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�bstract—Silicon neuron circuits emulate the electro-
physiological behavior of real neurons. Many circuits can be
integrated on a single Very Large Scale Integration �VLSI) device,
and form large networks of spiking neurons. Connectivity among
neurons can be achieved by using time multiplexing and fast
asynchronous digital circuits. As the basic characteristics of the
silicon neurons are determined at design time, and cannot be
changed after the chip is fabricated, it is crucial to implement a
circuit which represents an accurate model of real neurons, but at
the same time is compact, low-power and compatible with asyn-
chronous logic. Here we present a current-mode conductance-
based neuron circuit, with spike-frequency adaptation, refractory
period, and bio-physically realistic dynamics which is compact,
low-power and compatible with fast asynchronous digital circuits.

I. INTRODUCTION

Many VLSI models of spiking neurons have been devel-

oped in the past [1]–[9], and many are still being actively

investigated [10]–[13]. A common goal is to integrate large

numbers of these circuits on single chips, or even full wafers,

and create large networks of neurons, densely interconnected.

In these systems, the strategy used to connect multiple neurons

with each other is to use asynchronous digital circuits that map

and route the spikes as they are generated to other neurons on

different chips or other areas of the same chip/wafer [14],

[15]. It is therefore crucial to develop compact low-power

circuits, that implement faithful models of real neurons, but

that can also produce extremely fast digital pulses required

by the asynchronous circuits that manage the communication

infrastructure.

A family of spiking neuron models that allows us to

implement large, massively parallel networks of neurons is

the Integrate-and-Fire (IDF) model. IDF neurons integrate pre-

synaptic input currents and generate a voltage pulse analogous

to an action potential when the integrated voltage reaches a

spiking threshold. Networks of IDF neurons have been shown

to exhibit a wide range of useful computational properties,

including feature binding, segmentation, pattern recognition,

onset detection, input prediction, etc..

It has been recently argued however that simple IDF

models do not produce a rich enough range of behaviors

useful for investigating the computational properties of large

neural networks, thus compromising the usefulness of ded-

icated hardware implementations [13], [16], [17]. Wijekoon

and Dudek recently proposed an alternative phenomenological

VLSI model, loosely based on the Izhikevich model [16],

which can produce a wide range of spiking patterns, using a

very small number of transistors [13]. This circuit is also low

power, but it operates in “scaled–time” (i.e. on microsecond

scale, rather than millisecond scale). Therefore it cannot be

used to implement artificial or hybrid systems that interact with

the world in real–time. In addition both this phenomenological

model, and the vast majority of IDF neuron circuits previously

proposed do not exhibit conductance-based behavior, which

is crucial for implementing bio-physically realistic models of

neurons.

There is a class of VLSI conductance-based silicon neurons

that has been proposed in the past [2], [6], [7]. These indeed

implement faithful models of real neurons, but they use a

considerable amount of silicon real-estate (i.e. many transistors

and large capacitors). A new generation of bio-physically

realistic circuits has been recently proposed [10], [11], which

emulates the dynamics of neuronal proteic channels, repro-

duces faithful action potential traces, and use a considerable

lower number of transistors per neuron model. But these

circuits do not produce fast digital pulses, and cannot be easily

interfaced to asynchronous digital circuits.

We propose a phenomenological silicon neuron circuit,

based on a variant of a low-power IDF model [18], which

is conductance-based, compact, real–time (with bio-physically

realistic temporal dynamics), and compatible with the asyn-

chronous Address-Event Representation (AER) [19]. The cir-

cuit uses a current-mode approach, similar to that proposed

in [9], [12], but rather than using conventional log-domain

filters [20], it uses the diff-pair integrator (DPI) [21] for im-

plementing tunable dynamic conductances. The subthreshold

log-domain circuits used in [9], [12] require p-FETs with

isolated wells, while the DPI filters can be implemented using

both n-type and p-type variants of the circuit, and can be

designed with more compact layouts. An additional advantage

of the DPI circuit over the standard current-mode log-domain

circuit [20], is given by the possibility to control the circuit’s

gain with an additional independent bias voltage. A detailed

analysis of both circuits and advantages of one over the other

is presented in [22].

978-1-4244-3828-0/09/$25.00 ©2009 IEEE 2898



Fig. 1. Schematic diagram of the Differential-Pair Integrator (DPI) neuron
circuit.

In addition to the conductance-based behavior, the cir-

cuit implements a series of functionalities which reproduce

many important features observed in real neurons: a positive-

feedback mechanism, which reproduces the effect of Sodium

activation and inactivation channels in real neurons; a refrac-

tory period mechanism for limiting the maximum possible fir-

ing rate of the neuron; and a spike-frequency adaptation mech-

anism, which effectively introduces a second slow variable in

the model, potentially allowing for subthreshold resonances

and oscillatory behaviors [16].

The circuit’s positive feedback mechanism drastically re-

duces the switching time of the neuron’s MOSFETs, and

makes the model extremely low-power. In the next Section we

describe the circuit and explain its operational principles; in

Section III we present experimental results; and in Section IV

we draw the conclusions and describe future work on it.

II. THE SILICON NEURON CIRCUIT

The silicon neuron circuit schematic is shown in Fig. 1. The

circuit comprises:

• An input DPI circuit [21] (M1-M4,M22), which models

the neuron’s leak conductance, and provides exponential

subthreshold dynamics in response to constant input

currents.

• An integrating capacitor Cmem, which represents the neu-

ron’s membrane capacitance.

• A second instance of a DPI (M5-M10), which models the

neuron’s Calcium conductance, and implements the spike

frequency adaptation mechanism.

• An inverting amplifier (M15-M17) with positive feedback

(M11-M13).

• A starved inverter with controllable slew rate (M18-M21),

which can be used to set arbitrary refractory periods.

• The neuron’s reset transistor (M14).

The read-out transistor M22 is used in simulations and for

the analytical derivations, but was actually not included in the

final layout of the circuit.

A. Circuit operation

The input current Iin j is summed to a constant background

current (set by Vrest ) which can be used to model spontaneous

activity. Input currents are integrated by the DPI, increasing

the membrane voltage Vmem. As Vmem approaches the switch-

ing voltage of the inverting amplifier, the feedback current

I f b starts to flow through M11-M13, increasing Vmem more

sharply. This positive feedback has the effect of making the

amplifier M15-M16 switch very rapidly, reducing dramatically

its power dissipation. When Vmem increases enough to make

the first inverter switch the voltage VO1 is brought to ground

and Vspk is driven to Vdd . Then the membrane capacitor Cmem
is discharged back to ground through the reset transistor M14,

VO1 rises back sharply to Vdd , and the voltage Vspk is slowly

reset to zero, at a rate controlled by the bias voltage Vr f and

the size of Cr f . The neuron’s refractory period lasts as long as

Vspk is sufficiently high to keep the reset transistor on. During

the spike emission period (while VO1 is low), a current with

amplitude set by Vadap is sourced into the adaptation DPI, with

a gain set by the gate bias voltage Vthra, and a time constant

set by Valk. The adaptation current Iadap increases with every

spike, following the same first-order dynamics of Imem. As a

consequence, given the negative-feedback property of Iadap,

the neuron’s response to a step input current is characterized

by an initial output firing rate proportional to the input current,

which gradually decreases until an equilibrium is reached, thus

reproducing the spike-frequency adaptation behavior observed

in real neurons.

The subthreshold behavior of the neuron can be derived

analytically, by assuming that the relevant transistors operate

in the weak-inversion (or subthreshold) regime [23]. For

this analysis we neglect the adaptation current Iadap, as this

becomes non-negligible only after the first spike. In weak-

inversion, the drain current of a saturated n-FET changes

exponentially with its gate voltage [23]. In particular:

Imem = I0e
κVmem
UT (1)

where I0 is the n-FET’s leakage current, κ is the sub-

threshold slope factor and UT is the thermal voltage [23]. The

subthreshold branch current IM3 of the differential pair is given

by:

IM3 = Iin
e

κ�Vdd−Vmem)
UT

e
κ�Vdd−Vmem)

UT + e
κ�Vdd−Vthr)

UT

(2)

where Iin= Irest+Iin j. If we assume that the subthreshold slope
coefficients κ of n and p-FETs are equal, we arbitrarily define

Ig
�

= I0e
κVthr
UT , and take into account eq. (1), we can rewrite IM3

as:

IM3 = Iin
1

1+ Imem
Ig

(3)

Kirchhoff’s current law on the Vmem node yields:

Cmem
d

dt
Vmem = IM3− Iτ + I f b (4)
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Fig. 2. Silicon neuron membrane current Imem in response to a constant step
input current, for different values of the Vthr bias setting.

where I f b ≈ IM16 = I0e
κ2

κ+1
Vmem
UT and Iτ = I0e

κVτ
UT .

If we differentiate eq. (1) with respect to Vmem and combine

it with the eq. (4) we obtain:

τ
d

dt
Imem = −Imem

�

1−
IM3

Iτ
−
I f b

Iτ

�

(5)

where τ
�

= UTCmem
κIτ

. Replacing IM3 from eq. (3) into eq. (5)

yields:

τ
d

dt
Imem+ Imem�1−

I f b

Iτ
) = Iin

Imem
Itau

1+ Imem
Ig

(6)

This is a first-order non-linear differential equation. How-

ever, for small values of Vmem (e.g. at the beginning of an

action potential) the effect of the DPI dominates on the positive

feedback, and we can neglect the current I f b. Moreover, the

right-hand term of eq. (6) can be reduced to Iin
Ig
Iτ
, if Ig� Imem.

In these conditions eq. (6) simplifies to:

τ
d

dt
Imem+ Imem = Iin

Ig

Iτ
(7)

Thus, for small values of Vmem, and sufficiently large values

of Imem, such that Imem � Ig the silicon neuron exhibits a

classical RC-filter type behavior.

III. EXPERIMENTAL RESULTS

The results described here were obtained using SPICE

simulations. However a small 4�45�1�94mm2 prototype chip,

containing 32 of these neurons, has already been designed

and fabricated using a 0�35μm AMS CMOS technology.

The SPICE simulations were carried out using 0�35μm AMS

process parameters and 3�3V power supply setting. In Fig. 2

we plot the transient simulations results, for a step input

current and different settings of the Vthr bias parameter. There

are two important aspects to note in this data. The first one

is the RC profile of the membrane current Imem, when the

current is low; this effect is due to the charge phase of the

DPI circuit and its response characteristic is clearly visible,

until the effect of the positive feedback starts to dominate and
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Fig. 3. Spike-frequency adaptation: (a) adaptation internal signal related to
the Calcium concentration present in real neurons; (b) membrane “potential”
signal traces in response to a step input current

finally generates a spike. The second aspect we would like to

point out is the effect of the bias voltage Vthr: higher values of

this bias increase the value of the DPI’s steady state output,

as predicted by eq. (7). The more this bias is increased, the

more current is injected into the integrating capacitor Cmem,

resulting in a sharper growing of the membrane current. A

sharper increase of this current means that the Vmem voltage

reaches the inverting amplifier’s threshold voltage in a shorter

time, resulting in an earlier spike generation. This can clearly

be seen in Fig. 2, where the neuron membrane current Imem is

plotted for different values of the bias Vthr, in response to the

same step input current.

As mentioned in Section I, an important feature of this

circuit is the presence of a second, slower variable (e.g.

VCa), which allows the circuit to implement a spike frequency

adaptation mechanism. We activated the adaptation DPI (M5-

M10) by decreasing the value of Vadap below Vdd and carried

out transient simulations, observing the behavior of the neuron

for multiple output spikes.

In Fig. 3(a) we show the Vca voltage measured in these

simulations: the voltage steadily increases with every spike,

until it reaches an equilibrium, at which the neuron’s output

spike frequency is maximally reduced. In Fig. 3(b) we plot the

membrane current Imem as a function of time, measured in the

same simulation run. As shown, the neuron’s spike frequency
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TABLE I

SILICON NEURON CIRCUIT SPECIFICATIONS.

Cmem area 100μm2

Cmem capacitance (MOSCAP) 0�5pF

Silicon neuron layout area 913μm2

Supply voltage 3�3V

Power consumption/spike (300ns pulse) 7pJ

Power consumption/spike (100ms, including integration phase) 267pJ

decreases as VCa increases, until the steady state is reached.

SPICE simulations were carried out also to evaluate the

circuit’s power dissipation characteristics. The digital spikes

produced by the neuron (e.g. derived from the VO1 node) are

extremely narrow, lasting about 300ns. The circuit’s simulated

average power consumption measured during this period is

approximately 7pJ/spike. This measure is commonly used to

describe circuit performance in the literature (e.g. Wijekoon

and Dudek report 8�5pJ/spike [13]), and to our knowledge,

this is the best figure ever reported. However, a more realistic

measure is the average power dissipation measured during

the whole current integration and action-potential generation

phase. For example, given an average firing rate of 10Hz, the

power dissipation should be measured over 100ms (e.g. from

the end of one spike, to the end of the subsequent spike). In

this case, the (simulated) average power consumption of our

neuron circuit is approximately 267pJ.

The power consumption specifications and other character-

istics of the circuit, for the specific implementation made using

a standard 4-metal, double-poly 0�35μm CMOS process, are

summarize in Table I.

IV. CONCLUSIONS AND OUTLOOK

We designed and implemented a low-power current-mode

conductance-based neuron circuit, with refractory period and

spike frequency adaptation mechanisms. We described its

properties by means of formal analysis and SPICE simulations.

The results shown in each case are consistent with each other

and demonstrate the expected RC-type response to a constant

current injection, in the membrane current temporal profile.

Although we have not yet demonstrated that the proposed

circuits can produce oscillatory behaviors, such as bursting

activation patterns, the positive feedback and the spike fre-

quency adaptation mechanisms implemented make this VLSI

model equivalent to the “adaptive exponential integrate-and-

fire” (aEIF) model recently proposed in [17]. In [17] the

authors demonstrate that aEIF models can accurately predict

the spike trains of detailed Hodgkin-Huxley type models,

driven by realistic conductance-based synaptic inputs. There-

fore we argue that the circuit described in this work can

implement faithful models of real neurons, while at the same

time satisfying the compactness, low-power, and compatibility

with asynchronous logic constraints.
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