
Computing Spike-based Convolutions on GPUs

Jayram Moorkanikara Nageswaran and Nikil Dutt
Center for Embedded Systems

Donald Bren School of Information and Computer Science
University of California, Irvine

jmoorkan,dutt@uci.edu

Yingxue Wang and Tobi Delbrueck
Institute of Neuroinformatics

University of Zurich and ETH Zurich
Winterthurerstrasse 190, CH-8057 Zurich, Switzerland

yingxue,tobi@ini.phys.ethz.ch

ISCAS Track: 15.9 Sensory Systems: Spike-based systems

I. DEMONSTRATION EXPERIENCE
This demonstration shows the first implementation of a

real-time spike-based convolution processing system which
combines a spike based dynamic vision sensor (DVS) with
parallel graphics processor unit (GPU) computation. Moving
objects with different features (shape and size) are presented
to the system. In the first demo, the system responses in real
time to recognize and keep track of one user specified object
and ignore the others. In the second one, the system
concurrently extracts several features, and labels the outputs
with different colors. Users will enjoy the real-time response
and learn about using spike-based sensors combined with
conventional procedural processing.

The spikes generated by a DVS are processed through a
spiking neural network which computes spike-based
convolutions. The network size (128x128 pixels) and the
convolution kernel size (minimum 48x48 pixels) make it
impossible to compute them on a standard CPU in real time.
The spike-based neural network is implemented on an
NVIDIA CUDA GPU to achieve real time performance.

Spiking neural networks capture the brain’s event-driven
style of data processing. They can also offer low latencies
when using spike based sensors as inputs [3] and potentially
cheaper computation. But algorithms based on this kind of
network require highly parallelized computation which cannot
be efficiently implemented with conventional sequential
processors. GPUs potentially provide powerful platforms for
spike-based computing. Here we map Address-Event-
Representation (AER) [3] based spike processing onto a GPU.
We interface a 128x128 pixel AER DVS to a spiking neural
network implemented on GPU for feature detection. We can
achieve a speedup of up to 35x on a single NVIDIA GTX280
card when compared to a CPU only implementation.

II. DEMONSTRATION SETUP AND REQUIREMENTS
There are no special requirements for the setup. The

hardware setup consists of a spike-based dynamic vision
sensor with 128x128 pixels [1] and a computer equipped with
CUDA [4] enabled GPU card. We will either use a laptop with
a medium performance GPU or we will bring a desktop with a
high end GPU.

The DVS generates asynchronous digital spike events and
sends them through the USB interface to the computer. The
main CPU of the computer uses local sockets to send and
receives the spikes to and from the GPU host process which
uses the GPU to compute the feature extraction. The input and
output visualization is done through jAER [2]. The setup is
shown in Figure.1.

Figure 1: Demonstration setup. jAER [2] is used to interface with DVS chip
and to visualize spikes.

REFERENCES

[1] Lichtsteiner, P., C. Posch and T. Delbruck, “A 128×128 120dB 15us
Latency Asynchronous Temporal Contrast Vision Sensor”, IEEE
Journal of Solid State Circuits, Feb. 2008, 43(2) 566-576, 2007.

[2] Available: jAER.wiki.sourceforge.net
[3] W. Maass, C.M. Bishop, “Pulsed neural networks”, MIT Press

Cambridge, MA, USA, 1999
[4] NVIDIA Programming manual Version 2.0, Appendix B. Available:

nvidia.com/cuda.

CPU

jAER Viewer
DVS Input

GPU USB

jAER Viewer
GPU Output

DVS output

Computing Spike-based Convolutions on GPUs

Jayram Moorkanikara Nageswaran and Nikil Dutt
Center for Embedded Systems

Donald Bren School of Information and Computer Science
University of California, Irvine, USA 92697

jmoorkan,dutt@uci.edu

Yingxue Wang and Tobi Delbrueck
Institute of Neuroinformatics

University of Zurich and ETH Zurich
Winterthurerstrasse 190, CH-8057 Zurich, Switzerland

yingxue,tobi@ini.phys.ethz.ch

Abstract— In spiking neural networks, asynchronous spike
events are processed in parallel by neurons. Emulations of such
networks are traditionally computed by CPUs or realized using
dedicated neuromorphic hardware. In many neuromorphic
systems, the Address-Event-Representation (AER) is used for
spike communication. In this paper we present the acceleration
of AER based spike processing using a Graphics Processing Unit
(GPU). In our experiment we interface a 128x128 pixel AER
vision sensor to a spiking neural network implemented on a
GPU for real-time convolution-based nonlinear feature
extraction with convolution kernel sizes ranging from 48x48 to
112x112 pixels. We show parallelism-performance trade-offs on
GPUs for single spike per thread, multiple spikes per thread,
and multiple objects parallelism techniques. Our
implementation can achieve a kernel speedup of up to 35x on a
single NVIDIA GTX280 board when compared to a CPU-only
implementation.

I. INTRODUCTION
Spiking models are emerging as more biologically

plausible than the traditional rate model for neural networks.
They better capture the brain’s event-driven style of data
processing and can also offer lower latencies when using spike
based sensors as inputs [1]. Instead of being synchronized by
central clocks, this type of network communicates by
asynchronous events (‘spikes’); meanwhile each neuron
continuously, and independently calculates its response
according to its inputs. Spiking neural networks can be
described as asynchronous systems endowed with highly
parallel processing capability.

In most software simulations, neural networks are
processed sequentially by a CPU, which means only one
neuron is updated at a given time. As a result, the performance
degrades quickly with the increase in network size and
connectivity. This is especially the case for large connectivity
(fan in or out), since sequential processors need to iterate over
every connection for each neuron. To speed up the operation,
supercomputers or distributed computers are normally used
for large-scale neural network simulation. But these solutions
incur high cost. Traditional CPU architectures are not
designed for parallel processing.

The field of neuromorphic engineering builds hybrid
analog/digital VLSI chips to mimic biological architectures
present in the nervous system. These include multi-neuron
chips, spike-based silicon retina [2], cochlea [3], etc. These
systems communicate through the Address-Event-
Representation (AER) protocol [4]. In a pure AER approach,
each spike is encoded as a digital address, with time

representing itself. Most neuromorphic chips typically consist
of an array of spiking neurons, which are independent
computational units. These neuron arrays operate in parallel
and in real-time. Available single or multi-chip AER systems
are hard to scale beyond small network configurations [5] and
to maintain or modify. Their custom nature also limits outside
application.

Improvements in graphics processing units (GPUs) driven
by the gaming market provide powerful and inexpensive
parallel computing platforms. GPUs were originally
developed for graphics rendering and were difficult to
program for general scientific applications. But several
frameworks [6], led by NVIDIA’s CUDA (Compute Unified
Device Architecture), allow programmers to more easily
harness the parallel processing capability of GPUs with
extended semantics for standard C code.

This paper describes our first explorations into efficiently
implementing an asynchronous spiking neural network on
GPUs for real time processing of the output of an AER sensor.
We believe this is the first investigation of AER based spike
processing on GPUs. After we introduce the network
architecture (Section II), we briefly discuss the GPU
architecture (Section III), and analyze different methods to
improve the performance of spike processing on GPUs
(Section IV). Section V concludes with the main contributions
of our approach and future work.

II. NETWORK ARCHITECTURE
For this initial work we implemented a simple architecture

of the neuromorphic hardware system described in the
CAVIAR project [5]. In this 3-layer architecture (Figure.1a), a
Dynamic Vision Sensor (DVS) [2] is used as the front end, a
middle layer of leaky integrate and fire (LIF) neurons
computes projective convolutions with predefined kernels [7],
and an output winner-take-all (WTA) LIF neuron suppresses
neuron activities in the convolution layer to isolate the tracked
feature [8]. This architecture illustrates asynchronous
processing using a spiking neural network to study the
effectiveness of real-time spike processing on GPUs. While
this architecture exposes features and difficulties, it will need
to be scaled up to a multi-layer architecture for future
developments which are capable of more general recognition.

The DVS [2] responds to movement in a scene (temporal
contrast), and generates asynchronous AER events. To reduce
redundancy and computing time, the events from the DVS are
pre-filtered by a refractory spike filter (RSF). The RSF
calculates the time difference between the current spike

(x,y,t2) and the previous spike (x,y,t1), If the time difference
(t2-t1) is less than the refractory period, then the spike is
filtered out. The output from the RSF is fed into the middle
layer that performs convolution with a defined template
weight matrix containing the object features.

Figure 1. Network architecture (a) Architecture includes three stages: RSF,
spiking convolution network (convNN), and WTA; (b-d) Example output
from the architecture: (b) RSF output over 10ms, (c) convolution template
(the top view and 3D view) and (d) instantaneous membrane potentials of
convNN neurons.

Figure.1b-d shows an example to explain the computation
at each stage of the network. The scene consists of a large and
small circle rotating around a common center of rotation and a
static distracter at the bottom left. The ball trajectories form
two concentric circles with different diameters. In this
example, the distracter leads to a very high spike rate.
Figure.1b plots the histogram of the accumulated number of
spikes from each pixel over a 10 ms time bin after
preprocessing by the RSF. The RSF controls the firing rate per
pixel to be less than 100 Hz, so there is at most 1 spike per
time bin. These individually timestamped event addresses feed
into the 128x128 convolution network. There each event
splatts a two dimensional Difference-of-Gaussian template,
which defines the circular feature, onto the neuron membranes
(Figure.1c), forming a projection field onto the neurons which
surround the spiking pixel. The LIF neuron implements a time
dependent memory with a leak, which endows the neuron with
the ability to detect temporal correlations, rather than simply
accumulating input events. The membrane potential
(Figure.1d) of each neuron in the convolution layer shows a
peak of activity at the center of the large circle because the
template feature is most similar to the large ball in the scene.
The spikes from the network then compete through a global
WTA spiking neuron to suppress the activity of neurons with a
lower firing rate [8].

III. GPU ARCHITECTURE
Figure.2 shows a simplified view of the CUDA GPU

architecture from NVIDIA [9]. It contains an array of

streaming multiprocessors (SMs). Each SM consists of eight
floating-point Scalar Processors (SPs), a Special Function Unit
(SFU), a multi-threaded instruction unit, a 16KB user-
managed shared memory, and 16KB of cache memory.

Figure 2. Simplified architectural view of CUDA GPU.

In our experiments we used a single high end GTX280

gaming GPU card that consists of 30 SMs (each operating at
1 GHz), allowing 240 threads to execute concurrently and a
potential performance of 300 GFLOPS. Furthermore, each
GPU has a hardware thread scheduler that selects a group of
threads for execution on each SM. If a thread in the group
issues a costly external memory operation, then the thread
scheduler switches to a new thread group, allowing a large
number of threads (15360 in GTX280) to be active
simultaneously. To effectively use the GPU resources, each
thread should operate on different scalar data. And to achieve
peak memory bandwidth performance, all threads within a
group should access the same memory segment of size equal
to 128 bytes [9].

IV. GPU MAPPING

We now present the performance improvements on the
GPU compared with CPU computation, and trade-offs in
mapping the spiking network onto GPUs.

The experimental setup is shown in Figure.3. The main
CPU (thread 1) is in charge of spike communications by
socket connections. Through this thread, the input spikes from
the DVS come to the CPU over USB via jAER [10] and the
GPU output is sent back to this thread and visualized in jAER.
In the CPU-only mode, the main CPU (thread2) performs all
the computation, including RSF (filtering), ConvNN
(convolution), and WTA shown in Figure.1a. In GPU mode,
only the RSF operation (Figure.1a) is performed on the CPU
side. Other parts of the task are assigned to GPU kernel, which
contains a block of threads where each thread calculates the
membrane potential of one LIF neuron. The static feature
template is mapped onto the texture cache available in each
SM to speed memory access.

Our GPU performance measurements include the time
spent in data transfer between CPU and GPU. The results are
averaged over 5 trials. The main CPU was an Intel Core2 Duo
(6400) processor running at 2.13 GHz having a single core
theoretical performance of 10 GFLOPS. We measured two

 SP
Streaming Multiprocessors 1 (SM1)

SP Scalar
processor
Shared
memory

Cache

 SFU
(Special
Func. Unit)Global Memory (1GB, 512 bit line)

kinds of speedups: kernel speedup and application speedup.
Kernel speedup is the ratio of CPU to GPU execution time for
specific functions. The application speedup is the end-to-end
application speedup, which includes AER and socket data
transfer delays. Comparing the performance of GPU and CPU,
a minimum speedup of at least 30x should be feasible for
computation dominated applications.

We propose three basic techniques for parallelizing the
AER based spike computation, namely: single spike
parallelism, multiple spikes parallelism (Figure.4 and
Algorithm 1), and multiple objects parallelism. In the
remaining section we briefly explain the mechanism,
performance, and trade-offs in each of these techniques.

Figure 3. Experimental setup in CPU mode and GPU mode. jAER [10] is
used to interface with AER DVS and to visualize AER spikes.

Figure 4. Illustration of spike parallelism

A. Single input spike parallelization
Here the membrane potentials are stored in the global

memory, and are updated after each input spike is received
(Algorithm 1a). The parallelism is purely in the spatial
domain. The number of concurrent GPU threads updating the
membrane potentials depends on the size of the template (For
a 48x48 template, 2304 neurons are updated for each
incoming spike). We incorporate alignment to generate
coalesced global memory access. For example, if the 48x48
2D region of neurons that needs to be updated ranges (x,y)
from (33,34) to (80,81), we actually operate at a 16-word
aligned region starting at (x,y)=(32,34). Thus, threads at
locations (32,34), (32,35), and up to (32,80) do not carry out
any memory access or computation. Although we might waste
some threads operating at the boundary region, the high
penalty for unaligned global memory operations are
eliminated. Such alignment is necessary since the performance
can drop by a factor of 10 due to unaligned or un-coalesced
operations. Figure.5 shows the kernel level speedups. The

overall speedup obtained by using single input spike
parallelism is shown in the lowest curve of Figure.5. For
template size from 48x48 to 112x112, the kernel speedup
increases from 1.9 to 6.4. This result was not impressive, even
though we launch a large number of threads (12544 threads
for a 112x112 template). In the test case, about 156,000 spikes
are received from the DVS, and each spike launches a kernel.
However, the GPU kernel launch overhead is approximately
20us [4], representing about 70% of the total execution time
on the GPU. Similar kernel overhead results were measured
using the NVIDIA profiler tool. This constrains the overall
speedup of the single spike parallelism approach. If future
versions of CUDA GPUs can reduce the kernel launch
overhead, then single spike parallelism can still benefit from
the GPU architecture.

B. Multiple input spikes parallelization
 To improve the performance, we group the input spikes
based on the temporal proximity of successive spikes. In this
case, a time step Δ is defined (Figure.4), and spikes falling
into that interval are grouped together and sent to the GPU
simultaneously with identical timestamps. This approach
reduces kernel launch overhead, CPU-GPU data transfer
time, and global memory access. In this scheme every neuron
in the 128x128 array is mapped to a GPU thread and the
number of threads does not vary with the template size as in
section A. Therefore, the membrane potentials can be stored
in the fast SM (shared memory), reducing slow global
memory access. Algorithm 1b shows an outline of this
parallelization approach. As shown in Figure.5, this approach
scales well with the template size and time step Δ. Using
multiple spike grouping in CPU mode already leads to a 3x
speedup. And the maximum GPU over CPU kernel speedup
was roughly 22x for a template size of 112x112 with Δ=5 ms.
Grouping spikes quantizes time and induces loss of precision
in the neuron's membrane potential calculations, which can be

Algorithm 1
sx, sy, st = input spike location, and time
nx, ny, nt = neuron address, and last update time
v(nx,ny) = membrane potential at nx,ny

(a) single spike parallelism (executed by each thread)
1. // only one spike is given to GPU
2. [nx,ny] = map(threadIdx, blockIdx, sx,sy)
3 weight = templateMatrix(nx-sx, ny-sy)
4. calculate v(nx,ny)
5. fire a spike if (v(nx,ny) > threshold)

(b) multi-spike parallelism (executed by each thread)
1. [nx,ny] = map(threadIdx, blockIdx)
2. // a group of spike is given to GPU
3. for each input spike sx, sy, st
4. weight = templateMatrix(nx-sx, ny-sy)
5. calculate v(nx,ny)

 6. fire a spike if (v(nx,ny) > threshold)
7. endfor

DVS
Chip

(ref. [2])

Main
CPU

(thread1)

Main
CPU

(thread2)

AER
Viewer

GPU

jAER

GPU mode

Main
CPU

(thread2)

Function
Units

CPU mode

LFP CONV WTA

t

t
Δ time step

(a) Single spike parallelism

(b) Multiple spike parallelism

One kernel call AER spike train

measured by the change in the total output spike count. It is
negligible as long as 1/Δ is much smaller than the maximum
firing rate (100 Hz in our example). Figure.6 shows the
impact of Δ on the error in firing count. Spike grouping
increases the firing count (the total number of spikes), but
does not change the overall quality of feature detection.
Similar error curves were obtained for larger template sizes
with less than 30% for Δ≤2000us. Similar errors were also
observed in CPU mode.

 Speedup on GPU (GTX280)

0

5

10

15

20

25

30

35

40

Single
spike

100 400 1000 3200 5000
Time Step Δ (us)

Sp
ee

du
p

N=48, M=1

N=64, M=1
N=80, M=1

N=96, M=1

N=112, M=1

N=112,M=5

Figure 5. Kernel level speedup by running the application on NVIDIA
GPU (GTX280). Δ indicates the time step for grouping, NxN gives the
template size, M indicates the number of networks. Error bars are not plotted
due to their insignificant variance.

 Error in firing count due to grouping

0

5

10

15

20

25

30

0 1000 2000 3000 4000 5000
Time Step Δ (us)

Fi
rin

g
co

un
t e

rr
or

 (%
)

48X48

64X64

Figure 6. Error in the total firing count for different values of Δ (time step)
with template size 48x48 (in blue) and 64x64 (in magenta).

C. Multiple objects parallelization
The next level of parallelization is to extract several

features simultaneously, which requires running several
networks concurrently on the GPU. As a test, we ran up to 5
LIF networks, each using its own template and operated with
multiple spike parallelism. The speedup curve with a 112x112
template is shown in Figure.5. The maximum kernel level
GPU over CPU speedup was 35x. The speedup starts to
saturate beyond Δ = 1 ms, because the GPU has sufficient
threads running to achieve maximum performance. The
overall application speedup (including socket delays, AER
delays, and other parameters) was 13x in GPU mode
compared to CPU mode (N=112, M=5).

The GTX280 CUDA-jAER system with a single 64x64
template can process about 200k spikes per second at the
application level, computing about one billion connections per
second.

V. CONCLUSION
This paper reports the first framework for real-time spike

based feature extraction on a GPU using an AER sensor. So
far this yields up to about 35x kernel speedup compared to a
baseline CPU. Techniques of memory alignment, kernel
overhead reduction, and other algorithmic techniques are
necessary to achieve this speedup. Our future goal is to
incorporate these techniques in a generic framework for real-
time simultaneous object tracking and recognition, and also to
move towards hierarchical techniques for object recognition
using spikes. The set of 4 dedicated convolution chips in [5]
can process 64x64 kernels at a rate of 3 M events-per-second,
about 4 times faster than what we achieve here, while burning
only 1/1000 the power. The price for general purpose,
procedural, deterministic digital computation is still evident.

ACKNOWLEDGMENT
We thank the Telluride Neuromorphic Engineering

Workshop for the opportunity to initiate this project; and the
CAVIAR project for some of the recorded data from the DVS.
We also thank NVIDIA for donating the 9800GX2 and
GTX280 boards under the Professor Partnership Program.

REFERENCES
[1] W. Maass, C.M. Bishop, “Pulsed neural networks”, MIT Press

Cambridge, MA, USA, 1999
[2] Lichtsteiner, P., C. Posch and T. Delbruck, “A 128×128 120dB 15us

Latency Asynchronous Temporal Contrast Vision Sensor”, IEEE
JSSC, 43(2) 566-576, 2008.

[3] V. Chan, S.-C. Liu, and A. van Schaik, “AER EAR: A matched
silicon cochlea pair with address event representation interface”,
IEEE TCAS I: Special Issue on Smart Sensors, 54(1), pgs 48-59 ,
2007.

[4] K. A. Boahen, “Point-to-point connectivity between neuromorphic
chips using address events”, IEEE TCAS II, 47, pp. 416-434, 2000.

[5] R. Serrano-Gotarredona, et al., “CAVIAR: A 45k-Neuron, 5M-
Synapse, 12G-connects/sec AER Hardware Sensory-Processing-
Learning-Actuating System for High Speed Visual Object
Recognition and Tracking”, IEEE TNN in press, 2008.

[6] Kayvon Fatahalian and Mike Houston, “A closer look at GPUs”,
Communications of the ACM, Vol. 51, No. 10, October 2008

[7] R. Serrano-Gotarredona, et al., “On Real-Time AER 2D
Convolutions Hardware for Neuromorphic Spike Based Cortical
Processing,” IEEE TNN, 19(7), pp 1196-1219,in Press. June 2008.

[8] M. Oster, Y. Wang, R. Douglas, and S.-C. Liu, “Quantification of a
spike-based winner-take-all VLSI network”, IEEE TCAS-I, 55(10)
3160-3169, 2008

[9] NVIDIA Programming manual Version 2.0
[10] Available: jaer.wiki.sourceforge.net

