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I. DEMONSTRATION EXPERIENCE 
This demonstration shows the first implementation of a 

real-time spike-based convolution processing system which 
combines a spike based dynamic vision sensor (DVS) with 
parallel graphics processor unit (GPU) computation. Moving 
objects with different features (shape and size) are presented 
to the system. In the first demo, the system responses in real 
time to recognize and keep track of one user specified object 
and ignore the others. In the second one, the system 
concurrently extracts several features, and labels the outputs 
with different colors. Users will enjoy the real-time response 
and learn about using spike-based sensors combined with 
conventional procedural processing. 

The spikes generated by a DVS are processed through a 
spiking neural network which computes spike-based 
convolutions. The network size (128x128 pixels) and the 
convolution kernel size (minimum 48x48 pixels) make it 
impossible to compute them on a standard CPU in real time. 
The spike-based neural network is implemented on an 
NVIDIA CUDA GPU to achieve real time performance. 

Spiking neural networks capture the brain’s event-driven 
style of data processing. They can also offer low latencies 
when using spike based sensors as inputs [3] and potentially 
cheaper computation.  But algorithms based on this kind of 
network require highly parallelized computation which cannot 
be efficiently implemented with conventional sequential 
processors. GPUs potentially provide powerful platforms for 
spike-based computing. Here we map Address-Event-
Representation (AER) [3] based spike processing onto a GPU. 
We interface a 128x128 pixel AER DVS to a spiking neural 
network implemented on GPU for feature detection. We can 
achieve a speedup of up to 35x on a single NVIDIA GTX280 
card when compared to a CPU only implementation. 

II. DEMONSTRATION SETUP AND REQUIREMENTS  
There are no special requirements for the setup. The 

hardware setup consists of a spike-based dynamic vision 
sensor with 128x128 pixels [1] and a computer equipped with 
CUDA [4] enabled GPU card. We will either use a laptop with 
a medium performance GPU or we will bring a desktop with a 
high end GPU.   

The DVS generates asynchronous digital spike events and 
sends them through the USB interface to the computer. The 
main CPU of the computer uses local sockets to send and 
receives the spikes to and from the GPU host process which 
uses the GPU to compute the feature extraction. The input and 
output visualization is done through jAER [2]. The setup is 
shown in Figure.1. 

 

Figure 1: Demonstration setup.  jAER [2] is used to interface with DVS chip 
and to visualize spikes. 

REFERENCES 
 

[1] Lichtsteiner, P., C. Posch and T. Delbruck, “A 128×128 120dB 15us 
Latency Asynchronous Temporal Contrast Vision Sensor”,  IEEE 
Journal of Solid State Circuits, Feb. 2008, 43(2) 566-576, 2007. 

[2] Available: jAER.wiki.sourceforge.net 
[3] W. Maass, C.M. Bishop, “Pulsed neural networks”, MIT Press  

Cambridge, MA, USA, 1999 
[4] NVIDIA Programming manual Version 2.0, Appendix B. Available: 

nvidia.com/cuda. 

 
CPU 

jAER Viewer 
DVS Input 

 
GPU USB

jAER Viewer 
GPU Output 

DVS output 

 



 

Computing Spike-based Convolutions on GPUs 

Jayram Moorkanikara Nageswaran and Nikil Dutt 
Center for Embedded Systems 

Donald Bren School of Information and Computer Science 
University of California, Irvine, USA 92697 

jmoorkan,dutt@uci.edu 

Yingxue Wang and Tobi Delbrueck 
Institute of Neuroinformatics 

University of Zurich and ETH Zurich 
Winterthurerstrasse 190, CH-8057 Zurich, Switzerland 

yingxue,tobi@ini.phys.ethz.ch 
 

Abstract— In spiking neural networks, asynchronous spike 
events are processed in parallel by neurons. Emulations of such 
networks are traditionally computed by CPUs or realized using 
dedicated neuromorphic hardware. In many neuromorphic 
systems, the Address-Event-Representation (AER) is used for 
spike communication. In this paper we present the acceleration 
of AER based spike processing using a Graphics Processing Unit 
(GPU). In our experiment we interface a 128x128 pixel AER 
vision sensor to a spiking neural network implemented on a 
GPU for real-time convolution-based nonlinear feature 
extraction with convolution kernel sizes ranging from 48x48 to 
112x112 pixels. We show parallelism-performance trade-offs on 
GPUs for single spike per thread, multiple spikes per thread, 
and multiple objects parallelism techniques. Our 
implementation can achieve a kernel speedup of up to 35x on a 
single NVIDIA GTX280 board when compared to a CPU-only 
implementation.  

I. INTRODUCTION  
Spiking models are emerging as more biologically 

plausible than the traditional rate model for neural networks. 
They better capture the brain’s event-driven style of data 
processing and can also offer lower latencies when using spike 
based sensors as inputs [1]. Instead of being synchronized by 
central clocks, this type of network communicates by 
asynchronous events (‘spikes’); meanwhile each neuron 
continuously, and independently calculates its response 
according to its inputs. Spiking neural networks can be 
described as asynchronous systems endowed with highly 
parallel processing capability.  

In most software simulations, neural networks are 
processed sequentially by a CPU, which means only one 
neuron is updated at a given time. As a result, the performance 
degrades quickly with the increase in network size and 
connectivity. This is especially the case for large connectivity 
(fan in or out), since sequential processors need to iterate over 
every connection for each neuron. To speed up the operation, 
supercomputers or distributed computers are normally used 
for large-scale neural network simulation. But these solutions 
incur high cost. Traditional CPU architectures are not 
designed for parallel processing.  

The field of neuromorphic engineering builds hybrid 
analog/digital VLSI chips to mimic biological architectures 
present in the nervous system. These include multi-neuron 
chips, spike-based silicon retina [2], cochlea [3], etc. These 
systems communicate through the Address-Event-
Representation (AER) protocol [4]. In a pure AER approach, 
each spike is encoded as a digital address, with time 

representing itself. Most neuromorphic chips typically consist 
of an array of spiking neurons, which are independent 
computational units. These neuron arrays operate in parallel 
and in real-time. Available single or multi-chip AER systems 
are hard to scale beyond small network configurations [5] and 
to maintain or modify. Their custom nature also limits outside 
application. 

Improvements in graphics processing units (GPUs) driven 
by the gaming market provide powerful and inexpensive 
parallel computing platforms. GPUs were originally 
developed for graphics rendering and were difficult to 
program for general scientific applications. But several 
frameworks [6], led by NVIDIA’s CUDA (Compute Unified 
Device Architecture), allow programmers to more easily 
harness the parallel processing capability of GPUs with 
extended semantics for standard C code.  

This paper describes our first explorations into efficiently 
implementing an asynchronous spiking neural network on 
GPUs for real time processing of the output of an AER sensor. 
We believe this is the first investigation of AER based spike 
processing on GPUs. After we introduce the network 
architecture (Section II), we briefly discuss the GPU 
architecture (Section III), and analyze different methods to 
improve the performance of spike processing on GPUs 
(Section IV). Section V concludes with the main contributions 
of our approach and future work.  

II. NETWORK ARCHITECTURE 
For this initial work we implemented a simple architecture 

of the neuromorphic hardware system described in the 
CAVIAR project [5]. In this 3-layer architecture (Figure.1a), a 
Dynamic Vision Sensor (DVS) [2] is used as the front end, a 
middle layer of leaky integrate and fire (LIF) neurons 
computes projective convolutions with predefined kernels [7], 
and an output winner-take-all (WTA) LIF neuron suppresses 
neuron activities in the convolution layer to isolate the tracked 
feature [8]. This architecture illustrates asynchronous 
processing using a spiking neural network to study the 
effectiveness of real-time spike processing on GPUs. While 
this architecture exposes features and difficulties, it will need 
to be scaled up to a multi-layer architecture for future 
developments which are capable of more general recognition.  

The DVS [2] responds to movement in a scene (temporal 
contrast), and generates asynchronous AER events. To reduce 
redundancy and computing time, the events from the DVS are 
pre-filtered by a refractory spike filter (RSF). The RSF 
calculates the time difference between the current spike 



 

(x,y,t2) and the previous spike (x,y,t1), If the time difference 
(t2-t1) is less than the refractory period, then the spike is 
filtered out. The output from the RSF is fed into the middle 
layer that performs convolution with a defined template 
weight matrix containing the object features.  

 

 
Figure 1.  Network architecture (a) Architecture includes three stages: RSF, 
spiking convolution network (convNN), and WTA; (b-d) Example output 
from the architecture: (b) RSF output over 10ms, (c) convolution template 
(the top view and 3D view) and (d) instantaneous membrane potentials of 
convNN neurons.  

 

Figure.1b-d shows an example to explain the computation 
at each stage of the network. The scene consists of a large and 
small circle rotating around a common center of rotation and a 
static distracter at the bottom left. The ball trajectories form 
two concentric circles with different diameters. In this 
example, the distracter leads to a very high spike rate.  
Figure.1b plots the histogram of the accumulated number of 
spikes from each pixel over a 10 ms time bin after 
preprocessing by the RSF. The RSF controls the firing rate per 
pixel to be less than 100 Hz, so there is at most 1 spike per 
time bin. These individually timestamped event addresses feed 
into the 128x128 convolution network. There each event 
splatts a two dimensional Difference-of-Gaussian template, 
which defines the circular feature, onto the neuron membranes 
(Figure.1c), forming a projection field onto the neurons which 
surround the spiking pixel. The LIF neuron implements a time 
dependent memory with a leak, which endows the neuron with 
the ability to detect temporal correlations, rather than simply 
accumulating input events. The membrane potential 
(Figure.1d) of each neuron in the convolution layer shows a 
peak of activity at the center of the large circle because the 
template feature is most similar to the large ball in the scene. 
The spikes from the network then compete through a global 
WTA spiking neuron to suppress the activity of neurons with a 
lower firing rate [8].  

III. GPU ARCHITECTURE 
Figure.2 shows a simplified view of the CUDA GPU 

architecture from NVIDIA [9]. It contains an array of 

streaming multiprocessors (SMs). Each SM consists of eight 
floating-point Scalar Processors (SPs), a Special Function Unit 
(SFU), a multi-threaded instruction unit, a 16KB user-
managed shared memory, and 16KB of cache memory.  

 
Figure 2.   Simplified architectural view of CUDA GPU. 

 
In our experiments we used a single high end GTX280 

gaming GPU card that consists of 30 SMs (each operating at 
1 GHz), allowing 240 threads to execute concurrently and a 
potential performance of 300 GFLOPS. Furthermore, each 
GPU has a hardware thread scheduler that selects a group of 
threads for execution on each SM. If a thread in the group 
issues a costly external memory operation, then the thread 
scheduler switches to a new thread group, allowing a large 
number of threads (15360 in GTX280) to be active 
simultaneously. To effectively use the GPU resources, each 
thread should operate on different scalar data. And to achieve 
peak memory bandwidth performance, all threads within a 
group should access the same memory segment of size equal 
to 128 bytes [9]. 

 
IV. GPU MAPPING 

We now present the performance improvements on the 
GPU compared with CPU computation, and trade-offs in 
mapping the spiking network onto GPUs.  

The experimental setup is shown in Figure.3. The main 
CPU (thread 1) is in charge of spike communications by 
socket connections. Through this thread, the input spikes from 
the DVS come to the CPU over USB via jAER [10] and the 
GPU output is sent back to this thread and visualized in jAER. 
In the CPU-only mode, the main CPU (thread2) performs all 
the computation, including RSF (filtering), ConvNN 
(convolution), and WTA shown in Figure.1a. In GPU mode, 
only the RSF operation (Figure.1a) is performed on the CPU 
side. Other parts of the task are assigned to GPU kernel, which 
contains a block of threads where each thread calculates the 
membrane potential of one LIF neuron. The static feature 
template is mapped onto the texture cache available in each 
SM to speed memory access.  

Our GPU performance measurements include the time 
spent in data transfer between CPU and GPU. The results are 
averaged over 5 trials. The main CPU was an Intel Core2 Duo 
(6400) processor running at 2.13 GHz having a single core 
theoretical performance of 10 GFLOPS. We measured two 
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kinds of speedups: kernel speedup and application speedup. 
Kernel speedup is the ratio of CPU to GPU execution time for 
specific functions. The application speedup is the end-to-end 
application speedup, which includes AER and socket data 
transfer delays. Comparing the performance of GPU and CPU, 
a minimum speedup of at least 30x should be feasible for 
computation dominated applications. 

We propose three basic techniques for parallelizing the 
AER based spike computation, namely: single spike 
parallelism, multiple spikes parallelism (Figure.4 and 
Algorithm 1), and multiple objects parallelism. In the 
remaining section we briefly explain the mechanism, 
performance, and trade-offs in each of these techniques.  

 

 
Figure 3.  Experimental setup in CPU mode and GPU mode. jAER [10] is 
used to interface with AER DVS and to visualize AER spikes. 

 

 
Figure 4.   Illustration of spike parallelism 

 

A. Single input spike parallelization 
Here the membrane potentials are stored in the global 

memory, and are updated after each input spike is received 
(Algorithm 1a). The parallelism is purely in the spatial 
domain. The number of concurrent GPU threads updating the 
membrane potentials depends on the size of the template (For 
a 48x48 template, 2304 neurons are updated for each 
incoming spike). We incorporate alignment to generate 
coalesced global memory access. For example, if the 48x48 
2D region of neurons that needs to be updated ranges (x,y) 
from (33,34) to (80,81), we actually operate at a 16-word 
aligned region starting at (x,y)=(32,34). Thus, threads at 
locations (32,34), (32,35), and up to (32,80) do not carry out 
any memory access or computation. Although we might waste 
some threads operating at the boundary region, the high 
penalty for unaligned global memory operations are 
eliminated. Such alignment is necessary since the performance 
can drop by a factor of 10 due to unaligned or un-coalesced 
operations. Figure.5 shows the kernel level speedups. The 

overall speedup obtained by using single input spike 
parallelism is shown in the lowest curve of Figure.5. For 
template size from 48x48 to 112x112, the kernel speedup 
increases from 1.9 to 6.4. This result was not impressive, even 
though we launch a large number of threads (12544 threads 
for a 112x112 template). In the test case, about 156,000 spikes 
are received from the DVS, and each spike launches a kernel. 
However, the GPU kernel launch overhead is approximately 
20us [4], representing about 70% of the total execution time 
on the GPU. Similar kernel overhead results were measured 
using the NVIDIA profiler tool. This constrains the overall 
speedup of the single spike parallelism approach. If future 
versions of CUDA GPUs can reduce the kernel launch 
overhead, then single spike parallelism can still benefit from 
the GPU architecture.  

 
 

 
 
 

B. Multiple input spikes  parallelization 
      To improve the performance, we group the input spikes 
based on the temporal proximity of successive spikes. In this 
case, a time step Δ is defined (Figure.4), and spikes falling 
into that interval are grouped together and sent to the GPU 
simultaneously with identical timestamps. This approach 
reduces kernel launch overhead, CPU-GPU data transfer 
time, and global memory access. In this scheme every neuron 
in the 128x128 array is mapped to a GPU thread and the 
number of threads does not vary with the template size as in 
section A. Therefore, the membrane potentials can be stored 
in the fast SM (shared memory), reducing slow global 
memory access. Algorithm 1b shows an outline of this 
parallelization approach. As shown in Figure.5, this approach 
scales well with the template size and time step Δ. Using 
multiple spike grouping in CPU mode already leads to a 3x 
speedup. And the maximum GPU over CPU kernel speedup 
was roughly 22x for a template size of 112x112 with Δ=5 ms. 
Grouping spikes quantizes time and induces loss of precision 
in the neuron's membrane potential calculations, which can be 

Algorithm 1 
sx, sy,  st  = input spike location, and time 
nx, ny, nt  = neuron address, and last update time 
v(nx,ny)    = membrane potential at nx,ny 

(a) single spike parallelism (executed by each thread) 
1. // only one spike is given to GPU  
2.      [nx,ny]   = map(threadIdx, blockIdx, sx,sy) 
3 weight    = templateMatrix(nx-sx, ny-sy) 
4. calculate v(nx,ny) 
5.      fire a spike if (v(nx,ny) > threshold) 

(b) multi-spike parallelism  (executed by each thread) 
1. [nx,ny] = map(threadIdx, blockIdx) 
2. // a group of spike is given to GPU 
3. for each input spike sx, sy, st 
4.        weight    = templateMatrix(nx-sx, ny-sy) 
5.        calculate v(nx,ny) 

      6.        fire a spike if (v(nx,ny) > threshold) 
7.    endfor
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measured by the change in the total output spike count. It is 
negligible as long as 1/Δ is much smaller than the maximum 
firing rate (100 Hz in our example). Figure.6 shows the 
impact of Δ on the error in firing count. Spike grouping 
increases the firing count (the total number of spikes), but 
does not change the overall quality of feature detection. 
Similar error curves were obtained for larger template sizes 
with less than 30% for Δ≤2000us. Similar errors were also 
observed in CPU mode.  
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Figure 5.   Kernel level speedup by running the application on NVIDIA 
GPU (GTX280). Δ indicates the time step for grouping, NxN gives the 
template size, M indicates the number of networks. Error bars are not plotted 
due to their insignificant variance.  
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Figure 6.  Error in the total firing count for different values of Δ (time step) 
with template size 48x48 (in blue) and 64x64 (in magenta).  
 

C. Multiple objects parallelization 
The next level of parallelization is to extract several 

features simultaneously, which requires running several 
networks concurrently on the GPU. As a test, we ran up to 5 
LIF networks, each using its own template and operated with 
multiple spike parallelism. The speedup curve with a 112x112 
template is shown in Figure.5. The maximum kernel level 
GPU over CPU speedup was 35x. The speedup starts to 
saturate beyond Δ = 1 ms, because the GPU has sufficient 
threads running to achieve maximum performance. The 
overall application speedup (including socket delays, AER 
delays, and other parameters) was 13x in GPU mode 
compared to CPU mode (N=112, M=5).  

The GTX280 CUDA-jAER system with a single 64x64 
template can process about 200k spikes per second at the 
application level, computing about one billion connections per 
second. 

V. CONCLUSION 
This paper reports the first framework for real-time spike 

based feature extraction on a GPU using an AER sensor. So 
far this yields up to about 35x kernel speedup compared to a 
baseline CPU. Techniques of memory alignment, kernel 
overhead reduction, and other algorithmic techniques are 
necessary to achieve this speedup. Our future goal is to 
incorporate these techniques in a generic framework for real-
time simultaneous object tracking and recognition, and also to 
move towards hierarchical techniques for object recognition 
using spikes. The set of 4 dedicated convolution chips in [5] 
can process 64x64 kernels at a rate of 3 M events-per-second, 
about 4 times faster than what we achieve here, while burning 
only 1/1000 the power. The price for general purpose, 
procedural, deterministic digital computation is still evident. 
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