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Although conditional branching between possible behavioral states is a
hallmark of intelligent behavior, very little is known about the neuronal
mechanisms that support this processing. In a step toward solving this
problem, we demonstrate by theoretical analysis and simulation how
networks of richly interconnected neurons, such as those observed in
the superficial layers of the neocortex, can embed reliable, robust finite
state machines. We show how a multistable neuronal network contain-
ing a number of states can be created very simply by coupling two re-
current networks whose synaptic weights have been configured for soft
winner-take-all (sWTA) performance. These two sWTAs have simple, ho-
mogeneous, locally recurrent connectivity except for a small fraction of
recurrent cross-connections between them, which are used to embed the
required states. This coupling between the maps allows the network to
continue to express the current state even after the input that elicited that
state is withdrawn. In addition, a small number of transition neurons im-
plement the necessary input-driven transitions between the embedded
states. We provide simple rules to systematically design and construct
neuronal state machines of this kind. The significance of our finding is
that it offers a method whereby the cortex could construct networks sup-
porting a broad range of sophisticated processing by applying only small
specializations to the same generic neuronal circuit.

1 Introduction

Quantitative studies of the anatomical connection weights between
neurons in cat visual cortex have revealed that one prominent feature of
the neocortical circuit of cat visual cortex is the high degree of connectivity
between pyramidal cells in the superficial cortical layers (Binzegger,
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Douglas, & Martin, 2004). About 30% of all excitatory synapses onto
these cells are derived from other superficial pyramids, and most of these
connections are short range (arising from source neurons within about
300 µm). In addition to excitatory inputs, these pyramids also receive
inhibitory inputs, which constitute about 10% of their synaptic input
(Shepherd, Stepanyants, Bureau, Chklovskii, & Svoboda, 2005; Binzegger
et al., 2004). Thus, the activation of these excitatory neurons can be strongly
affected by both positive and negative feedback loops. In theory, these
recurrent circuits exhibit a variety of interesting computations (Abbott,
1994; Douglas, Koch, Mahowald, Martin, & Suarez, 1995; Ben-Yishai,
Bar-Or, & Sompolinsky, 1995; Hahnloser, Sarpeshkar, Mahowald, Douglas,
& Seung, 2000; Zhaoping, 2001; Pouget, Zhang, Deneve, & Latham, 1998;
Machens, Romo, & Brody, 2005; Wang, 2002; Rao, 2004; Hochreiter &
Schmidhuber, 1997; Coultrip, Granger, & Lynch, 1992). For example, the
soft winner-take-all (sWTA) network is able to selectively enhance one
part of its input while suppressing the remainder (Hahnloser, Douglas,
Mahowald, & Hepp, 1999; Maass, 2000), and so offers a form of signal
restoration between computational stages sought by von Neumann (1958)
in his early explorations of brainlike principles of computation.

In theoretical models, the neurons that compose a winner-take-all (WTA)
network are usually organized as a simple linear map in which each unit
receives excitatory inputs from its neighboring units as well as an inhibitory
input that is proportional to the total activity of all units (Dayan & Abbott,
2001; Douglas & Martin, 2007). We use the term map to indicate that the ele-
ments of the WTA network are not functionally independent. Rather, their
activity depends on ordered neighbor connections. The positive feedback
effected by the excitory neighbor connections enhances the features of the
input that match patterns embedded in the excitatory synaptic weights.
The overall strength of the excitatory response is used to suppress outliers
via the dynamical inhibitory threshold imposed by the global inhibitory
neuron. Thus, the circuit can be seen as imposing an interpretation on an
incomplete or noisy input signal by restoring it toward some fundamen-
tal activity distribution embedded in its excitatory connections (Hahnloser
et al., 2000; Hahnloser, Seung, & Slotine, 2003). This selective amplification
can be steered in an attentional-like manner by introducing pointer neurons
in the excitatory feedback loop, which bias the WTA so that activity at the
preferred location “wins” even if the activity at another competing location
is larger (Hahnloser et al., 1999).

One drawback of the sWTA is that it is (for the parameters used here)
not hysteretic. The activity of the network relaxes toward zero when the
input is removed. However, to perform useful computation, the reaction
of a network to the same input should depend on the pattern of previous
inputs. Such state-dependent processing requires a hysteretic element that
is able to retain a history of previous states. One way to provide this history
is by inserting into the network attractors that remain stable in the absence
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of input. We show how pairs of sWTA circuits can be configured to provide
multiple states, which are different patterns of sustained discharge. These
states are stable in the absence of external input, and transitions between
states are driven by external signals. This property enables the network
to react differently to the same external signal depending on the current
state. We demonstrate this property by implementing a neural version of a
discrete finite automaton.

A discrete finite automaton (DFA) is a computational device that imple-
ments state-dependent processing of strings of input symbols. It comprises
a set of states (nodes), a transition function that describes the transitions
(edges) between states and their dependence on specific input symbols, and
a list of acceptable input symbols. The transition between the current state
and one of the allowable next states depends on both the current input sym-
bol and the current state. That is, the processing of input symbols is state
dependent. This DFA model can be used to define a language by deciding
which input strings of symbols lead to a particular final state (the accept
state). The set of all acceptable strings is defined as the language of that
DFA. DFAs can implement any language belonging to the class of regular
languages (Hopcroft, Motwani, & Ullman, 2000).

In this article, we describe simple rules to systematically construct an
arbitrary DFA using nearly identical recurrent maps. The significance of
this work is that it offers a method whereby the cortex could achieve a
broad range of sophisticated processing by only limited specialization of
the same generic neuronal circuit.

2 Results

2.1 Single Recurrent Map. The behavior of the neural state machine de-
pends on the properties of the recurrent map, and so we begin by reviewing
these (see also Abbott, 1994; Ben-Yishai et al., 1995; Hahnloser et al., 2000;
Dayan & Abbott, 2001; Douglas & Martin, 2007). Our recurrent map x con-
sists of N neurons with continuous-valued outputs. N − 1 of these neurons
are excitatory (x1..N−1), and one, xN, is inhibitory (see Figure 1). Each ex-
citatory neuron receives excitatory input from itself, its neighbors, and a
common inhibitory input (β1). Each excitatory neuron projects to the in-
hibitory neuron with strength β2. The inhibitory neuron does not connect
to itself.

For convenience, we choose a firing rate model (Dayan & Abbott, 2001)
for the recurrent map neurons. Then, in the simple case of self-excitation of
strength α (see Figure 1), the dynamics of each excitatory neuron i on the
map is given by

τ ẋi + xi = f (Ii + αxi − β1xN − Ti ), (2.1)
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Figure 1: Structure of a single recurrent map that is composed of a number
of excitatory units (x1–x5), and one inhibitory unit (x6). Each excitatory unit
projects to and receives input from the inhibitory neuron. Each excitatory unit
is also connected symmetrically to its neighbors as well as itself (connections
are shown for the example of x3 and x6). Note that the inhibitory unit x6 does
not connect to itself (no self-inhibition).

and the dynamics of the inhibitory neuron j is given by

τ ẋN + xN = f


β2

N−1∑
j=1

xj − TN


. (2.2)

Ii is a constant external input to unit i , which is usually Ii = 0, and
τ = 1. The firing rate activation function f (x) is a nonsaturating rectifi-
cation nonlinearity max(0, x). We also tested a nonlinearity of the form
log(a + exp(b(x + c))), where a , b, and c are constants, and obtained very
similar results. This nonlinearity has the benefit that it is continuously dif-
ferentiable, which is necessary for the analytic analysis of fixed points. We
will interpret the thresholds as possible control inputs, and so they are ex-
pressed as arguments f . However, these thresholds are usually the same for
all units T = Ti = TN. All integration was performed with Euler integration
with δ = 0.05, unless specified otherwise.

2.2 Amplification by Single Recurrent Map. Over a broad range of pa-
rameters, the recurrent map will linearly amplify a constant external signal
(see the appendix). The network is continually sensitive to its input, in the
sense that its output will relax toward zero when its input is removed (see
Figure 2A). The output follows the input over time, provided that I (t) > 0.
The amplitude of the steady-state output is the sum of a variable and a con-
stant component (see Figure 2B and equation 2.3). The variable component
is the input I amplified by gain G = 1

1+β1β2−α
(the slope of Figure 2B). The
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Figure 2: (A) Following application of an external input to one excitatory
unit, the network activity increases to steady amplitude. This activity relaxes
back to zero after the input is removed (α = 1.2, β1 = 5, β2 = 0.2, and T = 1).
(B) Steady-state amplitude of the output (bold lines) as a function of the input.
The amplitude of the output consists of a constant offset (provided by recur-
rence, flat lines) and amplification (slope of curve) of the input. Note that the
input amplitude needs to be I > T for the network to be activated.

constant component of the response (flat lines in Figure 2B) is independent
of the input current (provided that the input threshold is exceeded). How-
ever, it depends on G, as well as the threshold and the inhibitory coupling,
β1:

xi = Ii

1 + β1β2 − α
+ T(β1 − 1)

1 + β1β2 − α
. (2.3)

2.3 Combining Two Recurrent Maps. A single recurrent map consists
of multiple inhibitory and excitatory feedback loops, and it can thus, in
principle, give rise to oscillatory or chaotic activity (Strogatz, 1994; Wolfram,
1984). Here, we focus on a range of parameters that result in a steady state
whenever the external input is constant (for reasons that will become clear
later). The activity of such a single recurrent map relaxes to zero after the
input is removed. However, when two recurrent maps are combined by
some simple recurrent coupling, their activity can be sustained even in the
absence of input (see also Xie, Hahnloser, & Seung, 2002; Zhang, 1996). For
example, we combine two recurrent maps x and y, each of length N (see
Figure 3), and local connectivity described by the N × N weight matrices
Rx and Ry, respectively. Each excitatory unit is connected to its neighbors
with Ri j = exp (−σd2), where d is the distance between postsynaptic unit
i and presynaptic unit j . Here, σ = 1. Each excitatory unit also drives the
single inhibitory neuron of its map with RNi = β2 and receives input from
that inhibitory neuron with Ri N = −β1.
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Figure 3: Two recurrently coupled maps. Excitatory neurons are black and
inhibitory neurons white.

The performance of the recurrent maps depends on the loop gains for ex-
citation and inhibition (see the appendix). So, we simplify the calculation of
the excitatory gain by normalizing to α the excitatory connections received
by any unit. That is,

∑N
i=1 Ri j = α, so that α now sets the total potential

excitatory strength received by postsynaptic neuron i from all presynaptic
neurons j .

The connectivity between the two maps is described by a symmetric
weight matrix C . The weights of excitatory connections between units k
on both maps are set to C j j = γ exp(−σd2) for j = 1..N − 1, where d is the
distance between unit k and j . The inhibitory neurons of the two maps are
not connected (CNN = 0).

The R and C matrices of the pair of maps are combined to form the
overall weight matrix W:

W =
[

Rx C

C Ry

]
. (2.4)

Thus, W describes both the local connections of each map, as well as their
interactions (e.g., Figure 7). Using W, the dynamics of the entire system can
be described by

τ ż + z = f (u + p + Wz), (2.5)
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where bold and uppercase letters indicate vectors and matrices, respec-
tively. The vector z = [xy] describes the activity of all units of both maps,
and u is the external input. The input p is from transition neurons that will
be described later.

2.4 Stable Memory State with Two Coupled Maps. When two recur-
rent maps are recurrently interconnected by excitatory neurons with sym-
metric weights γ , there are a range of conditions (see the appendix) that
permit the overall network to retain stable, nonzero states in the absence of
input. The amplitude of the memory state of the excitatory units is given
by

xi = T(β1 − 1)
1 + β1β2 − α − γ

. (2.6)

This expression is similar (except for the γ ) to the constant offset term
described above for the single map (see equation 2.3). A memory state exists
if T > 0 and β1 > 1. From the steady state alone, it may appear sufficient
to have only one map (equivalent to γ = 0). However, γ > 0 is required for
reasons of the dynamics: only a nonzero value ensures that the memory
state is also an attractor (see the appendix).

The amplitude of the memory state depends on the product of the gain
of the network (compare equations 2.6 and 2.3) and the threshold T . This
perplexing result can be clarified by decomposing T into two different
thresholds Texc and Tinh for the excitatory and inhibitory units, respectively.
Then the steady-state potential becomes

xi = β1Tinh − Texc

1 + β1β2 − α − γ
. (2.7)

Now, it becomes clear that the memory state depends critically on an
inhibitory threshold. Provided β1 > Texc

Tinh
, the memory state exists only if

Tinh > 0, whereas the excitatory units can have a zero threshold Texc = 0
(see equation 2.7). Tinh is effectively thresholded disinhibition. This means
that recurrent excitation can grow with high gain, until the inhibitory thresh-
old is exceeded, so that the response of the network is stabilized. This ex-
plains why the inhibitory threshold controls the amplitude of the memory
state.

The memory state property is demonstrated in Figure 4B, using a net-
work with the following parameters: α = 1.3, β1 = 3, β2 = 0.2, T = 0.5, and
γ = 0.1. In this example, for simplicity, only self-excitatory connections are
used within each map. And we have plotted only the two units on maps x
and y that are recurrently connected (x3 and y3).

While the external input is applied, the x unit output is equal to the an-
ticipated steady-state activation (see Figure 4B) described by equation 2.3.
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Figure 4: Two connected recurrent maps maintain stable states in the absence of
external input. (A) Illustration of connectivity. Maps are recurrently connected
by γ . Each map has one inhibitory neuron (larger circles). One neuron on each
map (here x3, y3) is symmetrically connected to one another with weight γ = 0.1.
(B) Input is applied to a unit on map x that is recurrently connected to map y
(here x3). After offset, the network relaxes to the memory state. (C) Dynamics
of the two units x3 and y3, shown in phase space for different input amplitudes,
applied to neuron x3. The red dots denote points (ẋ = 0 and ẏ = 0) that are
stable attractors in the absence of input. The blue dots are stable attractors
in the presence of input. After the input of any amplitude is withdrawn, the
network converges to the common red attractor. The vectors indicate the value
of the derivative ẋ3 and ẏ3. Here, δ = 0.01 (numerical integration).

The output of the y unit is smaller because it does not receive an external
input: its response arises from the input it receives from other units in the
overall network. When the driving input is removed, the network relaxes to
a nonzero stable state where xi = yi and xN = yN (excitatory and inhibitory
neurons, respectively). Thus, the network exhibits state (or memory) by
maintaining persistent (and constant) output. The amplitude of this state is
described by equation 2.6. The amplitude of the sustained response is in-
dependent of the amplitude of the input: the same memory state is reached
after various amplitudes of input are removed (see Figure 4C).

2.5 Robustness to Noise. Recurrently connected networks can be very
sensitive to noise, particularly when these networks lack inhibition. How-
ever, recurrent maps (which by definition have inhibition) are very robust
against noise. We confirmed this robustness in the coupled maps by in-
troducing two kinds of signal variability: readout (output) and synaptic
(weight) noise. Output noise was added by an additional term in equa-
tions 2.1 and 2.2:

τ ẋi + xi = f (αxi + Ii − β1xN − T + N (0, σ )). (2.8)

We tested the same network as described above (see Figure 4B) while
varying the standard deviation of the noise. Then, we determined whether
the network reached its memory state by calculating the mean steady-state
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Figure 5: Stable states can be maintained in the presence of noise. All parameters
are equal to Figure 4. (A) Mean steady-state amplitude as a function of the
amplitude of readout noise. The noise amplitude (SD) is specified relative to
the steady-state amplitude. The network can tolerate up to 15% readout noise.
(B) Network activity in the presence of weight noise (γ , SD of noise equal to 0.1).
Compare to Figure 4B. (C) Mean steady-state amplitude as a function of weight
noise. In this example, noise was added only to γ . The network can tolerate
noise amplitudes (SD) of up to 100% of the original weight of γ . Here, δ = 0.01
(numerical integration). (D) Percentage of trials where the memory state was
maintained successfully as a function of the amplitude of noise applied to all
weights of the network simultaneously. The network can tolerate noise with a
standard deviation of up to 30% of the nominal value of the weights.

amplitude after the external input was removed (time steps 10,000–20,000
in Figure 4).

First, we evaluated robustness to readout noise by adding variable
amounts of noise to the output of each unit. The noise for each unit was
drawn independently every τ

10 time steps. The exact sampling interval of
the noise is not critical, provided that it is significantly larger than the in-
tegration time constant and significantly smaller than τ . The results show
that the network can tolerate readout noise with a standard deviation of up
to approximately 15% of the steady-state amplitude (see Figure 5A). If the
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noise amplitude exceeds this value, the network relaxes to zero instead of
the memory state after removal of the input. Note that the readout noise is
also equivalent (see equation 2.8) to random variability of the threshold T .

Next, we evaluated robustness to synaptic noise. Noise was added to the
weights by setting j = j + N (0, σ ) for j ∈ [α, β1, β2, γ ]. New values of the
noise were drawn every τ

10 time steps from a truncated normal distribution
(bounds were set to ± j for j ∈ [α, β1, β2, γ ] to prevent negative weights).
We varied the standard deviation of the noise (σ ) and quantified robustness.
σ was set such that it equals a certain percentage of the nominal value of
the parameter value. For example, if noise is set to 10% and the nominal
value of the parameter under investigation is 2.0, the standard deviation of
the noise equals 0.2.

First, we evaluated synaptic noise by adding noise to one of the four
weights α, β1, β2, γ only. Note that this description refers to the type of
weight, not an individual weight. Thus, for example, if noise was added
only to α, different noise values were added to each instance of α in the
entire network. For demonstration, we focus here on the weight γ , but
similar results apply to the other weights. We found that the network can
tolerate weight noise with a standard deviation of up to 100% of the original
(noiseless) γ value (see Figures 5B and 5C). Similar amounts of noise were
tolerated by the remaining weights.

Next, we added synaptic noise to all weights simultaneously. Indepen-
dent noise was added to each instance of each weight. We found that the
network is very robust to noise. When we ran 100 trials for each level, the
memory state was stable for all trials up to 30% (see Figure 5D) noise. How-
ever, for even higher noise levels (60%), less than 10% of trials failed (see
Figure 5D). Thus, the network can tolerate up to 30% noise on all weights.

Another source of synaptic noise not explicitly tested here is frozen
weight noise. That is, the weights differ from their specified values, but this
difference does not change over time. This kind of noise is particularly rele-
vant for implementing circuits in analog hardware (Pavasovic, Andreou, &
Westgate, 1994; Serrano-Gotarredona & Linares-Barranco, 1999). Typically,
the effective weight is approximately 30% to 50% of the nominal (specified)
weight (Neftci, Chicca, Indiveri, Slotine, & Douglas, 2008). This noise is
introduced at the time of fabrication and is fixed. Our circuits are robust
to such noise as long as the resulting parameters are still within the valid
range for stability (see the appendix). Robustness to such noise can be in-
creased by choosing nominal parameter values, which lie in the middle of
the permitted ranges rather than on the edge.

2.6 Controlled Transitions Between Multiple Memory States. A DFA
consists of nodes and edges (representing the states and transitions, respec-
tively). So far we have described only how coupled maps can be used to
construct a network with multiple stable attractors that can implement the
DFA nodes. Now, we show how the transitions between these embedded
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Figure 6: Transition neuron (p1) that, when activated by input s, leads to a
switch to a different memory state. Only connections between the two maps are
shown. All local connectivity (α, β1, β2) is as shown in Figure 3.

states (the DFA edges) can be induced by transiently applying a short pulse
of input to a currently unexpressed target state. That input causes the net-
work to switch from the current state to the target (pulsed) state.

We implemented this transition mechanism using a variant of the pointer
neurons that have been used previously to bias the competition on a single
recurrent map (Hahnloser et al., 1999), for example, to enable the winning
stimulus to emerge at a preferred direction rather than the point of max-
imal input. A pointer neuron is a unit that is symmetrically connected to
the excitatory units on the recurrent map. Thus, the pointer neuron both
receives input from and sends output to the excitatory units. This connectiv-
ity of the pointer neuron is nonuniform. Previously, a gaussian connectivity
profile was used to selectively bias activity in a particular region of the
excitatory map (Hahnloser et al., 1999). Here, we apply the same basic idea
to implement more specialized transition neurons (TNs; see Figure 6 and
equation 2.9). These units temporarily bias the competition such that the
currently maximally active unit (the current state) loses the competition in
favor of the next (target) state. They combine activity from map y with the
external input s. If the appropriate members of y and s become active, the
transition neuron becomes active and initiates the required state transition:

τ ṗ + p = f (Py + s − Tp). (2.9)

P describes the connectivity between the M TNs and the activity of the
y map. It has dimensionality M × N, where M is the number of transitions
(edges) of the DFA and N is the number of excitatory units on the map.
TNs receive no recurrent input (Pii = 0). Each TN i receives input from
the excitatory unit j that represents the state from which the transition
originates (Pi j = φ). Similarly, the TN sends its output to the unit k that
represents the state where the transition leads to (Pik = φ). The range for
possible values of φ is derived in the appendix.
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Figure 7: Short bursts of input induce rapid transitions to different states. Two
units (x3 and x6) are recurrently connected. (A) A short burst of input to either
x3 (blue) or x6 (magenta) elicits a rapid transition. The peak of activity remains
at the same location after removal of the input (the memory state). (B) The
weight matrix W of the network. Positive weights are shown in color, negative
weights in gray scale. The recurrent excitatory connectivity can be seen on the
main diagonal. The connections between the map can be seen on the upper
and lower lines parallel to the diagonal. (C) Phase space representation of the
dynamics of the first switch (red to green). The blue and red dots indicate steady
state while input is applied and in the absence of input, respectively.

Tp > 0 is a constant threshold that suppresses TN output in the absence
of external input. The external input s represents the input symbols. Every
TN that represents the same symbol receives the same input. A short pulse
of activity on that input signals the arrival of that particular symbol. Tp is
set equal to the steady-state value reached by the map units when external
input is applied (see below).

We demonstrated this transition mechanism in a network composed of
two recurrent maps of N = 10 units, in which we embedded two states by re-
currently connecting units 3 and 6 of each map with weights γ . Thus, C j j =
γ for j ∈ [3, 6]. The other parameters are indicated in Figure 7. The network
(see Figure 7) has two stable attractors with peaks of activity at x3 and x6.

The behavior of the network is shown in Figure 7. At first, the network
is quiescent. After a short initializing pulse of activity to x3, the network
relaxes to a peak of activity at unit x3 that is sustained even after the input
has been withdrawn. A short pulse of input applied to x6 elicits a transition
from the current state x3 to the target state x6. The state switch occurs
because of the competitive nature of the WTA. Transiently, the total input to
x6 is larger than to x3. Because of this, the WTA selectively amplifies x6 and
suppresses x3. The amplitudes of the steady states during application of the
input as well as during the memory period are described by equations 2.3
and 2.6.

Thus, two recurrent maps can be used to construct stable attractors that
provide persistent output in the absence of input. For convenience, we have
shown here only the simplest case of two states. However, additional states
can be embedded easily by inserting the necessary additional weights in
the connection matrix C (lower left and upper right quadrants in Figure 7).
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2.7 Implementation of a State Automaton Using Coupled Recurrent
Maps. The multiple stable states embedded in the coupled maps, and the
transitions between them, can be utilized to implement a DFA. The DFA
operates as follows. Starting in an initial state, it reads a sequence of input
symbols. For each successive symbol in the input sequence, the DFA transi-
tions to a next state that is determined by the DFA’s transition function. The
state that the DFA finds itself in when the input is exhausted determines
the DFA’s evaluation of the input sequence. If, on exhaustion of input, the
DFA is in an “accept” state, then the input sequence is deemed “accepted”;
otherwise it is deemed rejected (Hopcroft et al., 2000).

We implemented the neuronal DFA as follows. First, we embedded the
same number of attractors as the DFA has states. To achieve this, we created
two recurrent maps consisting of mN + 1 units each (m is the number of
states and N the number of units per state). The number of units N required
to represent a state is determined by the width σ of the connection profile
between the two maps (see equation 2.4). For each state in the DFA, one pair
of units is designated to represent that state (here, for a simple example of
only two states, we added N = 3 units per state; the state q0 is represented
by x3, y3 and q1 by x6, y6). Each unit that represents a state is recurrently
connected to its counterpart on the other map (here, x3 to y3 and x6 to y6)
with weight γ . The lateral connectivity on each map is the same as detailed
above.

Next, a transition neuron (TN) is added for each possible state transition.
Each TN receives two inputs: one external (the input symbol that initiates
the transformation) and one internal (the state from which the transition
originates). Either or both of these inputs may be zero, in which case the
output of the TN is bound to be zero, so that no transition will occur. To
achieve this behavior, each TN receives a constant negative (inhibitory)
input −Tp that prevents it from becoming active in the absence of input,
even when the network is currently in the preferred state of the current
TN. This arrangement also prevents a state transformation if a symbol is
received for which there is no defined transition from the current state.

The output of the TN is connected to the unit on map x that represents
the target state that the transition leads to. While activated, the TN output
will bias the competition on the coupled maps, encouraging the new state
to become dominant. All TNs that represent the same symbol receive the
same input. Here, the amplitude of the external input to the TNs is set
equal to Tp. The value of Tp is chosen such that it is somewhat larger than
the steady-state amplitude reached by the map neurons in the presence
of constant input (any value larger than xi as calculated by equation 2.3
is allowed). Thus, the overall network has as many inputs as there are
distinct symbols. The size of the network (in terms of number of units)
scales as O(m + n), where m is the number of states and n the number
of state transitions. Thus, the network scales linearly with the number of
states. While it might be possible to represent states by a combination of
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Figure 8: Implementation of a DFA using recurrent maps. (A) DFA that im-
plements the language (ab*a)*ab* (right) and its recurrent map implementation
(left). (B, C) Processing of the sequence aaabbaa. After a short burst of initializa-
tion (blue), no external input is applied to the network except for the symbols.
The recurrent net switches to the appropriate state (B), and the appropriate
pointer neuron is activated (C). (D) Illustration of the state switch from q0 to
q1. Activation of the pointer neuron induces a transition to the next state (1).
After offset of the pointer neuron input, the network settles to the stable state
q1 (2). After the network transitions to another state, activity returns to the
baseline state (3). (E) Example of a randomly generated minimized DFA with
eight states. Example strings that lead to the accept state are shown on the right.

units (and thus scale better), we opted here for an explicit representation of
each state for purposes of analysis.

2.7.1 Example DFA. We demonstrated these properties by constructing a
simple DFA that implements the regular language [ab*a]*ab* (see Figure 8A).
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The coupled map has two states (q0, q1). Its input alphabet is the two
symbols a and b, and it has the transition functions q1 = (q0, a ), q0 = (q1, a ),
and q1 = (q1, b). The example input string aaabbaa is a valid string under this
language and brings the DFA to the accept state q1 (represented by x6). In
this more sophisticated example of a coupled map, neighbor connections are
used between the local excitatory neurons, and between the cross-coupled
populations.

The dynamics of x3 and x6 during the processing of the input string
confirms that the neuronal DFA executes each state transition correctly (see
Figure 8B). The dynamics are further illustrated by plotting the activity on
map y as a function of the activity on map x (phase space, Figure 8D).
Each unit xi that represents a state of the DFA has two stable attractors
(where ẋi = 0), in the absence of input (see Figure 8D, red dots). Before
processing the input string, the DFA must be initialized to its initial state
by a short external pulse (blue in Figure 8B). Note that such neurons, which
indicate the start of a sequence, have been observed in the cortex (see
discussion). Thereafter, short pulses of input are applied to the appropriate
TNs, depending on whether the symbol a or b is present (black diamonds
in Figures 8B and 8C). The duration of the external inputs, representing
the symbolic inputs, needs to be long enough for the network to converge.
Here, we used 15τ (300 iterations for a δ = 0.05). The number of iterations
necessary for the network to execute a state switch as well as to relax after
removal of the external input does not depend on the number of states (see
the appendix for a calculation) or on the number of TNs. However, it does
depend on the parameters of the network.

2.7.2 Implementation of DFAs of Arbitrary Size. So far, we have demon-
strated how to implement a DFA with two states and four transformations
using the coupled maps. Is it possible to implement DFAs of arbitrary size
using the same construction rules? To facilitate the construction of arbitrary
DFAs, we have developed software that automatically converts a DFA con-
structed in a graphical utility (JFLAP) (Rodger & Finley, 2006) into two
dynamically coupled maps.1 We used this software to generate random
DFAs using the method described in Bongard and Lipson (2005). We used
a standard algorithm (Hopcroft, 1971; Hopcroft et al., 2000) to minimize
DFAs with respect to the number of states used to represent the language
represented by the random DFA. The random DFAs were automatically
converted to a weight matrix for the two WTAs and their interactions (the
states), as well as the connections of the TNs.

The weight matrix was constructed using the following rules: (1) add a
few units (here, we used five) to both maps for each state; (2) add one TN

1Source code is available on the first author’s Web page or can be requested by e-
mailing the authors.
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for each transformation, and connect them appropriately; and (3) connect
each state in the weight matrix as described above. How many units are
added per state (here, five) depends on the width of the local connectivity
(see σ in section 2.3; the bigger σ , the more units per state need to be
added such that the activity bumps of two states do not overlap). The
generated DFA was then evaluated in terms of its ability to correctly classify
randomly generated strings. Like the standard DFA, the coupled map DFA
was deemed to classify a string correctly (or “recognize” the string) if, after
all input symbols have been processed, the DFA reached its accept state.
If any other state was reached, the processing was incorrect (unless the
input was not a string of the language). We tested random DFAs of up to 40
states with 100 random strings each and found that all these strings were
processed correctly (an example is shown in Figure 8E).

2.7.3 Robustness. Long chains of excitatory neurons are capable of pro-
ducing sophisticated patterns of activity, as exemplified by synfire chains
(Abeles, 1991). However, the more neurons that follow each other in this
feedforward arrangement, the more sensitive the output becomes to the
input. This is because errors accumulate and propagate in those architec-
tures. Does this error accumulation occur in our architecture? If yes, then
the network should fail to process long sequences of symbols. While the
transition executed for each input symbol depends on only the current state,
the current state includes information about all previous input symbols (it
fulfills the Markov property). Thus, the appropriate test is whether the net-
work can reliably process long sequences of input. If errors accumulate, the
network behavior should break down beyond a certain string length.

Two principal actions of the network are sensitive to noise: keeping the
memory state (see section 2.5) and executing a state switch. Here, we eval-
uate both simultaneously. Without the presence of artificial noise sources,
we found that long random strings (we tested up to 30 symbols) are pro-
cessed with the same reliability as short strings. Thus, numerical errors of
the integration do not accumulate. Next, we added output or synaptic noise
as described in section 2.5. The performance of one particular network as
a function output and synaptic noise levels is shown in Figure 9 (see the
figure legend for network parameters). This particular network can tolerate
output noise of 8% of the steady-state amplitude, as well as approximately
10% weight noise. After the noise threshold is reached, performance de-
grades rapidly and quickly reaches chance performance (four states; thus,
25% in this case). The level of noise that a particular network can tolerate
depends on the parameters of the network (i.e., the weights, the number of
units per state), the distribution of the noise, and the sampling frequency
of the noise (see Figure 9C for an example). Also, if αi > 0 (for i > 1), ro-
bustness to noise depends on the spread of connectivity (determined by
σ ; see section 2.3) as well as the number of units dedicated to a particular
state. The bigger σ , the more units are required to represent a particular
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Figure 9: Illustration of noise robustness of a network implementing a ran-
dom DFA with four states (chance performance is 25%). The parameters of
the network are α = 1.3, β1 = 3, β2 = 0.2, γ = 0.1, φ = 0.88, T = 0.5. The inte-
gration time constant is δ = 0.05. Networks were fed random strings of length
4 to determine whether the network reaches the correct state. (A) Performance
for different levels of output noise (applied to all units). The steady-state am-
plitude of the network was 5.0; thus, 10% noise corresponds to an SD of 0.5.
(B) Performance for different amounts of weight noise. Noise was applied to
all weights. The SD of the noise was set relative to the nominal weight of each
weight (y-axis). (C) Network performance for output noise and different values
of α (1.2 versus 1.3). Note that the larger value of α results in a more noise-robust
network for this configuration. All other parameters are the same.

state. Whether this increases or decreases reliability depends on the other
parameters of the network. Also, it is beneficial to choose the weights such
that they lie in the middle of the permitted values rather than on the edge.
This ensures that noise does not cause instabilities in the network.

This result demonstrates one of the crucial aspects of computations with
WTAs: states are stable no matter what the initial conditions. Thus, noise
does not accumulate over time because the signal is restored (the noise is
rejected) at every step. This is the reason that previous approaches, using
saturating neural networks (see section 3), cannot process long strings:
performance degrades even if no noise is added (due to numerical errors).
No matter how accurate the feedforward network, the performance of long
string acceptance eventually degrades. In contrast, this problem does not
exist for the DFA implemented using WTAs. A similar strategy has also
been used to make synfire chains robust to noise (Diesmann, Gewaltig, &
Aertsen, 1999).

3 Discussion

It has been known since the foundational report of McCulloch and Pitts
(1943) that recurrently connected neuronal networks have the properties of
a finite state machine. Subsequent work has elaborated and clarified those
properties—for example, Minksy (1967) from the point of view of general
computation; Grossberg and Hopfield from stability (Cohen & Grossberg,
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1983; Hopfield, 1984); and Elman and Forcada (Carrasco, Forcada, Valdés-
Muñoz, & Neco, 2000; Kremer, 1995; Elman, 1991) from the point of view of
network computation. In general, however, these approaches have assumed
inherently reliable neurons with saturating neuronal activation functions.
By contrast, biological cortical neurons are subject to various sources of
noise and operate well beneath saturation in the linear range of their acti-
vation function (Douglas et al., 1995).

This letter demonstrates that robust state-dependent processing can
be embedded in networks of neurons whose activation function is both
nonsaturating and nonlinear (thresholded). Consequently, they can depend
on only their dynamics of inhibition, excitation, and thesholding for their
noise resistance and stability. Moreover, we have provided simple rules that
permit the systematic design and construction of a (nearly) arbitrary neu-
ronal state machine composed of nearly identical recurrent maps. We claim
“nearly arbitrary” because for practical reasons, we tested the automatic
design process only out to 40 embedded states (because it is not easy to find
a minimized random DFA consisting of more than 40 states) and “nearly
identical” because some specific connections are required to implement a
specific state machine within an otherwise generic neural architecture.

Essentially we construct a multistable network that embeds a number
of states by coupling two recurrent maps whose weights have been set to
provide soft winner-take-all (sWTA) performance. The two sWTAs have
identical connectivity except for a small fraction of symmetrical (recurrent)
cross-connections between them that are used to embed the required states.
This recurrent coupling between the maps allows them to sustain (remem-
ber) their current state in the absence of input.

The network can be switched from its current state to another of its states
by applying a short burst of input. The required transitions between states
are affected by a class of neurons that activate the new state, conditioned
on the current state and also an external input symbol. Thus, the network’s
reaction to the input is state dependent.

A class of transition neurons drives the state transitions by combining
the current state of the network (memory) with an input symbol to excite
the next state of the network. The transition neurons are similar to the
pointer neurons described by Hahnloser et al. (1999), which they used to
steer feedback over the entire range of a single map of neurons. For ex-
ample, pointer neurons are able to bias WTA behavior in favor of inputs at
certain locations of the map, so that activity at these locations wins the WTA
competition even if they are numerically smaller than activities at others
(which would otherwise win an unbiased WTA competition). In that appli-
cation, the pointer neurons participate directly in the feedback between the
neurons of the WTA and so participate directly in the ongoing computation
of the WTA. By contrast, our transition neurons are activated only when a
new input symbol is processed. As soon as the state switch has occurred (or
no input symbol is applied), the transition neurons become inactive again.
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In our network, this selective activation is due to inhibition that is continu-
ously applied to all transition neurons. A transition is triggered only when
the combined activity of the current state and the external input exceeds
the inhibitory threshold.

The networks described here can function over a wide range of weights
(as long as certain conditions are met; see the appendix for a summary). Of
particular interest is that the coupling constant γ between the two recurrent
maps must be small compared to the local recurrent excitatory weights
(α � γ ). Thus, a very small weight is sufficient to couple two independent
WTAs such that they bias each other’s winner. This is well in line with our
previous finding that the sensory excitatory input to pyramidal neurons in
layer 4 of visual cortex is minor compared to excitatory input from other
neurons of the same layer (Binzegger et al., 2004).

Our model uses a single global inhibitory neuron per map to implement
the competitive component of the sWTA. Which excitatory units compete
with each other is determined by whether they share common inhibition.
Experimental evidence exists for inhibitory feedback loops on many differ-
ent scales, such as local lateral inhibition and diffuse inhibitory feedback
mediated by the thalamus (Douglas & Martin, 2004). Such feedback loops
can enforce competition and thus result in WTA behavior. In some struc-
tures, it has been experimentally demonstrated that such global (diffuse)
inhibition exists and that they serve to enforce WTA-type competition (Kurt
et al., 2008; Baca, Marin-Burgin, Wagenaar, & Kristan, 2008; Tomioka et al.,
2005). WTA networks can, however, also be implemented using more local
forms of inhibition (Yuille & Grzywacz, 1989). Global inhibition necessarily
makes the weight matrix asymmetric, and so it is difficult to derive an-
alytically the conditions on the weights that guarantee convergence. One
approach to this difficulty has been to assume that, locally, inhibition is
infinitely fast (Grossberg, 1973; Wersing, Beyn, & Ritter, 2001). However,
we wanted to keep our network physiologically plausible and so could
not accept this assumption. Seung (Seung, Richardson, Lagarias, & Hop-
field, 1998) has suggested a Lyapunov function for inhibitory-excitatory
networks similar to those used here. His function requires the inhibition to
be symmetric (β1 = −β2). However, if a WTA is to function properly, it is
crucial that this is not upheld, and so we could not use Seung’s approach.
Instead, we used linearization at steady states and numerical simulations
to confirm that our approach is capable of implementing arbitrary DFAs.

We aim to model state-dependent processing of external inputs. Our
network thus requires an explicit external input to trigger a transition to
the next state. This transition is state dependent. These external inputs
could be the result of some action performed at every state and thus would
not be available in advance. We used the processing of a list of symbols
as an abstract model of this behavior. Another application of sequential
transitions between states has been the memorization of sequences. In this
case, an external stimulus would trigger the automatic replay of the entire
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sequence without requiring any further external inputs. An example is
winnerless competition, where networks are constructed such that each
state is a saddle point with only one unstable direction, which leads to
the next stable point (Seliger, Tsimring, & Rabinovich, 2003; Rabinovich
et al., 2001). While this was not our principal aim, our network could also
be enhanced to allow autonomous transitions between states. This could
be achieved by replacing the TNs with units that connect different states
with each other (i.e., the input to such a unit is a state on one map and the
output another state on another map). When appropriate time constants are
used, such a network would autonomously transition between a number
of states, given that it is placed in the appropriate initialization state.

There have been previous approaches to systematically embed an arbi-
trary DFA into neural networks. However, they have generally used unre-
alisitic assumptions. For example, the stability of the DFA networks of Om-
lin (Omlin & Giles, 1996; Giles et al., 1992) and Kremer (1995) depends on
the saturating nonlinearity, which we have argued is not a realistic physio-
logical requirement. Other approaches use Elman-type networks. But these
networks assume a memory layer from which activity can be artificially
copied at every iteration (Kremer, 1995). Thus, the network itself has no
memory. These approaches are not physiologically plausible. By contrast,
our approach requires no artificial operations (like delay lines), the weights
can be easily set, and their settings are independent of the DFA.

Another approach has been to project the input into a high-dimensional
space using randomly connected units (the liquid state machine, LSM)
(Maass, Joshi, & Sontag, 2007; Jaeger & Haas, 2004). Readout units that re-
ceive input from all the units in the pool are then trained to approximate
the required output states. However, LSMs have fading memory, and so
DFAs implemented in this way can depend on only a restricted number
of past inputs (Natschlager & Maass, 2002). This deficiency can be reme-
died by training readout units to represent the current state and feeding
their activity back into the pool so as to maintain their current state. This
circuit can implement arbitrary DFAs (Maass et al., 2007). However, that
approach relies on supervised learning of the weights of the output units
without modification of the units in the liquid. By contrast, our network
can be constructed explicitly, entirely without learning, and so allows de-
tailed understanding of the connectivity that underlies its operation. One
advantage of the liquid approach is that relatively few weights (connections
to the readout) need to be changed, while all others can be held constant.
This property is also true for our approach. The entire connectivity on the
maps is stereotyped and does not depend on the particular state machine
implemented. Adding a new state requires only connecting at least two
new units reciprocally between the two sWTAs, with weights γ .

The weights of the connections in our network have no plasticity (they
are static). The only changes in dynamics that can occur are thus due to
activity. Plasticity occurs on a slower timescale than changes in activity,
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and it would thus introduce a second, slower, timescale of dynamics into
the system. Such interactions between fast (activity) and slow (plasticity)
dynamics in the same networks can result in complex dynamics. One of the
questions posed by the introduction of plasticity is how multistability can be
preserved (rather than convergence to a single stable state). For our network,
this remains to be explored. However, for other networks, it has been shown
that configurations exist that allow such multistability to persist in the
presence of plasticity (Kalitzin, van Dijk, & Spekreijse, 2000). We designed
our network such that only a small number of weak connections need to be
modified to erase or introduce stable states. The remaining connectivity is
homogeneous and independent of function. Given multiple recurrent maps
with no (or random) coupling between them, it is thus imaginable that a
simple plasticity rule can be found that learns the necessary states and the
transitions between them.

Sophisticated behavior requires that a reaction to a particular stimulus
is state dependent and so requires working memory. The frontal cortex is
known to be crucial for this function, and it is known to contain neurons
that respond differently, according to behavioral state. One well-studied
example is the generation of memory-guided sequential motor movements
(Fujii & Graybiel, 2003; Shima & Tanji, 2000; Mushiake, Inase, & Tanji, 1990;
Barone & Joseph, 1989). During execution of this task, there are two main
classes of firing patterns in the supplementary motor area (SMA) (Shima &
Tanji, 2000). One class of neurons fires before, during, or after a particular
movement is executed, regardless of where in the sequence it is. Another
class fires in response to a particular movement, but conditionally so: only
if the movement is at a particular position in the sequence or if a particular
movement was executed before. Of particular interest are two subclasses
of these latter neurons. The first subclass corresponds to our current state
neurons and fires for a particular location (e.g., second) in the sequence. The
second subclass fires between executions of movements and is conditional
on the previous and the next-to-be-executed movement (Shima & Tanji,
2000). They correspond to the transition neurons in our network.

Neurons related to the execution of state-dependent actions have also
been described in the prefrontal cortex. For example, some prefrontal units
of nonhuman primates fire prominently only at the end of the correct ex-
ecution of a complex sequence of motor actions (Fujii & Graybiel, 2003).
In analogy with our DFA network, these neurons could indicate that the
accept state has been reached. Alternatively, they could signal the return to
the initial (start) state.

Another important property of our network is that it combines the DFA
state property with analog sensitivity: the degree of output activation of
the state neurons can be modulated by external input. This is also true dur-
ing the memory state when no external input is present. Then a positive
signal, Tinh , applied to the inhibitory neuron can modulate the amplitude
of the output without causing the network to leave the memory state. If
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Figure 10: Demonstration of state-dependent routing. (A) Illustration of a pos-
sible network architecture. States x3 and x6 represent the two possible states
of the network. External inhibitory input g(t) is applied to the inhibitory unit.
(B) An analog signal applied to the inhibitory neuron (Tinh) appears only at the
unit representing the current state. Depending on the current state, the exter-
nal signal appears only at the unit representing state 1 (red) or state 2 (green).
Here, the effective Tinh is plotted, which is composed of the static nonzero firing
threshold (offset from zero) and the external input, which varies as a function
of time. Note that the output oscillation is not generated by the network but
rather is a reflection of external input.

Tinh(t) = g(t) is a function of time. The network output will vary according
to the function g(t), while the network is in the memory state. Our network
thus combines the processing of digital (the states) and analog (the exter-
nal input) signals (Hahnloser et al., 2000). One possible application of this
feature is state-dependent routing of arbitrary continuous signals. In this
case, the signal to be routed would be supplied to the inhibitory neuron,
and its evoked output would be visible only at those excitatory neurons
representing the current state. Thalamocortical input is known to project
directly to inhibitory neurons (Swadlow, 2002). Thus, the routed input sig-
nal (provided to the inhibitory neuron) would be visible only to neurons
downstream from the current state neurons. When the state changes, the
analog signal will be routed to another set of downstream neurons (an ex-
ample is shown in Figure 10B). Modification of the inhibitory neuron firing
threshold (i.e., by an additional input; see Figure 10A) can also be used to
dynamically enable and disable the memory state. This, for example, can
be used to implement a conditional working memory. By default, Tinh = 0.
Only if the current stimulus is required to remain in working memory is
Tinh > 0. Also note that this feature can be utilized to implement a decaying
memory. By default, the persistent activity in our network does not decay
as a function of time: given no external perturbations, the network remains
in the memory state forever. This is clearly not desirable for some func-
tions, such as working memory. One way to introduce working memory
is to continuously decrease Tinh relative to stimulus offset. This could, for
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example, be implemented by an additional excitatory neuron (with self-
excitation) that feeds into the inhibitory neuron.

Our network performs state-dependent computations because it has
multiple memory states. Here, we chose to implement this ability by re-
currently connecting two maps. Each of the two maps has homogeneous
local excitatory connectivity and one global inhibitory unit. While a single
map alone can have nonzero steady states (see equation 2.6), this state is
usually not stable. Only by connecting two maps (γ > 0) can the stability
of the memory state be guaranteed (also see the appendix). Other recur-
rent connectivity patterns (such as multiple recurrent loops with different
delays) that result in memory states are certainly possible and remain to
be explored. We chose the coupled map configuration because it requires
only the replication of a simple circuit (a map) and the addition of a few
(numerically small) connections between the maps and so offers a method
whereby the cortex could achieve a broad range of sophisticated processing
by only limited specialization of the same generic circuit.

Appendix: Derivations, Stability Analysis, and Valid
Parameter Ranges

A.1 Constraints on Parameters. We derive the steady-state values for
various configurations of the network using linear equations of the form
f (x) = x. For simplicity, we assume that only α1 > 1, whereas all other
αi = 0 for i > 1. The following equations describe the steady state reached
after a sufficient number of iterations. During the dynamic part of the sys-
tem’s activity, some values of xi might be zero, and the equations are thus
not valid. The same approach as used here can, however, also be applied
to this situation by replacing the rectification function with a continuously
differentiable function of the form f (x) = log(a + exp(b(x + c))) (a ,b,c are
constants).

Also note that the approach presented here is valid if the network con-
tains units with f (x) = 0. In that case, these units are effectively nonexistent
and can be ignored for purposes of steady-state analysis. As long as the
subset of active units f (x) > 0 remains constant, this subset can be ana-
lyzed separately using the methods described here (i.e. piecewise analysis;
Hahnloser, 1998).

A.2 Constraints for Bounded Map Activity for Constant Input I and
T = 0. First, we define the constraints for bounded activity for constant
input Ii to unit i only (I j = 0 for all j �= i) and T = 0. Steady state implies
ẋ j = 0 for all units j = 1..N on the map. Also, xN > 0 (inhibitory neuron)
and xi > 0. Solving the system of equations described by equations 2.1 and
2.2 for xi results in

xi = Ii

1 + β1β2 − α
. (A.1)
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Thus, the recurrent network amplifies the input by a factor of 1
1+β1β2−α

at
steady state, provided α < 1 + β1β2.

A.3 Constraints for Bounded Map Activity for Constant Input I and
T > 0. Next, we define the steady-state value for constant input in the case
of T > 0. Solving the system of equations with this constraint for xi results
in

xi = Ii + T(β1 − 1)
1 + β1β2 − α

. (A.2)

This equation describes the steady-state value if T > 0 for any value of Ii .
One additional constraint added by this solution is that β1 > 1.

Next, we describe the same two steady states for the case of two re-
currently coupled maps x and y (see Figure 3). Coupling is symmetric with
weight γ . Here, we assume x2 and y2 are connected with γ > 0. This assump-
tion changes the dynamics of the excitatory neuron but not the inhibitory
neuron:

τ ẋi + xi = f (αxi + γ yi + Ii − β1xN − T). (A.3)

A.4 Constraints for Bounded Map Activity for Constant Input I and
T = 0. Solving the new system of equations (see equations A.3 and 2.2) for
T = 0 results in

xi = Ii

1 + β1β2 − α − γ 2

1+β1β2−α

. (A.4)

Defining K = 1 + β1β2 − α, the amplification factor of the recurrently
coupled map is 1

K− γ 2
K

. Thus, the gain is well defined when γ 2 < K .

A.5 Constraints for Bounded Map Activity for Constant Input I and
T > 0. We continue to assume K = 1 + β1β2 − α. Solving the same system
with the constraint T > 0 results in

xi = K Ii + T(γ + K )(β1 − 1)
K 2 − γ 2 . (A.5)

This equation describes the steady-state potential reached for constant
input and T > 0. It consists of two components. The first term is the input
multiplied by the gain. The second term is constant additional input that
is provided by recurrent connections from other units of the network. The
effect of this second term remains even after the input has been removed
(I = 0; see below).
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A.6 Existence of Memory State. A memory state exists if the excitatory
neurons on both maps representing the states are nonzero (xi > 0, yi > 0),
the inhibitory neurons on both maps are nonzero (xN > 0, yN > 0), and if
a steady state is reached: ẋ = 0, ẏ = 0. Also, if the steady state is reached,
xi = yi for the units i representing the stable state (connected by γ ).

Setting I = 0 (no external input) in equation A.5 results in

xi = T(β1 − 1)
1 + β1β2 − α − γ

. (A.6)

This equation describes the amplitude reached by the excitatory units.
A memory state exists only if T > 0 and β1 > 1. As also seen previously,
1 + β1β2 > α + γ . Note that the absolute value of the memory state is inde-
pendent of the previously applied input I , that is, it is entirely determined
by the structure (weights) of the network.

The steady state of the inhibitory neuron in the same situation can be
calculated by equation A.7. It adds the constraint α + γ > 1 + β2:

xN = T(α + γ − 1 − β2)
1 + β1β2 − α − γ − 1

. (A.7)

A.7 Dynamics After Constant Input Is Removed. The dynamics of the
network following removal of the constant input, until the steady-state
memory state is reached can be characterized by the eigenvalues of the
Jacobian of the entire system. Consider two recurrent maps x and y with
one excitatory and one inhibitory neuron each. The system of equations
shown above can be described by

τ ż − z = f (Wz − z + I). (A.8)

Assume z = [x1, y1, x2, y2], τ = 1 and

W =




α γ −β1 0

γ α 0 −β1

β2 0 0 0

0 β2 0 −1


 . (A.9)

There are two nonzero fixed points in this simple system: the point
reached with constant external input (I > 0, equation A.5) and the point
reached after removal of the input (I = 0, equation A.6). First, assume con-
stant external input I > 0 was applied for a sufficient amount of time for
the system to reach steady state (see Figure 4B). Here we are interested in
the dynamics that result from removal of this constant external input. There
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are two steady states the system can converge to: the memory state and the
zero state (no activity). To analyze the stability of the memory state, we lin-
earize the system at the memory state. Since the network reached its steady
state with I > 0 previously, all zi > 0 and thus f (x) = x. Constructing the
Jacobian matrix of the system then results in

J =




α − 1 γ −β1 0

γ α − 1 0 −β1

β2 0 −1 0

0 β2 0 −1


 . (A.10)

The eigenvalues λk of J determine which state will be reached (Strogatz,
1994). If the matrix is negative definite (i.e., if the real parts of all eigenval-
ues are Re(λk) < 0), the memory state is asymptotically stable. Under most
situations that satisfy the constraints given for the parameters, we observe
that this is the case. The imaginary parts I m(λk) determine how the system
approaches the steady state. If I m(λk) �= 0, the system oscillates around the
attractor with a continually reduced amplitude (because Re(λk) < 0). The
larger max(|I m(λk)|) is, the larger the initial amplitude of the oscillation.
Modifying β1 predominantly changes I m(λk) while keeping Re(λk) approx-
imately constant and thus allows independent modification of the stiffness
of the system.

This approach of analyzing the dynamics is also applicable for the case
of the nonlinear rectification function f (z) = max(0, z − T) that we use for
the main part of the letter. This is because all zi > 0 and the Jacobian matrix
(Strogatz, 1994) of this system of equations is equal to J (see equation A.10)
since T is a constant.

A.7.1 Ensuring That the Memory State Is an Attractor. In this section, we
detail why it is necessary to have two maps (γ > 0) to have a functioning
memory state. From the perspective of the steady state only (see equa-
tion A.6), it is sufficient to have T > 0 while γ could be zero. However, the
dynamics mandate that γ > 0.

The four eigenvalues of the Jacobian matrix J (see equation A.10) are
described by

λi = −1 ± 1
2
γ + 1

2
α ± 1

2

√
γ 2 ± 2γ + α + α2 − 4β2β1. (A.11)

Note that two of the ± signs are in front of terms that disappear in the
case of γ = 0. This results in only two unique eigenvalues, and the node
is thus degenerate (and unstable). For the node to be stable, four unique
eigenvalues (with the properties described above) are required, and thus it
is necessary that γ > 0.
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The trace of J (the sum of all eigenvalues λi ) equals 2α − 4 and is inde-
pendent of γ . It is required that the trace is smaller than 0 (for a state to be
stable) and thus α < 2.

A.8 Constraints for Bounded Map Activity for Permanently Active
Transition Neurons, I = 0 and T > 0. In the presence of an active transition
neuron (TN), the effective recurrent connectivity between the two maps is
increased. In this section, we show the constraints on the parameters of the
TN such that the map activity remains bounded. In practice, the external
input to the TN is active for only a short time. For the purposes of deriving
boundaries that guarantee stability, however, we assume a permanently
active TN (as a worst-case scenario). Also, we assume that the TN receives
input from and projects to map neurons that represent a currently active
state. This is relevant for state transformations of symbols that project to the
same state (loops). We use the minimal system, as described in section A.7.
It consists of two recurrent maps, with one inhibitory (y1, y2) and excitatory
unit each (x1, x2). The two excitatory units on both maps are recurrently
connected with weights γ . Here, we add one unit to the system: the TN
p1. It receives input from the excitatory unit of one map x2 with weight φ

and projects to the excitatory unit of the other map x1 with the same weight
(see equation 2.9 and Figure 6). Assuming that the threshold Tp equals the
amplitude of the external input (as we assume throughout), a permanently
active TN has effectively Tp = 0 (since input is present). The steady-state
amplitude of the excitatory map unit x1 and x2 is then described by

xi = T(β1 − 1)(K + A)
K 2 − Aγ 2 , (A.12)

with A = φ2 + γ and K as defined previously. In steady state, ẋi = 0, ẏi = 0,
ṗ1 = 0, while xi > 0, yi > 0, p1 > 0. Solving for φ shows that the following
needs to hold:

φ <

√
K 2 − γ 2

γ
. (A.13)

Also, φ > 0. For example, for the numerical values of the weights used in
Figure 7, 0 < φ < 0.8944.

A.9 Speed of Convergence. The network requires time to reach steady
state. The time (and thus the number of iterations of numerical integration)
it takes for the network to converge is important because it determines the
minimum time an external input (either to the transition neuron or to the
state neuron) needs to be applied to ensure a state change.
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The rate-limiting step for convergence is the dimension with the smallest
absolute eigenvalue: mini |λi |. The smaller this value, the longer the system
will take to converge. The eigenvalues are a function of the weights (see
equation A.11), and the setting of the weights thus has an influence on the
speed of convergence. Note that the size of the network is not a factor, since
the number of active units is always the same regardless of which state is
currently active.

We confirmed numerically how fast the network converges to the appli-
cation of external input and state switches. We tested random DFAs with
2 to 40 states and found that the time required for the network to con-
verge to the memory state does not depend on the number of states or the
distance (on the map) between the states. Euler integration with δ = 0.05
revealed a relaxation time of the following number of iterations: 143 (7.15τ )
after initialization, 305 (15.2τ ) after a state switch, and 351 (17.6τ ) after a
loop (state transformation that points to itself). These numbers remain the
same regardless of the number of states and transitions represented by the
network. The parameters of the network were as shown in Figure 7.

A.10 Summary of Constraints. Two recurrently coupled maps with
coupling weight γ , inhibitory loop constants β1, β2, and total excitatory
input from the same map α have bounded activity and a stable memory if
the following conditions are met:

γ < 1 + β1β2 − α (A.14)

β1 > 1 (A.15)

T > 0 (A.16)

γ > 0 (A.17)

α < 2 (A.18)

β2 > 0 (A.19)
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