appear in the two contexts in a perfectly
symmetric way, and the contexts are solely defined by the temporal
statistics of the events. Our model would certainly work and generate
quantitative predictions in simpler cases, in which, for example, a
particular CS–US identifies unequivocally one context, or in which an
explicit contextual cue appears in all or in some trials to signal which
context is active. The concretion rules illustrated in the schemes of
Fig. 7 allow us to make predictions about the typical behavior of our
model network, although it is always important to run a full
simulation to analyze the behavior of the concretion process. For
example, the representation of a contextual cue that appears in every
trial would have the highest propensity to merge with CS–US
associations, and it would operate as a kernel around which the
context representations are built. The details of this learning process
obviously depend on the specific task protocol, on the representations
of the CSs and the USs and on the parameters of the model, but the
model can certainly generate quantitative predictions in a wide
variety of experiments.

A hierarchy of context representations

The final context representations are determined not only by the
temporal statistics of the events, but also by the parameters of the
neuronal and synaptic dynamics. In a system with multiple neural
circuits, each characterized by different dynamical parameters, we
expect the creation of a hierarchy of contexts that correspond to
different processes of attractor concretion. Some neural circuits can
represent only single events, as the TSL component is not strong
enough; some others might represent general contexts that corre-
spond to conjunctions ofmany events, stimuli and internal conditions.
For example, there could be cases with no merging, in which
the network simply represents the individual events A-Reward,
B-Punishment, A-Punishment and B-Reward. For the parameters used
in our simulations, the patterns of activity corresponding to A-Reward
and B-Punishment merge into the representation of context 1,
whereas A-Punishment and B-Reward merge into context 2. For
other sets of parameters, there could be a unique, large compound
comprising all possible events of the context corresponding to the
general task. Such a compound would link together A-Reward,
B-Punishment, A-Punishment and B-Reward. All these neural circuits
with different neural and synaptic parameters are likely to be
simultaneously present in the brain, either in one particular area, or
spread across different areas. They would provide the brain with a
hierarchy of contexts at many different levels that all together
determine a general mental state. A population of cells reading out
all these context representations could easily encode the value of the
current state, and such a value would in general depend on which
context pattern is activated in every level of the hierarchy.
chanism for the formation of context representations, NeuroImage

http://dx.doi.org/10.1016/j.neuroimage.2010.01.047


13M. Rigotti et al. / NeuroImage xxx (2010) xxx–xxx

ARTICLE IN PRESS
The use of a hierarchy of contexts generated by the heterogeneity
of the network is a new possibility that will be investigated
systematically in future theoretical and experimental studies. In
particular, it should be possible to detect to which hierarchical level a
recorded neuron belongs. This could be done by manipulating the
transition probabilities between events. For example, we considered
an experiment in which there are only two CSs and the probability to
make a transition from a trial with one CS to a trial with a different CS
within the same context is simply 1/2. In the case of 2p CSs, this
probability would be 1/2p. The probability to switch to a different
context should be accordingly reduced when all the CSs are presented
at least once in each context (≪1/2p). Hence the clustered structure
of transition probabilities that defines the temporal context would
still be detectable for any pN2, but the transition probabilities would
all be rescaled down when p increases. The parameters of the neural
circuits that determine the propensity to concretion and the maximal
number of CSs are always related. In particular, neural circuits with a
small propensity to concretion would generate context representa-
tions only if p is small enough. p=2 maximizes the probability that
we observe what we described in the experimental prediction section.
However, we also have the additional prediction that for any neural
circuit that shows concretion for p=2, there is always a p that is large
enough so that no concretion should be observed. Of course the entire
brain would still be able to create context representations because
there would be a different neural circuit with the proper parameters
to generate the context representations in a different situation.

Previous experimental and theoretical works on temporal context
representation

Neural signals that could provide a representation of temporal
context have been observed in several experiments. For example,
Miyashita investigated the representations of sequences of visual
stimuli (Miyashita and Chang, 1988). In these experiments, a monkey
was trained to perform a Delayed Match to Sample task in which the
sample stimuli were presented in a fixed temporal order. Single
neuron activity recorded in inferotemporal cortex revealed that cells
activated by one particular stimulus were likely to be activated also by
the neighboring stimuli in the temporal sequence. In other words, the
spatial patterns of neural activity across multiple cells, induced by
temporally contiguous stimuli, were highly correlated, reflecting the
order of presentation of the sensory events. This work inspired several
theoretical works on the neural mechanisms underlying context
representation in the brain. For example, Griniasty et al (1993)
interpreted this data as being an expression of the recurrent dynamics
of cortical circuits. In the model the authors proposed, these circuits
initially produce different patterns of stable, reverberating activity in
response to individual sensory stimuli. If the stimuli are repeatedly
presented in a fixed temporal order, the synaptic connections are
modified so that a sensory stimulus activates a pattern of activity that
is correlated not only to its representation when presented individ-
ually, but also to the representations of the stimuli that surround it in
the temporal sequence. This pattern of reverberating activity may be a
neural representation of the context in which the sensory stimulus
appears. A more detailed model of the learning process that is
responsible for tuning the synaptic weights has been proposed by
(Brunel, 1996) and some of the predictions have been verified in
experiments (Yakovlev et al., 1998).

In all these models, each stimulus evokes a different representa-
tion and the context is encoded in the correlations between the
representations. Highly correlated neural patterns correspond to
stimuli that belong to the same context. In our model, attractor
concretion leads to new inseparable “entities” that represent contexts.
Different events, like visual stimuli, activate the very same pattern of
activity if they belong to the same context. This is different from the
representations in which the contexts are encoded in the correlations
Please cite this article as: Rigotti, M., et al., Attractor concretion as a me
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because, in that case, each event still activates a characteristic pattern
of activity that is unique, though similar to the patterns elicited by the
events of the same context. Our approach is similar to what has been
proposed in (Brunel, 1996) for pair associates. One of the advantages
of creating new entities that represent context is compositionality.
Context representations can easily merge to generate new com-
pounds even if they are highly structured and complex. In other
words, when a new entity is created, there is a significant reduction of
the dimensionality of the state space. Indeed, if two populations are
always coactivated, they behave as a single one, reducing the effective
number of independent populations, and hence the dimensions of the
state space. This reduction greatly simplifies the process of represen-
tation of complex contexts. This is not true in the case in which each
individual event contains the information about the correlation with
all the other population of neurons (i.e. with all the other dimen-
sions). One of the disadvantages of creating new entities is that the
information about individual events is lost, unless multiple systems
are considered as discussed in the previous section of Discussion.

Alternative approaches to the creation of context representations

As we briefly discussed in the Introduction, one of the limitations
of Reinforcement Learning (RL) algorithms is that a representation of
mental states is assumed, yet the algorithms do not provide for how
these representations are created. This is a major limitation when the
environment is only partially observable, as in the case of limited
sensory data, or when agents have limited computational resources to
process all the details of the sensory stimuli. In all of these cases, we
often might be induced to think that we are in the same situation
when we actually are not and we would need to select different
actions. For example, whenwe drive in a forest, we often arrive at two
similar crossings, which can lead to confusion if we do not take into
account other information, such as where we have been recently.
Thus, in many circumstances it is possible to decide our actions if we
remember some of our previous experiences. For example, one
crossing might be preceded by a pump station and the other might be
preceded by a level crossing. In this situation, we need to create two
distinct mental states, each corresponding to a different temporal
context.

We proposed a simple mechanism and a biologically plausible
neural network model that autonomously generates context repre-
sentations. Alternative and complementary approaches have been
proposed to solve analogous problems in different fields. For example,
Hidden Markov Models (HMM) have been widely used to predict
complex temporal series where the next event might depend on a
long sequence of previous observations (see e.g. (Rabiner, 1989)). In
these models and in some of their extensions to decision processes
(e.g. POMDP, Partially Observable Markov Decision Processes (Kael-
bling et al., 1998)), the number and the meaning of the states of the
agent are not known a priori. The algorithms usually start from a large
number of hidden states that are randomly linked to the observed
states of the environment. The states acquire a meaning by iterating a
recursive algorithm that estimates both the probabilities that a hidden
state is related to an observed state, and that it is followed by another
state (see e.g. Viterbi or Baum-Welch algorithms). Although very
efficient in many applications like speech recognition, these algo-
rithms suffer from many limitations. They require knowing the
number of states a priori. If there are not enough hidden states, then it
is possible to add more, but estimating all the transition probabilities
between hidden states becomes rapidly an intractable problem as the
number of states increases. Moreover, all probabilities should be
revaluated every time a new state is introduced, which makes the
system rather inflexible. Finally, the convergence of the recursive
algorithms to the global optimal solution is not guaranteed and the
final scheme of hidden states and transition probabilities depends
strongly on the initial condition. Some of these limitations might be
chanism for the formation of context representations, NeuroImage

http://dx.doi.org/10.1016/j.neuroimage.2010.01.047


14 M. Rigotti et al. / NeuroImage xxx (2010) xxx–xxx

ARTICLE IN PRESS
related to the fact that the hidden states are initially chosen in a
completely random fashion, and they are not constructed on the basis
of the temporal statistics of the events. Although we still do not have a
general theory and a convergence theorem as in the case of HMMs, we
believe that our approach does not suffer from these limitations, and it
is closer to the mechanisms that the brain might be using to create
context representations.

Where are the cells of the AN and the CN in the brain?

As shown in Fig. 5, neurons with mixed selectivity to the relevant
conjunction of events for defining the two contexts have been
observed both in prefrontal cortex (PFC), in particular in OFC, and in
the amygdala. As these two areas are strongly interacting (Salzman
and Fusi, in press), it is likely that the neural circuits of the AN and the
CN are distributed across these brain regions, and probably also other
areas (e.g. in other subareas of PFC, as well as in the hippocampus and
related structures).

When temporal contiguity is broken by intervening distractors

In many realistic situations, there are contexts in which the
temporal contiguity between relevant events is broken by distractors,
e.g. by the presentation of a random visual stimulus. In our model,
these distractors would disrupt the process of formation of context
representations. There are at least two possible solutions to this
problem. The first one has been proposed in (O'Reilly and Frank,
2006), and it is based on a gating system that can learn to ignore the
irrelevant events. In these models the irrelevant events are simply
“gated,” and hence not represented in the AN and in the CN. The
second possibility is based on short term synaptic mechanisms that
could preserve the memory of relevant events even when distractors
are presented (see Mongillo et al. (2008) for a possible mechanism
based on short term synaptic facilitation). For example, the TSL
mechanism could be implemented by tagging the synapses at time t,
and then modifying them in the next time interval τ, creating links
between the event occurring at t and all events occurring the next
time interval τ. Such a mechanismwould suffer from the introduction
of the inherent time constant τ of synaptic tagging, whereas our
mechanism can work and generalize with almost any timing between
successive events. Notice that synaptic tagging could in principle
allow us to eliminate the first phase of learning, in which the attractor
representations of individual events are created to bridge the
temporal gap between events that are separated in time.

More general mental states and operant tasks

We focused on a trace conditioning task to illustrate the proposed
mechanism for the formation of context representations. However,
the same mechanism can be applied to other experiments and to
operant tasks. For example in (Asaad et al., 1998; Pasupathy and
Miller, 2005) the monkeys are trained to associate saccadic move-
ments to visual responses. The AN model has already been used to
reproduce quantitatively the observed behavior of the monkeys when
they learn and forget visuo-motor associations (Fusi et al., 2007). The
positive and negative states are equivalent to the decisions of the
monkey about the direction of the saccade (left or right). In one
context, stimulus A is associated with left and B with right, and in the
second context the associations are reversed. Although in the
experiments the monkeys never learned to switch from one context
to another immediately, it is possible that in other conditions (see the
discussion of Fusi et al. (2007)) they would be able to create the
representations of the contexts. The model and the predictions would
be the same as for the trace conditioning task. Notice that the two
contexts correspond to two simple rules that could be expressed as
“whenever A is associated with left, B is associated with right” and
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“whenever A is associated with right, B is associated with left.” In this
case the representation of the temporal context would be equivalent
to the representation of a rule. In recent years, investigators
accumulated evidence that the activity of prefrontal neurons can
encode abstract rules (Genovesio et al., 2005; Mansouri et al., 2007,
2006; Wallis et al., 2001). These rules allow the animal to respond to
the same sensory stimulus in different ways depending on the
strategy or on a sequence of sensory cues preceding the stimulus.
Hence, they are all analogous to the temporal contexts that we studied
here. In one of the cited experiments, Mansouri et al. (2006) observed
sustained activity in the inter-trial intervals that encodes the rule in
effect when the monkey was performing a simplified version of the
Wisconsin Card Sorting Test. This rule was determined by the
temporal context of monkey choices, and the rule-selective inter-
trial activity therefore corresponds to an active representation of
context (O'Reilly and Munakata, 2000; Loh and Deco, 2005; Deco and
Rolls, 2005; Rigotti et al., 2008; Rougier et al., 2005). In all the models
and the experiments that we described, a large proportion of neurons
exhibit mixed-selectivity. Interestingly, it has been shown (Dayan,
2007) that mixed selectivity neurons implemented with multilinear
functions can actually play an important role in neural systems that
implement both habits and rules during the process of learning of
complex cognitive tasks. Multilinearity implements conditional maps
between the sensory input, the working memory state, and an output
representing the motor response.

Temporal contiguity can also be important in the creation of
invariant representations. Some investigators propose that invariant
representations of objects can be generated by linking temporally
contiguous views (Rolls and Milward, 2000; Miyashita and Chang,
1988; Li and DiCarlo, 2008). This is yet another example of an
abstraction process that relies on temporal contiguity to create the
internal representations. As shown in our manuscript, temporal
contiguity can also be an important aspect of the statistics of the
environment in all the cases in which behavior depends on
information about temporal context. We believe that it is particularly
important to study the neural mechanisms that allow the animal to
encode complex patterns of temporal contiguity, as these processes
might underlie the neural basis of cognitive functions that range from
the creation of invariant representations to rule abstraction.
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