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The winner-take-all (WTA) computation in networks of recurrently con-
nected neurons is an important decision element of many models of
cortical processing. However, analytical studies of the WTA performance
in recurrent networks have generally addressed rate-based models. Very
few have addressed networks of spiking neurons, which are relevant for
understanding the biological networks themselves and also for the de-
velopment of neuromorphic electronic neurons that commmunicate by
action potential like address-events. Here, we make steps in that direction
by using a simplified Markov model of the spiking network to examine
analytically the ability of a spike-based WTA network to discriminate
the statistics of inputs ranging from stationary regular to nonstationary
Poisson events. Our work extends previous theoretical results showing
that a WTA recurrent network receiving regular spike inputs can select
the correct winner within one interspike interval. We show first for the
case of spike rate inputs that input discrimination and the effects of self-
excitation and inhibition on this discrimination are consistent with re-
sults obtained from the standard rate-based WTA models. We also extend
this discrimination analysis of spiking WTAs to nonstationary inputs
with time-varying spike rates resembling statistics of real-world sensory
stimuli. We conclude that spiking WTAs are consistent with their con-
tinuous counterparts for steady-state inputs, but they also exhibit high
discrimination performance with nonstationary inputs.

1 Introduction

The winner-take-all (WTA) computation is an intrinsic property of recur-
rent networks, which abound in cortex. Several studies have discussed the
computational power a WTA network offers (Riesenhuber & Poggio, 1999;
Yuille & Geiger, 1998; Maass, 1999, 2000) and its role in cortical processing
models, for example, a hierarchical model of vision in cortex (Riesenhuber
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& Poggio, 1999) or a model of selective attention and recognition processes
(Itti, Koch, & Niebur, 1998).

This computation is thought to be an intrinsic decision component
of the cortical microcircuit. Decision processes in the brain are not lo-
calized in one specific region, but evolve in a distributed manner when
different brain regions cooperate to reach a consistent interpretation. The
winner-take-all circuit with both cooperative and competitive properties
is a main building block that contributes to this distributed decision pro-
cess (Amari & Arbib, 1982; Douglas, Koch, Mahowald, Martin, & Suarez,
1995).

Because of these properties, WTA networks have been of great interest to
researchers. Yuille and Grzywacz (1989) and Ermentrout (1992) are classi-
cal references to theoretical analyses. In these early models, the neurons are
nonspiking, that is, they receive an analog input and have an analog output.
The analog WTA computation can be efficiently implemented in very-large-
scale integrated (VLSI) transistor circuits. With initial circuits described in
Lazzaro, Ryckebusch, Mahowald, and Mead (1989), a whole series of analog
models (e.g., Kaski & Kohonen, 1994; Barnden & Srinivas, 1993; Hahnloser,
Sarpeshkar, Mahowald, Douglas, & Seung, 2000) and implementations
has been developed (He & Sanchez-Sinencio, 1993; Starzyk & Fang, 1993;
Serrano-Gotarredona & Linares-Barranco, 1995; Kincaid, Cohen, & Fang,
1996; Indiveri, 1997, 2001; Moller, Maris, Tomes, & Mojaev, 1998; Hahnloser,
Sarpeshkar, Mahowald, Douglas, & Seung, 2000; Liu, 2000, 2002).

In the past decade, spiking neuron models and their electronic coun-
terparts have gained increasing interest. Spike-based networks capture the
asynchronous and time-continuous computation inherent in biological ner-
vous systems. Neuron models with analog inputs and analog outputs can
be converted into models with spiking output if a thresholding operating
is introduced to the neuron. Coultrip, Granger, and Lynch (1992) is an early
theoretical analysis, with further descriptions in Jin and Seung (2002) and
Yu, Giese, and Poggio (2002) and VLSI implementations in Chicca, Indiveri,
and Douglas (2004), Abrahamsen, Häfliger, and Lande (2004), and Oster,
Wang, Douglas, and Liu (2008).

The next theoretical consideration are models with both spiking input
and spiking output. Previous theoretical studies focused on population
models (e.g., Lumer, 2000), where the population firing represents a graded
analog value. Indiveri, Horiuchi, Niebur, and Douglas (2001) and Chicca,
Lichtsteiner, Delbruck, Indiveri, and Douglas (2006) are VLSI implemen-
tations that use the firing rate as an analog input and output encoding. A
special case is presented in Carota, Indiveri, and Dante (2004) and Bartolozzi
and Indiveri (2004), in which the core of the winner-take-all is analog but
the signals are converted to spike rates for communication with the outside
world. Other theoretical studies consider alternate neuron models, such as
oscillatory neurons (Wang, 1999) or differentiating units (Jain & Wysotzki,
2004).
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No analysis until now has considered the effect of single spikes and
spike timing on the winner-take-all computation with spiking inputs and
outputs. Gautrais and Thorpe (1998) start their analysis from a similar point
of view, that is, how the network decides which of two input spike rates is
higher, but they do not consider sampling of this estimation in the output
spikes (this analysis could be classified as spiking input and analog output).

The emergence of multichip spiking systems that incorporate the WTA
as part of their decision process (Serrano-Gotarredona et al., 2005; Choi,
Merolla, Arthur, Boahen, & Shi, 2005; Chicca, Lichtsteiner, Delbruck,
Indiveri, & Douglas, 2006; Vogelstein, Mallik, Culurciello, Cauwenberghs,
& Etienne-Cummings, 2007) highlights the necessity for theoretical quan-
tification of a WTA network based on different network parameters (e.g.,
CAVIAR), especially if these systems are to be used in different applica-
tions. To address this need, we develop a framework for quantifying the
performance of a spiking WTA network with spiking inputs based on the
network parameters and input statistics. We start with the definition of the
hard WTA architecture in section 2 and treat the network as an event-based
classifier. The network has to decide which neuron, the “winner,” receives
the strongest input after a certain time interval, and it indicates its decision
with an output spike. In a spiking system, the term strongest input has to
be defined: How is the input signal encoded in the spikes? What are the
statistical properties of the spike trains? We consider the following cases:
stationary inputs of regular frequencies in section 3, stationary inputs of
Poisson distribution, effects of self-excitation and inhibition on the WTA
performance in section 4, and a model of nonstationary Poisson inputs in
section 5 for two cases: where the strongest input switches between two
neurons and where the input activity travels across the neurons of the net-
work. The latter resembles the statistics of real-world sensory stimuli. This
formalism has been applied during the programming of the WTA module in
the CAVIAR multichip asynchronous vision system (Oster, Wang, Douglas,
& Liu, 2008; Serrano-Gotarredona et al., 2005).

2 Winner-Take-All Network Connectivity

We assume a network of integrate-and-fire neurons that receives input
spikes through excitatory or inhibitory connections. The WTA operation
is implemented by having these neurons compete against one another
through inhibition. In biological networks, excitation and inhibition are
specific to the neuron type. Excitatory neurons make only excitatory con-
nections to other neurons, and inhibitory neurons make only inhibitory
connections. This specificity is obeyed in a typical WTA network where
inhibition between excitatory neurons is mediated by populations of in-
hibitory interneurons (see Figure 1a).

To adjust the amount of inhibition between the neurons (and thereby the
strength of the competition), both types of connections could be modified:
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Figure 1: Simplification of connectivity (a) with a global inhibitory neuron
and (b) with direct inhibitory connections between neurons. (Reproduced from
Figure 1 in Oster et al., 2008.)

the excitatory connections from excitatory neurons to interneurons and
the inhibitory connections from interneurons to excitatory neurons. In our
model, we assume the forward connections between the excitatory and the
inhibitory neurons to be strong, so that each spike of an excitatory neuron
triggers a spike in the global inhibitory neurons. The amount of inhibi-
tion between the excitatory neurons is adjusted by tuning the connections
from the global inhibitory neurons to the array neurons. This configuration
allows the fastest spreading of inhibition through the network.

With this configuration, we can simplify the network by replacing the
global inhibitory interneurons with full inhibitory connectivity between the
excitatory neurons (see Figure 1b). This simplification is used only for the
analysis. In an electronic implementation, the configuration with the global
interneurons is more suitable.

While a cortical neuron can receive possibly correlated inputs from up
to 10,000 synapses, we assume that the external inputs to the neurons are
uncorrelated and that all the inputs can be summed together into one spik-
ing input. This assumption is valid especially for Poisson-distributed input,
since summing spike trains with Poisson statistics results again in a spike
train with Poisson statistics.

In addition to the excitation from the external inputs and inhibition from
other neurons, each neuron has a self-excitatory synapse that facilitates
its selection as the winner in the next cycle once it has been chosen as
the winner. In this analysis, we do not consider external inhibitory input
spikes even though this could easily be done by assigning a sign to every
input spike. Since the statistical properties stay the same, we disregard the
external inhibitory input for clarity.

2.1 Neuron Model. We assume a network of N integrate-and-fire neu-
rons with excitatory and all-to-all inhibitory connections. The dynamics
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of the membrane potential of the ith neuron, Vi , follows the equation of
a nonleaky integrate-and-fire neuron model with nonconductance-based
synapses,

dVi

dt
= VE

∑
n

δ
(
t − t(n)

E

) − VI

N∑
j=1
j �=i

∑
m

δ
(
t − t(m)

j

)
, (2.1)

where we assume unit capacitance. The first term on the right describes the
excitation from an external spike source (E) as the weight, VE , times a sum of
delta functions reflecting the spike train from this source. The second term
on the right describes the inhibition from other neurons as the weight, VI ,
times a sum of delta functions, which reflects the spike train from a particu-
lar neuron. In this analysis, we neglect the dynamics of the synaptic currents
and the delay in the transition of the spikes. The neuron spikes when its
membrane potential exceeds a threshold Vth , that is, Vi ≥ Vth , and is then
reset to Vi = 0. Immediately afterward, it receives a jump of Vsel f in its mem-
brane potential due to self-excitation. The membrane potential satisfies the
constraint, 0 ≤ Vi ≤ Vth , that is, an inhibitory spike cannot drive Vi below 0.

3 Stationary Inputs of Regular Rates

We first discuss how we set up the network connectivity for the case of the
hard WTA mode where the neurons receive external input spike trains of
regular frequency. In this mode, a winning neuron is selected after it has
received a predetermined number of input spikes, n, needed to generate
an output spike. This neuron is the one whose external input spike train
has the smallest interspike interval. We now consider how to set up the
constraints on VE and VI so that even though other neurons beside neuron
k might first produce transient output spikes because of initial conditions,
these neurons will not fire again once neuron k spikes.

We assume that all neurons i ∈ 1, . . . , N, receive an external input spike
train of constant frequency ri , and neuron k receives an external input with
the highest frequency (rk > ri ; ∀ i �= k). We now describe the conditions for
fulfilling the constraints for this hard WTA mode (see Figure 2):

1. Neuron k (the winning neuron) spikes after receiving nk = n input
spikes that cause its membrane potential to exceed threshold if it is
initially discharged. After every spike, the neuron is reset to Vsel f :

Vsel f + nk VE ≥ Vth . (3.1)

2. As soon as neuron k spikes once, no other neuron i �= k should be
able to spike because of the inhibitory spike from neuron k. Another
neuron can receive up to n spikes even if its input spike frequency is
lower than that of neuron k because the neuron is reset to Vsel f after a
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Figure 2: Membrane potential of the winning neuron k (a) and another neuron
in the network (b). Black bars show the times of input spikes. Traces show the
changes in the membrane potential caused by the various synaptic inputs. Black
dots show the times of output spikes of neuron k. (Reproduced from Figure 2
in Oster et al., 2008).

spike, as illustrated in Figure 2. Hence, the inhibitory weight should
be such that

VI ≥ nk VE ≥ ni VE . (3.2)

3. If a neuron j other than neuron k spikes in the beginning, there will
be some time in the future when neuron k spikes and becomes the
winning neuron. From then on, conditions 1 and 2 hold, so a neuron
j �= k can generate a few transient spikes, but neuron k wins.

To see this, let us assume that the external inputs to neurons j
and k spike with almost the same frequency (but rk > r j ). For the
interspike intervals �i = 1/ri , this means � j > �k . Since the spike
trains are not synchronized, the corresponding input spikes to both
neurons k and j have a changing temporal offset φ. At every out-
put spike of neuron j , the input spike temporal offset decreases by
nk(� j − �k) until φ < nk(� j − �k). When this happens, neuron k re-
ceives (nk + 1) input spikes before neuron j spikes again and crosses
threshold:

(nk + 1)VE ≥ Vth . (3.3)
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We can choose Vsel f = VE and VI = Vth to fulfill inequalities 3.1 to 3.3. VE is
adjusted to achieve the desired n.

Case 3 happens only under certain initial conditions, for example, when
Vk � Vj or when neuron j initially receives an external input spike fre-
quency that is higher than that to neuron k. A leaky integrate-and-fire
model will ensure that all membrane potentials are discharged (Vi = 0) at
the onset of a stimulus. The network will then select the winning neuron
after receiving a predetermined number of input spikes, and this winner
will have the first output spike. Even if the conditions above are fulfilled,
the neuron with the smaller input could stay as the winner for a long time
before the neuron with the larger input takes over, as the switching dynam-
ics depends on the initial conditions of the network.

If the rate is regular, the information about the strongest input is already
contained in one interspike interval. If Vth/2 < VE < Vth and Vth/2 < Vsel f <

Vth are chosen, the network performs the selection in one interspike interval.
We call this an optimal decision in the sense that the network will always
choose the winning neuron as the one receiving the highest input frequency
assuming perfect network homogeneity.

3.1 Multistability. A WTA network can exhibit multistability or hys-
teresis, that is, dependent on initial conditions, a neuron with a lower input
frequency can remain the winner. By choosing Vsel f > VE , a neuron k that
is initially the winner will remain the winner even if another neuron j re-
ceives the stronger input. The increase in input frequency that is needed for
neuron j to take over as the winner will depend on Vsel f .

WTA models that exploit firing rate thresholds are normally dependent
on the number of neurons in the network. The WTA computation that we
describe here exploits the spike timing; hence, the mechanism of competi-
tion is independent of the number of neurons. The network can be scaled
to any size as long as the inhibitory neuron can still completely inhibit the
excitatory neurons with one output spike.

4 Stationary Poisson Rates

For stationary Poisson-distributed input spikes, we first consider a network
of two neurons, labeled 0 and 1, with the connectivity shown in Figure 3.
Because of the Poisson statistics of the inputs, the probability of selecting
the correct winner depends on the ratio of their input Poisson rates ν and
the number of input spikes, n, needed for the neuron to reach threshold.

We assume that the neurons are initially completely discharged (V = 0).
The probability that a neuron receives n input spikes in time t from a Poisson
spike source with rate ν is

P(νt, n) = (νt)n

n!
exp(−νt).
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Figure 3: Simplified network architecture. Two neurons labeled 0 and 1 receive
Poisson-distributed input spike trains with frequencies ν0 and ν1, respectively.
The synaptic strengths are VE for the excitatory external input spikes, VI for
the cross-inhibition spikes between the neurons, and Vsel f for the self-excitation
spikes.

A neuron crosses threshold at time t (thus producing an output spike) if
it receives the nth spike exactly at time t and n − 1 input spikes in [0; t].
Neuron 0 has the first output spike of the network if it reaches threshold
at time t (probability density π0), while neuron 1 is still below threshold
(probability P1):

π0(t) = ν0P(ν0t, n − 1)

P1(t) =
n−1∑
i=0

P(ν1t, i).

We integrate over all times t = 0, . . . ,∞ to compute the probability that
neuron 0 has the first output spike:

P0outI =
∫ ∞

0
P(ν0t, n − 1) · ν0 ·

(
n−1∑
i=0

P(ν1t, i)

)
dt. (4.1)

For n = 1, every input spike elicits an output spike. The probability that
the first output spike of the network comes from neuron 0 is the higher rate
normalized to the sum of both rates:

P0outI

∣∣∣∣
n=1

=
∫ ∞

0
ν0e−ν0te−ν1tdt = ν0

∫ ∞

0
e−(ν0+ν1)tdt = ν0

ν0 + ν1
. (4.2)
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Figure 4: Filter model of the WTA network. The WTA (black box) receives a
Poisson input spike train of total rate ν. Every input spike encodes either symbol
0 or 1, with the probability of a spike coding for 0 of P0in. The output of the WTA
is a spike train with the probability of a spike coding for 0 of P0out . The WTA
ensures P0out > P0in in the case where P0in > P1in and amplifies the difference
between the input probabilities.

For n → ∞ or very large n, the neurons integrate over many input spikes.
The Poisson distributed rates can then be approximated by the mean rate,
and the decision is deterministic:

P0outI

∣∣∣∣
n→∞

→
{

1 : ν0 > ν1

0 : ν0 < ν1
(4.3)

This case is of course not practical because the WTA network would never
produce an output spike since it has to integrate over an infinite number of
input spikes.

In general, the probability that the first spike of the network comes from
the neuron receiving the higher input rate increases as the neurons integrate
over more spikes. Equation 4.1 cannot be solved easily in closed form, but
it can be integrated numerically.

In the analysis, we assume that the neurons were initially discharged
in the derivation of P0outI . This probability is not necessarily the same as
the general case of P0out , which describes the probability that any output
spike of the network comes from neuron 0. However, in the case of strong
inhibition (VI = Vth) and no self-excitation (Vsel f = 0), both neurons are also
completely discharged after any output spike so P0out = P0outI . The network
has no memory of its past input, and integration will start again with the
initial conditions.

4.1 Filter Model. An alternate way of viewing this WTA process is
to consider the network as a filter that increases the percentage of spikes
encoding for neuron 0. Figure 4 details this interpretation as a filter model
in signal theory. Interestingly, P0out is independent of the total input rate,
ν. To show this, we replace ν0 → P0inν (rate of input spikes to neuron 0)
and ν1 → (1 − P0in)ν (rate of input spikes to neuron 1) with ν = ν0 + ν1 in
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equation 4.1. We substitute νt → t′ and ν dt → dt′. The integration limits
(0;∞) do not change:

P0out =
∫ ∞

0
P(P0int′, n − 1) · P0in ·

(
n−1∑
i=0

P((1 − P0in)t′, i)

)
dt′. (4.4)

The output rate ζ is the sum of the output rates of each neuron. The
sum is weighted by the probability that neurons 0 and 1 generate an output
spike (P0out and 1 − P0out):

ζ = P0out
ν P0in

n
+ (1 − P0out)

ν(1 − P0in)
n

(4.5)

= ν

n
(1 − P0in − P0out + 2P0in P0out) (4.6)

The output spike train is not Poisson distributed, but will tend toward
regular rates, since the neurons integrate over n input spikes for each output
spike.

We quantify the effect of the WTA on the input and output probabilities
for different values of n in Figure 5. The optimal classification would result
in a step function: for any P0in > 0.5, the output probability P0out is 1. The
results show that the output performance improves as the neurons integrate
over more input spikes.

4.2 General Case. In the analysis above, we assume strong inhibi-
tion and no self-excitation. In the general case, VI < Vth and Vsel f �= 0.
Only the neuron that spiked is reset to ground, and, in addition, it re-
ceives self-excitation Vsel f . This neuron will reach threshold again with
m spikes:

m =
⌈

Vth − Vsel f

VE

⌉
≤ n. (4.7)

The neuron that did not spike is inhibited by the spiking neuron,
which lowers its membrane potential by VI . It will reach threshold again
with p spikes, dependent on the membrane potential at the time (t−) of
inhibition:

p =
⌈

Vth − max(V(t−) − VI , 0)
VE

⌉
≤ n. (4.8)

V(t−) can take any value between ground and just below the threshold
voltage.

To analyze the general case, we model the output of the network by
a Markov model with inhomogeneous transition times with two states
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Figure 5: Probability of neuron 0 producing output spikes of the network in
the case of strong inhibition and no self-excitation. P0in is the probability of
a spike encoding for neuron 0 in the input rate; P0out is the probability of a
spike encoding for neuron 0 in the output rate. The different curves show
the performance dependence on the number of input spikes n that the neurons
have to integrate before producing a spike. The probability that the first output
spike of the network comes from the neuron that receives the higher rate in-
creases if the neurons integrate over more input spikes. The output probabilities
are independent of the input rate ν. Continuous curves: numerical evaluation
of equation 4.4, overlaid data points: simulation results (error bar corresponds
to 10 trials with 10,000 output spikes each).

(see Figure 6). The states determine which of the two neurons last fired.
Each transition from state i to j has assigned a transition probability pi j and
a transition time ti j . In contrast to a Markov chain, the states are sampled
only when the network spikes and the transition times between the states
are not constant. The transition probabilities are given by

p00 =
∫ ∞

0
ν0 P(ν0t, m − 1) ·

p−1∑
i=0

P(ν1t, i) dt (4.9)

p01 =
∫ ∞

0

m−1∑
i=0

P(ν0t, i) · ν1 P(ν1t, p − 1) dt. (4.10)

The transition probabilities p11 and p10 are the same as p00 and p01, re-
spectively, with ν0 and ν1 interchanged. The average transition time is the
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Figure 6: Markov model of the WTA network with inhomogeneous transition
times: the states determine which of the two neurons fires. The transition proba-
bilities pi j together with the transition time ti j determine the sequence of firing.

number of spikes a neuron needs to reach threshold divided by its input
rate:

t00 = m
ν0

, t01 = p
ν1

, t10 = p
ν0

, t11 = m
ν1

. (4.11)

The process reaches equilibrium if transitions between the states happen
with the same probability:

p01 P0out = p10 P1out. (4.12)

With P1out = 1 − P0out , we get

P0out = p10

p01 + p10
. (4.13)

This is the probability that if a spike is emitted by the network, it is emitted
by neuron 0. If m = p, then p01 = p11 = 1 − p10, so P0out = p10 is equal to
POoutI in equation 4.1.

The mean output interspike interval 〈�〉 is given by the weighted sum
of the transition times:

〈�〉 = P0out p00
m
ν0

+ P1out p10
p
ν0

+ P0out p01
p
ν1

+ P1out p11
m
ν1

,

with the corresponding mean output rate of the network:

ζ = 1
〈�〉 = ν0ν1(p10 + p01)

ν0 p01(p10 p + p11m). + ν1 p10(p01 p + p00m)
.

4.3 Effect of Self-Excitation. The Markov model allows us to quantify
the effect of the self-excitation on the WTA performance. Here, we assume
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Figure 7: Effect of self-excitation: the probability of a correct decision P0out

increases as the self-excitation Vsel f is increased. m (p) is the number of spikes
a neuron needs to reach threshold after self-excitation (global inhibition). For
m = p, the curve is equal to the one shown in Figure 5 for n = 10. For p = 10, m
is varied from 1, . . . , 10. As the self-excitation is increased, the probability of a
correct decision increases. Numerical evaluation of equation 4.13.

VI = Vth , so p is independent of the membrane potential at the time of the
inhibition (see equation 4.8). Strong self-excitation improves the probability
that an output spike of the network is emitted from the neuron with the
higher firing rate (see Figure 7). Interestingly, the output rate for a network
that integrates over many input spikes and has strong self-excitation is
similar to that of a network that integrates over fewer input spikes and has
no self-excitation.

4.4 Effect of Inhibition. We now look at the performance in the case
where the inhibition is weak, that is, VI < Vth . From equation 4.8, the neuron
that did not spike needs p spikes to reach threshold after being inhibited,
while the neuron that last spiked needs m spikes to reach threshold. If
p < m, a neuron that did not spike before will have a greater probability
of spiking next. Starting from the same initial state for both neurons, the
neuron that receives the strongest input is the most probable one to spike.
After this output spike, the network will then select a neuron that did not
spike before, and the probability of a correct decision of the network will
decrease correspondingly. Hence, lowering the strength of the inhibition
will lead to a decrease in performance.

Our description does not make any predictions about the membrane
voltage V−

E1 of the non-winning neuron before the output spike, except 0 <

V−
E1 < Vth . Let us assume that the membrane was sitting close to threshold

before the neuron receives inhibition VI . After inhibition, V+
E1 = Vth − VI .
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Figure 8: Effect of inhibition. Both graphs show the performance of the network
if the strength of the inhibition is VI = p/nVth . In each graph, p is varied from
10 to 1 (top left to bottom curve, m = 10). (a) Numerical evaluation of the
functional description that assumes that the membrane potential of the non-
winning neuron is close to threshold before inhibition. (b) Simulation results. As
can be seen by the simulation results, the assumption severely underestimates
the performance of the network.

The non-winning neuron will then reach threshold with p ≈ VI /VE spikes.
With this assumption, weakening the inhibition leads to a drastic de-
crease in performance (see Figure 8a). But depending on the history of
the spike input to the non-winning neuron, the membrane potential will be
significantly lower than Vth before the inhibition, that is, less inhibition is
needed to achieve the same effect. We can address this in simulation (see
Figure 8b), showing that the network performance does not decrease that
rapidly. For m = 10, inhibition can be decreased to about 70% of Vth before
the network shows a significant decrease in performance.

We conclude that weakening the strong inhibition always leads to a
decrease in performance. For weak inhibition, the functional description
underestimates the performance of the network, while simulation results
show that inhibition can be decreased to about 70% of Vth before the
network shows a significant decrease in performance.

4.5 Generalization to N Neurons. We extend the simplified case of
two neurons to a network with N neurons. The probability of a neuron
k generating an output spike starting from the initial condition where all
neurons are reset is given by

PkoutI =
∫ ∞

0
νkP(νkt, n − 1) ·

N∏
j=1
j �=k

(
n−1∑
i=0

P(ν j t, i)

)
dt. (4.14)
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The transitions can be described by the matrices (p, t) with the transitions
probabilities pkl (k, l ∈ 1, . . . , N):

pkk =
∫ ∞

0
νk P(νkt, m − 1) ·

N∏
j=1
j �=k

( p−1∑
i=0

P(ν j t, i)

)
dt

pkl =
∫ ∞

0
νl P(νl t, p − 1) ·

m−1∑
i=0

P(νkt, i) ·
N∏
j=1

j �=k,l

( p−1∑
i=0

P(ν j t, i)

)
dt,

with average transition times

tkk = m
νk

, tkl = p
νl

.

The probability of an output spike of the network originating from a
neuron k is then given by a vector P. In the equilibrium state, P∗ is the first
eigenvector of matrix p.

5 Time-Varying Firing Rates

We extend our analysis of stationary inputs to inputs with time-varying fir-
ing rates in two computational tasks that involve the WTA. In the first task,
we evaluate the discrimination performance of a neuron to rate changes
in Poisson-distributed inputs (see section 5.1), in particular, we look at the
effect of hysteresis from self-excitation, and the subsequent impact of self-
excitation on the switching time of the neuron to the input rate change. In
the second task, we look at the ability of the network to accurately recon-
struct the position of a traveling object that generates an input wave across
the neurons of the network (see section 5.2). In this case, each neuron sees
a time-varying Poisson input rate due to the movement of the object. For
such inputs, each neuron will receive only a finite number of input spikes
for a finite duration of time. As a result, the number n of input spikes that a
neuron can integrate to make a decision is constrained by the dynamics of
the input to the network.

In addition, because of the Poisson statistics of the inputs, one cannot
make assumptions on when events occur in a given time interval, but one
can make assumptions about the number of spikes within this interval.
This value is given by the Poisson rate of the input. Hence, we can replace
the number of spikes νt in equation 4.1 with the integral

∫ t
0 ν(t′) dt′ that

describes the area under the input spike rate function over time. This sub-
stitution can also be done for the generalization case in section 4.3, and
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equation 4.14 becomes

PkoutI =
∫ ∞

0
P

(∫ t

0
νk(t′) dt′, n − 1

)
· νk(t)

·
N∏
j=0
j �=k

(
n−1∑
i=0

P
(∫ t

0
ν j (t′) dt′, i

))
dt. (5.1)

5.1 Switching of Stronger Input. We first discuss the case where the
input with the higher rate switches between the two neurons in a network
with self-excitation. Using again a two-neuron network as in Figure 6, we
assume that neuron 1 initially receives the higher rate input, that is, ν1 > ν0.
At time t = 0, neuron 0 now receives the higher rate input, ν0 > ν1. We also
assume that the duration of the inputs is long enough before the switching
so that the network has a stable output, that is, the output spikes of the
network come from neuron 1.

We then compute how many spikes neuron 1 will emit after time t = 0
before neuron 0 will spike. The probability of having exactly k subsequent
spikes from neuron 1 is the probability of staying k times in state 1 (see
Figure 6) before transitioning to state 0:

(p11)k · p10. (5.2)

Summing over all possible k results in the average number of spikes k1 that
neuron 1 emits before neuron 0 spikes:

k1 = p10

∞∑
k=1

k (p11)k = p10
p11

(1 − p11)2 = p11

p10
. (5.3)

For every output spike, neuron 1 integrates m input spikes that arrive
with rate ν1. At the moment when the switch from neuron 1 to neuron 0
occurs, neuron 0 has to integrate additional p input spikes with rate ν0. The
corresponding average time taken for the winner to switch from neuron 1
to neuron 0 is

t10 = p11

p10

m
ν1

+ p
ν0

. (5.4)

The average switching time also increases with the self-excitation.

5.1.1 Classification Performance. To quantify the classification perfor-
mance of the WTA network, we consider the first spike of neuron 0 as
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the criterion for a correct detection of the changed inputs. This decision is
described by two variables:

� PT P (t)—the probability that neuron 0 spikes in time t after the inputs
are switched, that is, the probability that the network indicates a
correct decision (true positive)

� PF P (t)—the probability that neuron 0 spikes in time t if the rates did
not switch, that is, the probability that the network indicates a switch
even though the rates did not change ( false positive).

With ν0 > ν1 after the switch, the fraction of a true positive after time t
can be calculated from the probability that no switch is detected and only
neuron 1 is firing. In time t, neuron 1 receives on average ν1t input spikes
and makes on average ν1t/m output spikes. This is equivalent to the case
that the network stays ν1t/m times in state 1 before transitioning to state 0:

PT P (t) = 1 − (p11)
ν1 t
m . (5.5)

A false positive is a state transition from state 0 to state 1 if we keep the
convention that ν0 > ν1. We model this case again by the probability of the
contrary event that no transition occurs from the neuron with the stronger
input (neuron 0):

PF P (t) = 1 − (p00)
ν0 t
m . (5.6)

Figure 9 shows the true and false-positive rates similar to the re-
ceiver operating characteristic curve (ROC). The ROC curves quantify the
dependence of the classifier performance on a parameter. Varying this pa-
rameter determines the true and false-positive probabilities of the classifier.
For our classifier, this parameter is time, and it corresponds to the different
values of PT P and PF P . The area under the ROC curve quantifies the classi-
fier performance. We follow the engineering definition of the discrimination
performance, which is the area under the ROC curve measured between
the curve and chance level (dashed line).

The dependence of the discrimination performance and average switch-
ing time as a function of n and m for the two-neuron network is shown
in Figure 10. In general, the discrimination performance increases if n in-
creases or if self-excitation is increased for a fixed value of n. However,
the switching time also increases in both cases. Interestingly, for the same
average switching time, a network with a larger n and no self-excitation has
a better discrimination performance than a network with a smaller n and
self-excitation.

5.2 Traveling Input. Real-time systems that interact with the world usu-
ally have to process nonstationary input, for example, retina spikes from an
object moving in space or auditory spikes from music and speech. Here, we
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Figure 9: Classifier characteristics: Probability of true positives versus false pos-
itives, similar to the common receiver-operating-characteristics (ROC) curves.
The network has to detect a switch in the neuron that receives the stronger input.
This input has a spike rate that is 50% higher than the other input. The different
curves corresponding to different amounts of self-excitation show the classifi-
cation performance dependent on the time when the network spikes first after
the switch. The area between curve and chance level (dashed line) quantifies
the classifier performance, the discrimination performance.

show the analysis of a situation where a network has to determine with high
accuracy the position of a ball traveling at a constant speed. We model the
input by a gaussian-shaped wave traveling across the neurons. This sim-
plifying description of the input is a good description of the output spikes
from one of the feature extraction stages of a multichip asynchronous vision
system (Oster, Douglas, & Liu, 2007). It can also be a general description of
the outputs of temporal feature filters.

We analyze how we can set n, the number of input spikes that a neuron
needs to reach threshold, so that we obtain optimal discriminability perfor-
mance of the WTA network. In this scenario, this discriminability measure
corresponds to a neuron firing only once and exactly at the time when the
maximum of the gaussian wave moves over that neuron. Since the input
scenario corresponds to the overlap of gaussian inputs in space and time,
the discrimination analysis is related to the discriminability measure used
in pyschophysics.

We assume that the neurons are arranged in a one-dimensional array
with numbers i = −∞, . . . , ∞ (see Figure 11). Without loss of generality, our
analysis focuses on neuron 0. The temporal distance between the neurons
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Figure 10: Classifier characteristics: Discrimination performance versus the
average switching time. The discrimination performance is computed from
Figure 9. Each curve corresponds to a particular number of spikes needed for
the neurons to reach threshold. Along each curve, self-excitation is increased by
increasing m. The left-most data point of each curve corresponds to zero self-
excitation (m = n). Each subsequent data point along the curve corresponds to
an increase of self-excitation by one, meaning that the winning neuron needs
one fewer spike to reach threshold (m = n, . . . , 1). For about the same aver-
age switching time, the discrimination performance is better if more spikes are
needed to reach threshold and the neuron receives less self-excitation (see the
indicated points). At the point (n = 4, m = 3), the neurons need four spikes to
reach threshold and receive self-excitation equivalent to one spike. At the point
(n = 5, m = 5), the neurons need five spikes to reach threshold and do not re-
ceive self-excitation. Similar comparisons can be made for any other pair of data
points of (no self-excitation/higher n) versus (self-excitation/smaller n).

is d , that is, the time the center of the ball needs to travel from one neuron
to the next. The time-dependent input to a neuron i , νi (t), is a gaussian
function centered on that neuron,

νi (t) = νmax

2πσ 2 exp
(

− (t − di)2

2σ 2

)
, (5.7)

where νmax is the maximum spike rate, σ is the variance of the gaussian,
and di is the temporal distance of neuron i from neuron 0. The spike rate is
normalized so that the neuron receives the rate νmax when the input wave
is aligned to the neuron.
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We can compare the temporal distance d to the discriminability measure
d̂ used in psychophysics: it measures the distance between the center of
two gaussian distributions that are normalized to σ = 1. d̂ is the overlap
between the distributions, which reflects the difficulty in separating the
two distributions. In our example, d is the distance between two neurons
that receive spike input consecutively. Nevertheless, d is also a measure
of the difficulty in classifying the ball position like the discriminability
measure in psychophysics.

The performance of the WTA is best if the output is as sparse as possible.
Since we require that each neuron makes, on average, one spike when the
object passes over it, the average integration time of the WTA decision is
then the time needed for the object to move from one neuron to the next, d .
It is natural to center this interval on the neuron, for neuron 0 at t = 0.
In this time, the neuron receives a higher firing than all its neighbors (see
Figure 11). Integration of inputs to the WTA starts then at the intersection
of two neighboring input firing rates at t = −d/2. We use the variable T to
indicate the integration time (T = t + d/2). To start the analysis, we assume
that all neurons are reset at this time.

We define an auxiliary function for the area under the input spike rate
function for each neuron i in the integration time T :

Ri (T) =
∫ T−d/2

−d/2
νi (t) dt = νmax

2πσ 2

∫ T−d/2

−d/2
exp

(
− (t − di)2

2σ 2

)
dt. (5.8)

On average, the winner should spike at T = d after receiving n spikes:

n = R0(d) = νmax

2πσ 2

∫ d/2

−d/2
exp

(
− t2

2σ 2

)
dt. (5.9)

We will refer most of our analysis to n, instead of νmax, so we can make
comparisons to section 3.

We rewrite equation 5.1 for neuron 0 in a line of neurons i = −∞, . . . ,∞
and with the corresponding area under the input spike rate function Ri (T):

P0outI =
∫ ∞

0
P (R0(T), n − 1) · ν0(T − d/2)

+∞∏
k=−∞

k �=0

(
n−1∑
i=0

P(Rk(T), i)

)
dT.

(5.10)

This is the probability that neuron 0 makes the first output spike after a
reset at time t = −d/2.
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Figure 11: Model of a traveling input. An object moves across a line of neurons
of the WTA network, producing a wave of activity. The neurons are equidistantly
spaced: assuming a constant velocity of the object, this results in the temporal
distance d . The neurons are numbered from −∞ to ∞. The diagram shows
the spike rate evolving over time. At a certain point in time (thick dashed
line), neuron 0 receives an input spike rate indicated by the curve that peaks
at its position. Integration of the WTA network starts at the intersection of two
neighboring input curves. At an integration time T , the neuron 0 aligned to
the ball position receives a number of spikes equivalent to the light gray area
under its spike input curve, whereas a neighboring neuron receives a number
of spikes equivalent to the dark gray area.

The rate of neuron 0 making the first output spike of the network after
d/2 is equivalent to the rate of a correct decision:

rcorrect (T) = P (R0(T), n − 1) · ν0(T − d/2) ·
+∞∏

k=−∞
k �=0

(
n−1∑
i=0

P(Rk(T), i)

)
.

(5.11)
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The rate of an incorrect decision of the network is

rfalse (T) =
+∞∑
j=−∞

j �=0

P
(
R j (T), n − 1

) · ν j (T − d/2) ·
+∞∏

k=−∞
k �= j

(
n−1∑
i=0

P(Rk(T), i)

)
.

(5.12)

How can we infer the ability of the network to reconstruct the position of
the stimulus from the probability of a correct output spike and the output
rate? The network discretizes the stimulus position in time and space: in
time, because the output of the network is event or spike based, and in
space, since the network can report the stimulus position only at every
neuron. The ideal result of this discretization is a staircase function. This
is equivalent to decoding the output of the network with a memory of
one variable, the position, which is updated at every spike. Of course, one
could think of a more elaborate processing of the network output such
as spatial and temporal interpolation. But this interpolation is limited by
the accuracy of the network output, which is exactly what we analyze
here.

Deviation of the stimulus position reconstructed from network output
from the ideal case results from two types of errors: jitter in the timing
of the output spikes and spikes from neurons that are not aligned to the
stimulus position. We will summarize the effect of both by defining the total
position error e as the area between the stimulus position reconstructed from
the network output and the ideal case. We norm this area to the number
of neurons, so that e denotes an average deviation of the reconstructed
stimulus position per neuron.

The jitter error is caused by variation of the time when the first neu-
ron of the network reaches threshold. We define e jitter as the time be-
tween the first output spike of the network and the average time the
network needs to make an output spike if the ball moves from one po-
sition to the next. e jitter is normalized to the temporal distance of the
neurons d :

e jitter = 1
d

∫ +∞

−∞
| T − d | (

rcorrect(T) + r f alse (T)
)

dT. (5.13)

Spikes from neurons that are not aligned to the stimulus position con-
tribute to the classification error eclass . We assume that if the network decides
on an incorrect stimulus position, this position will be kept until the next
spike of the network at time d later. We define the error as the area between
the correct position 0 and j , weighted by the probability Pjout that neuron
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j makes the first output spike of the network:

eclass =
+∞∑

j=−∞
| j | Pjout

=
+∞∑

j=−∞
| j |

∫ ∞

0
P

(
R j (T), n − 1

) · ν j (T − d/2)

·
+∞∏

k=−∞
k �= j

(
n−1∑
i=0

P(Rk(T), i)

)
dT. (5.14)

We can add these two errors together to obtain the total position error e
as defined before:

e ≈ ejitter + eclass . (5.15)

However, there are two problems in this approximation: the jitter area and
the classification error overlap, which means that the same area is accounted
for twice. This is dominant when both jitter and classification errors are
large for small n. The second problem is our assumption of the start of
the integration at the intersection of the input spike rate functions of two
neighboring neurons (t = −d/2). Due to the jitter in the first output spike,
the next integration period will actually start earlier or later.

Results of the position error obtained by evaluation of the functional
description therefore cannot be directly compared to simulation data. Nev-
ertheless, the data fit qualitatively (see Figure 12).

6 Discussion

We present an analytical study for quantifying the discrimination perfor-
mance of a spike-based WTA network based on different network parame-
ters and spiking input statistics. Our work is in contrast to previous analyses
of WTA behavior that considered only analog or spike-rate coded inputs.
Rate coding schemes are useful for stationary inputs but fail to describe
the dynamic input signals that occur in real-time systems for time-varying
stimuli. In particular, these studies do not consider the transition region
between single spike and spike rate coding in a WTA network.

We assume a nonleaky integrate-and-fire neuron model in our analysis
in part because we could formulate closed-form solutions for the input
statistics considered and also in part because the VLSI implementation
follows this model. The effect of adding leakage would be rather small,
at least if we added linear leakage. Adding leakage with an exponential
dependency of the membrane voltage (the same effect as conductance-
based synapses) would lead to a more complex neuron behavior exhibiting
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Figure 12: Area errors dependent on the number of spikes n to reach threshold.
Shown are the jitter error (variation of the timing of the output spikes, diamonds)
and the classification error (output spikes from neurons not aligned to the stim-
ulus position, circles), from numerical evaluations of equations 5.13 and 5.15.
For comparison, the total area error is shown from simulation results (crosses).
In simulations, the complete line of neurons is processed, so that the start of the
integration period depends on the time of the last output spike, whereas in the
functional description, the integration always starts at the optimal intersection
of two neighboring input waveforms. For low n, jitter and classification error
include the same area twice; therefore the sum of both would exceed the er-
ror obtained in the simulation results. Error bars of the simulation data denote
one standard deviation (d = 1, σ = 1, every data point result of 100 trials with
20 neurons).

random walk, as discussed before. Unfortunately, an analysis with closed-
form equations and inequalities would not be feasible in this case, but the
network would have to be simulated.

We have also not considered the influence of noise on the membrane
because of the following two reasons. First, we consider only excita-
tory external input, and, second, our neuron model does not include
conductance-based synapses. Therefore, the membrane potential does not
have a stable intermediate voltage as in a random walk case where the
neurons can quickly reach threshold with any additional input, including
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noise input. Since the considered inhibition in our network is strong, the
other neurons besides the winner are discharged to V = 0. The condition
that all neurons (except the winner) have a membrane potential of zero
will therefore happen frequently—after every output spike of the network.
This behavior is specific to the chosen model of neuron and synapses,
which was a prerequisite to a closed formulation of the winner-take-all
behavior.

Our analysis is centered on spike numbers and spike times, thus mak-
ing this analysis extendable for any size network. This analysis is espe-
cially relevant for the development of neuromorphic electronic spiking
networks used in engineering applications. For example, we used this the-
oretical work to predict the outputs of our hardware VLSI implementa-
tion of the WTA network in an asynchronous multichip spiking system
called CAVIAR (Serrano-Gotarredona et al., 2005). The CAVIAR system con-
sists of a temporal contrast retina (Lichtsteiner, Pösch, & Delbrück, 2008),
a bank of spike-based convolution filters (Serrano-Gotarredona, Serrano-
Gotarredona, Acosta-Jimenez, & Linares-Barranco, 2006), a winner-take-all
network (Oster et al., 2008), and a learning module (Häfliger, 2007) that
classifies trajectories of moving objects.

The WTA module in CAVIAR computes the best feature represented in
the image based on the spike outputs of the convolution filters and also
computes the locations of this best feature. When the system sees a moving
object, the input to the WTA network is represented by a spike wave of
gaussian shape that travels across the neurons. We show that the output of
the higher stages of CAVIAR can be well approximated by Poisson statistics
(Oster et al., 2007), although the retina and convolution chips are completely
deterministic. This is the same input that we used for our analysis of WTA
behavior in section 5.2, and we can compare the predicted performance
of our theoretical model with the performance of the implemented model
in CAVIAR . The chip’s performance follows the theoretical prediction for
inputs of constant currents, regular spike rates, and Poisson spike trains
(Oster et al., 2008). The achieved performance, that is, the detection of the
position of a moving object by the WTA module, is close to optimal in the
case of nonstationary Poisson statistics (Oster et al., 2007).

Fast detection tasks that can be performed by a system like CAVIAR
with a finite number of neurons (≈ 32,000 neurons) do not allow time for a
system to encode inputs as spike rates. Single spikes should be considered
instead. Our analytical approach can be used to evaluate systems whose
outputs range from single spike codes to spike rate coding by quantifying
the performance of the classifier dependent on the number the input spikes
the network needs to reach a decision, that is, to elicit an output spike.
It is also applicable to systems that do not make any assumptions about
the specific coding scheme, for example, in the visual information process-
ing system, SpikeNET, in which signals are encoded in a rank-order code
(Van Rullen & Thorpe, 2001, 2002).
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7 Conclusion

Spike-based networks that capture the asynchronous and time-continuous
computation inherent in biological nervous systems can provide a powerful
alternate technology to today’s digital processors. Applying the principles
of biological processing to engineering applications requires a thorough
understanding of the underlying computation: the processing architecture,
the range of network and circuit parameters, and the resulting performance.

We made steps in that direction by using a simplified Markov model
of the spiking network to examine analytically the ability of a spike-based
WTA network to discriminate the statistics of inputs ranging from station-
ary regular to nonstationary Poisson events. Our work extends previous
theoretical results showing that a WTA recurrent network receiving regular
spike inputs can select the correct winner within one interspike interval.
We showed that for the case of Poisson spike inputs, the discrimination
performance of the network (i.e., the probability of the network making a
correct decision) increases as self-excitation is increased, but as expected,
the self-excitation leads to hysteresis, which means that the switching time
for the network to detect a change in input rates increases. We find that
weak inhibition primarily decreases the network performance.

We also extended this discrimination analysis of spiking WTAs to
nonstationary inputs with time-varying spike rates resembling statistics
of real-world sensory stimuli. We used this analysis to predict the per-
formance of a WTA chip in a large-scale, multichip, asynchronous vision
system. We conclude that spiking WTAs also exhibit high discrimination
performance with nonstationary inputs.
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