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Summary. Motivated by the intriguing complexity of biochemical circuitry within
individual cells we study Stochastic Chemical Reaction Networks (SCRNs), a for-
mal model that considers a set of chemical reactions acting on a finite number
of molecules in a well-stirred solution according to standard chemical kinetics equa-
tions. SCRNs have been widely used for describing naturally occurring (bio)chemical
systems, and with the advent of synthetic biology they become a promising language
for the design of artificial biochemical circuits. Our interest here is the computational
power of SCRNs and how they relate to more conventional models of computa-
tion. We survey known connections and give new connections between SCRNs and
Boolean Logic Circuits, Vector Addition Systems, Petri Nets, Gate Implementability,
Primitive Recursive Functions, Register Machines, Fractran, and Turing Machines.
A theme to these investigations is the thin line between decidable and undecidable
questions about SCRN behavior.

1 Introduction

Stochastic chemical reaction networks (SCRNs) are among the most funda-
mental models used in chemistry, biochemistry, and most recently, compu-
tational biology. Traditionally, analysis has focused on mass action kinetics,
where reactions are assumed to involve sufficiently many molecules that the
state of the system can be accurately represented by continuous molecular con-
centrations with the dynamics given by deterministic differential equations.
However, analyzing the kinetics of small-scale chemical processes involving
a finite number of molecules, such as occurs within cells, requires stochas-
tic dynamics that explicitly track the exact number of each molecular species
[1, 2, 3]. For example, over 80% of the genes in the E. coli chromosome are ex-
pressed at fewer than a hundred copies per cell [4], averaging, for example, only
10 molecules of Lac repressor [5]. Further, observations and computer simu-
lations have shown that stochastic effects resulting from these small numbers
may be physiologically significant [6, 7, 8].
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In this paper, we examine the computational power of Stochastic Chem-
ical Reaction Networks. Stochastic Chemical Reaction Networks are closely
related to computational models such as Petri nets [9], Vector Addition Sys-
tems (VASs) [10], Fractran [11, 12], and Register Machines (sometimes called
Counter Machines) [13], and for many of these systems we can also consider
stochastic or nondeterministic variants. Our initial route into this subject
came through the analysis of a seemingly quite unrelated question: What dig-
ital logic circuits are constructible with a given set of gate types when it is
not possible to copy values (as is true for example in quantum circuits)? It
turns out that this gate implementability question, as we will discuss in Sec-
tion 4.1, is very closely related to the question of what states can be reached
by a Stochastic Chemical Reaction Network.

Given the importance of stochastic behavior in Chemical Reaction Net-
works, it it particularly interesting that whereas most questions of possibility
concerning the behavior of these models are decidable [10], the correspond-
ing questions of probability are undecidable [14, 15]. This result derives from
showing that Stochastic Chemical Reaction Networks can simulate Register
Machines [16] efficiently [17] within a known error bound that is independent
of the unknown number of steps prior to halting [14]. This result — that when
answers must be guaranteed to be correct, computational power is limited,
but when an arbitrarily small error probability can be tolerated, the compu-
tational power is dramatically increased — can be immediately applied to the
other models (Petri nets and VASs) when they are endowed with appropriate
stochastic rates. This result is surprising, in light of the relatively ineffective
role the addition of probability plays in the widely held belief that BPP = P.

Several further results extend and refine this distinction.

e When endowed with special fast reactions guaranteed to occur before any
slow reaction, Stochastic Chemical Reaction Networks become Turing uni-
versal and thus can compute any computable function without error.

e Stochastic Chemical Reaction Networks with reaction rates governed by
standard chemical kinetics can compute any computable function with
probability of error less than e for any ¢ > 0, but for ¢ = 0 universal
computation is impossible [10, 17, 14].

e Stochastic Chemical Reaction Networks in which each reaction’s proba-
bility of occuring depends only on what reactions are possible (but not
on the concentrations) are not capable of universal computation with any
fixed bounded probability of success.

e Taking the result of the longest possible sequence of reactions as the an-
swer, Stochastic Chemical Reaction Networks are capable of computing
exactly the class of primitive recursive functions without error.

e The time and space requirements for Stochastic Chemical Reaction Net-
works doing computation, compared to a Turing Machine, are a simple
polynomial slowdown in time, but an exponential increase in space [17, 14].
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This last result, regarding the complexity, is the best that can be expected,
due to the unavoidable fact that information must effectively be stored in the
bits comprising the number of molecules present of each species. For uniform
computations, wherein the same finite set of chemical species and reactions are
used to solve any instance of the problem, storing n bits requires the presence
of 22(") molecules. In practice, keeping an exponentially large solution well-
stirred may take a correspondingly large amount of time, but in any event, due
to the space constraint, Stochastic Chemical Reaction Networks will effectively
be limited to logspace computations.

The intention of this paper is to review, present, and discuss these results
at an intuitive level, with an occasional foray into formal exactitude. Enjoy.

2 Formalization of Chemistry

2.1 Stochastic Chemical Reaction Networks

A Stochastic Chemical Reaction Network is defined as a finite set of d reac-
tions acting on a finite number m of species. Each reaction « is defined as a
vector of non-negative integers specifying the stoichiometry of the reactants,
ro = (Fa1s---,Ta,m), together with another vector of non-negative integers
specifying the stoichiometry of the products, pa = (Pa.1;- - - Pa,m)- The stoi-
chiometry is the non-negative number of copies of each species required for the
reaction to take place, or produced when the reaction does take place. We will
use capital letters to refer to various species and we will use standard chemical
notation to describe reactions. So for example, the reaction A+ D — A+ 2F
consumes 1 molecule of species A and 1 molecule of species D and produces
1 molecule of species A and 2 molecules of species E (see figure 1). In this
reaction, A acts catalytically because it must be present for the reaction to
occur, but its number is unchanged when the reaction does occur.?

The state of the network is defined as a vector of non-negative integers
specifying the quantities present of each species, A = (q1,...,qm). A reaction
is possible in state A only if there are enough reactants present, that is,
Vi, q; > Tq,;- When reaction a occurs in state A, the reactant molecules are
used up and the products are produced. The new state is B = A x a =
(1 = Ta1 + Pais- s @m — Taym + Da,m). We write A £ B if there is some
reaction in the Stochastic Chemical Reaction Network C that can change A
to B; we write % for the reflexive transitive closure of . We write Pr[A oA B]
to indicate the probability that, given that the state is initially A, the next

reaction will transition to the state to B. Pr[A s B] refers to the probability
that at some time in the future, the system is in state B.

3 In chemistry, catalysis can involve a series of reactions or intermediate states. In
this paper, however, we will generally use the word catalyst to mean a species
which participates in, but is unchanged by, a single reaction.
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Every reaction a has an associated rate constant k, > 0. The rate of every
reaction « is proportional to the concentrations (number of molecules present)
of each reactant, with the constant of proportionality being given by the rate
constant k. Specifically, given a volume V', for any state A = (q1,...,Gm),
the rate of reaction « in that state is

— (gi)=et def ¢!
o(A) = ko V where ¢~ = —aglg—1)--(q—7r+1).
e U Vres R T A
(1)

Since the solution is assumed to be well-stirred, the time until a particular
reaction « occurs in state A is an exponentially distributed random variable
with the rate parameter p,(A); i.e. the dynamics of a Stochastic Chemical
Reaction Network is a continuous-time Markov process, defined as follows.

We write Pr[A < B] to indicate the probability that, given that the state
is initially A, the next reaction will transition to the state to /3. These prob-
abilities are given by

Pr[A S B) = PAZE 2)
PA
where pa_.p = Z pa(A) and pigt = Z PA—B
a S.t. Axa=B B

The average time for a step A — B to occur is 1/p/%*, and the average time for

a sequence of steps is simply the sum of the average times for each step. We

write Pr[A s B] to refer to the probability that at some time in the future,
the system is in state B.

This model is commonly used for biochemical modelling [1, 2, 3]. When
using this model as a language for describing real chemical systems, the rea-
sonableness of the underlying assumptions are affirmed (or denied) by the
model’s accuracy with respect to the real system. However, in the work pre-
sented here we will be using the model as a programming language—we will
write down sets of formal chemical reactions that have no known basis in
reality, and any network that is formally admitted by the model will be fair
game. That is, while Stochastic Chemical Reaction Networks are usually used
descriptively, we will be using them prescriptively: we imagine that if we can
specify a network of interest to us, we can then hand it off to a talented syn-
thetic chemist or synthetic biologist who will design molecules that carry out
each of the reactions. Therefore, our concern is with what kinds of systems
the formal model is capable of describing—because our philosophy is that if it
can be described, it can be made. Of course, this might not be true. A similar
issue arises in classical models of computation: It is often observed that Turing
Machines cannot be built, because it is impossible to build an infinite tape or
a machine that is infinitely reliable. Nonetheless, it is enlightening to study
them. We believe the formal study of Stochastic Chemical Reaction Networks
will be similarly enlightening. But before proceeding, it is worth considering
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just how unrealistic the model can become when we are given free reign to
postulate arbitrary networks.

An immediate concern is that, while we will consider SCRNs that produce
arbitrarily large numbers of molecules, it is impossible that so many molecules
can fit within a pre-determined volume. Thus we recognize that the reaction
volume V must change with the total number of molecules present, which in
turn will slow down all reactions involving more than one molecule as reac-
tants. Choosing V' to scale proportionally with the total number of molecules
present (of any form) results in a model appropriate for analysis of reaction
times. Note, however, that for any Stochastic Chemical Reaction Network
in which every reaction involves exactly the same number of reactants, the

transition probabilities Pr[.A < B] are independent of the volume. For all
the positive results discussed in this paper, we were able to design Stochastic
Chemical Reaction Networks involving exactly two reactants in every reac-
tion, and therefore volume needs to be considered only where computation
time is treated. A remaining concern — which we cannot satisfactorily address
— is that the assumption of a well-stirred reaction may become less tenable for
large volumes. (However, this assumption seems intrinsically no less justified
than the common assumption that wires in boolean circuits may be arbitrarily
long without transmission errors, for example.)

A second immediate concern is that the reactions we consider are of a very
general form, including reactions such as A — A + B that seem to violate
the conservation of energy and mass. The model also disregards the intrinsic
reversibility of elementary chemical steps. In other words, the model allows the
reaction A 4+ B — C without the corresponding reverse reaction C' — A + B.
This is true, but it is necessary for modeling biochemical circuits within the
cell, such as genetic regulatory networks that control the production of mRNA
molecules (transcription) and of protein molecules (translation). Although no
real reaction is strictly irreversible, many natural cellular reactions such as
cleavage of DNA can be modeled as being effectively irreversible, or an implicit
energy source (such as ATP) may be present in sufficiently high quantities to
drive the reaction forward strongly. Thus, our models intrinsically assume that
energy and mass are available in the form of chemical fuel (analogous to ATP,
activated nucleotides, and amino acids) that is sufficient to drive reactions
irreversibly and to allow the creation of new molecules. Together with the
dependence of V' on the total number of molecules, we envision the reaction
solution as a two-dimensional puddle that grows and shrinks as it adsorbs fuel
from and releases waste to the environment. This is very similar in spirit to
computational models such as Turing Machines and Stack Machines that add
resources (tape or stack space) as they are needed.

Another potentially unrealistic feature of the SCRN formalism is that it
allows reactions of any order (any number of reactants), despite the generally
accepted principle that all underlying physical chemical reactions are binary
and that higher order reactions are approximations in situations with some
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very fast rate constants. For this reason, in our constructions we restrict our-
selves to use reactions with at most two reactants. Further, it is generally
accepted that Michaelis-Menten kinetics are followed for catalytic reactions.
For example, the above reaction A + B — C' + B should be decomposed into
two reactions A+ B — M and M — C + B where M is some intermedi-
ate species, but the abbreviated intermediate-free form is also allowed in the
model. Another principle involving catalysts is that if a reaction can occur in
the presence of a catalyst, then it can usually also occur (albeit usually much
more slowly) without the catalyst. For example if A+ B — C' + B can occur
then so can A — C. Continuing in this vein, a wealth of further restrictions,
each applicable in certain contexts, could arise from detailed considerations
of the types of molecules being used.

Instead of focusing on these or other restrictions, we focus on the cleanest
and most elegant formalism for Stochastic Chemical Reaction Networks and
treat it as a programming language. We happily leave the task of accurately
implementing our networks to the synthetic chemists and synthetic biologists!

2.2 Other Models of Chemical Computing

It is worth noting that several other flavors of chemical system have been
shown to be Turing universal. Bennett [18] sketched a set of hypothetical
enzymes that will modify a information-bearing polymer (such as DNA) so as
to exactly and efficiently simulate a Turing Machine. In fact, he even analyzed
the amount of energy required per computational step and argued that if
the reactions are made chemically reversible and biased only slightly in the
favorable direction, an arbitrarily small amount of energy per computational
step can be achieved. Since then, there have been many more formal works
proving that biochemical reactions that act on polymers can perform Turing-
universal computation (e.g. [19, 20, 21]). In all of these studies, unlike the
work presented here, there are an infinite number of distinct chemical species
(polymers with different lengths and different sequences) and thus, formally,
an infinite number of distinct chemical reactions. These reactions, of course,
can be represented finitely using an augmented notation (e.g. “cut the polymer
in the middle of any ATTGCAAT subsequence”), but as such they are not
finite Stochastic Chemical Reaction Networks.

A second common way of achieving Turing universality is through com-
partmentalization. By having a potentially unbounded number of spatially
separate compartments, each compartment can implement a finite state ma-
chine and store a fixed amount of information. Communication between com-
partments can be achieved by diffision of specific species, or by explicit transfer
reactions. This is, for example, exploited in the Chemical Abstract Machine
[22] and in Membrane Systems [23]. Note that [24], contrary to its title, only
establishes that Chemical Reaction Networks appear to be able to implement
feed-forward circuits (along the lines of section 3), making them empirically
at least P-hard.
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3 Bounded Models: Boolean Logic Circuits

A natural relation to boolean circuits leads one to expect that Stochastic
Chemical Reaction Networks may well have similar computational power. For
example, given a circuit built from NAND gates, we can construct a corre-
sponding Stochastic Chemical Reaction Network by replacing each gate

x = x; NAND z;
with the four reactions

Ai+Aj — Ai+Aj+ By
Ai+Bj — Ai + Bj + By
Bi+Aj — Bi + Aj + By
Bi+ Bj — Bi + Bj + A

The presence of a single A; molecule represents that x; = 0, the presence
of a single B; molecule represents that x; = 1, and the presence of neither
indicates that x; has not yet been computed. If the circuit has only feed-
forward dependencies, it is easy to see that if one starts with a single A or B
molecule for each input variable, then with probability 1 the correct species
will be eventually produced for each output variable. In this sense, a Stochastic
Chemical Reaction Network can deterministically compute the same function
as the boolean circuit, despite the uncontrollable order in which reactions
occur. Note that in this particular network, the specific rate constants can
affect the speed with which the computation occurs, but do not change the
eventuality.

Circuits of the same general flavor as the one above can be modified to work
with mass action chemical kinetics [25, 24], showing that individual boolean
logic gates can be constructed, and that they can be connected together into
a circuit. This provides for efficient computation but is a non-uniform model:
the number of chemical species increases with the number of gates in the
circuit and thus with the size of the problem being solved.

Contrary to the limited (finite state) computational power of boolean cir-
cuits, individual Stochastic Chemical Reaction Networks are not limited by fi-
nite state spaces: there may potentially be an unbounded number of molecules
of any given species. As even minimal finite-state machinery coupled with un-
bounded memory tends to allow for Turing-universal computation, one might
speculate that the same should hold true for Stochastic Chemical Reaction
Networks. If so, then Stochastic Chemical Reaction Networks would be capa-
ble of uniform computation, and predicting their long-term behavior would
be undecidable.

The following sections will show that this is indeed the case. Stochastic
Chemical Reaction Networks are in fact much more powerful than one might
think from the simple boolean circuit approach shown above.
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4 Unordered Program Models: Petri Nets and VASs

The main complicating factor when trying to “program” a Stochastic Chemi-
cal Reaction Network is that reactions occur in an uncontrollable order, mak-
ing it quite difficult to guarantee a unique outcome for a non-trivial computa-
tion. Stochastic Chemical Reaction Network computations that are arranged
so as to guarantee a unique outcome will be called confluent computations.

We can find clues regarding how to program such systems, including rel-
evant theorems, by examining the related computational models mentioned
above and shown in figure 1. The differences between the models are mi-
nor, amounting mostly just to different interpretations or viewpoints of the
same underlying fundamental process. For example, consider Petri nets [26],
as shown in figure 1(b). In this model a network consists of a directed bipartite
graph, having connections between places (shown as circles) and transitions
(shown as black bars). The state consists of a non-negative number of tokens
at each place, and a new state is achieved by the firing of a transition. When
a transition fires, it consumes one token from the incident place for each in-
coming edge, and produces one token into the incident place for each outgoing
edge (there is no difference between the two sides of the black bar). Thus, a
transition is enabled only if there are enough tokens in the input places. In any
given state, there are typically many transitions that could fire. Which one
fires first is intentionally left unspecified: the theory of Petri nets addresses
exactly the question of how to analyze asynchronous events. If the system uses
rate constants as in equation 1 for each transition (in which case the model is
a type of stochastic Petri net), the model is formally identical to Stochastic
Chemical Reaction Networks: each place corresponds to a molecular species
(the number of tokens is the number of molecules) and each transition corre-
sponds to a reaction [27].

A closely related model, Vector Addition Systems (VASs), was developed
and studied by Karp and Miller [10] for analyzing asynchronous parallel pro-
cesses. Here, questions concern walks through an m dimensional integer lat-
tice, where each step must be one of d given vectors V,, € Z"", and each point
in the walk must have no negative coordinates. Whether it is possible to walk
from a point z to a point y (the reachability question) is in fact decidable [28].
It is also decidable whether it is possible for a walk to enter a linearly-defined
subregion [29] — a special case is whether the i** component of the point ever
becomes non-zero (the producibility question).

The correspondence between Vector Addition Systems, Stochastic Chem-
ical Reaction Networks and Petri nets is direct. First consider chemical re-
actions in which no species occurs both on the left side (as a reactant) and
on the right side (as a product) — i.e. reactions that have no instantaneous
catalysts. When such a reaction « occurs, the state of the Stochastic Chemical
Reaction Network, represented as a vector, changes by addition of the vector
Pa —To. Thus the trajectory of states is a walk through Z™ wherein each step
is any of d given vectors, subject to the inequalities requiring that the number
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A= B A+D — A+42E
¢ =D B+EHB+D
B+C — A thEo B

ABCDETF G
(-11.00 0 0 0)
(0 0-1100 0)
(1 -1-100 0 0)
(=10 0-10 1 0)
(1000 2-10)
(0-100-10 1)
(0101 0 0-1)

2 13 242 17 21

3T 242
2 5 15 14 13 33 17

Figure 1. Four representations of the same computation. Starting with 1
A and n C’s, the maximum number of D’s that can be produced is 2". (a) A
Stochastic Chemical Reaction Network. (b) A Petri net. Each circle corresponds
to a place (a molecular species), and each black bar corresponds to a transition
(a reaction). (c¢) A Vector Addition System. Note that dimensions F' and G
must be added to the Vector Addition System to capture the two reactions
that are catalyzed by A and B. (d) A Fractran program. The numerators
correspond to the reaction products, and the denominators correspond to the
reactants. The first seven prime numbers are used here in correspondence to
the letters A through G in the other examples. As in the previous example, F'
(13) and G (17) must be introduced, here to avoid unreduced fractions for the
catalyzed reactions.
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of molecules of each species remain non-negative, thus restricting the walk to
the non-negative orthant.

Karp and Miller’s decidability results for VASs [10] directly imply the
decidability of the question of whether a catalyst-free Stochastic Chemical
Reaction Network can possibly produce a given target molecule (the produca-
bility question again). As a consequence, confluent computation by Stochastic
Chemical Reaction Networks cannot be Turing universal, since questions such
as whether the YES output molecule or the NO output molecule will be pro-
duced are decidable. The restriction to catalyst-free reactions is inessential
here: each catalytic reaction can be replaced by two new reactions involving a
new molecular species (an “intermediate state”, see figure 1(c)), after which
all reachability and producibility questions (not involving the new species) are
identical for the catalyst-free and the catalyst-containing networks.

4.1 Gate Implementability

The initial path leading the authors to consider the computational power
of Stochastic Chemical Reaction Networks came from a surprisingly unre-
lated topic. We were considering the general question of whether circuits con-
structed from available gate types are able to implement a desired target
function. We call this the gate implementability question. The terms gate and
Sfunction will be used interchangeably here.

It has been known since the time of Post [30] that, given a set of functions of
boolean values, only a finite number of tests need to be done to know whether
a particular target function can or cannot be implemented by them, if function
values, once produced, can be used repeatedly (in other words, if fan-out is
available). However, in situations where values cannot be used repeatedly
(as is the case for example in quantum computation), the implementability
question becomes much less clear. Indeed, if the analogous questions are asked
for circuits built of relations, rather than functions, then the ability to reuse
values makes this question become decidable, whereas it is undecidable if
values, once produced, can only be used once [31].

It is natural to wonder, if fan-out is not available, might the gate imple-
mentability question become undecidable, as it did for relations?

First of all, we have to be clear about what we mean by “circuits without
fan-out.” From a feed-forward point of view, a fan-out node in a circuit is a
device with one input and two outputs, and both outputs equal the input. So,
we will be generous and expand the definition of “function” to allow multiple
outputs. (If we do not do this, then all circuits must be trees, and it becomes
difficult to implement anything at all, since in contrast with formulas, inputs
cannot be used at more than one leaf of the tree.) We will define the outputs
of a feed-forward circuit to be all of the output wires which have not been fed
into some other gate, and the inputs are of course all the input wires which
are not produced as the output of another gate.
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This gives us an implementability question for feed-forward circuits that is
comparable to the implementability question for relations. As with relations,
the availability of fan-out makes the question easily decidable: Simply iter-
atively expand the set of implementable functions, starting with the inputs
and the given functions. However, without fan-out available, the situation is
not quite so easy.

4.2 Gate Implementability is Equivalent to Reachability in
Stochastic Chemical Reaction Networks

In this section, we will show that any gate implementability question can in
fact be reduced to a reachability question for a chemical reaction network, and
vice versa. Intuitively, the idea is that the wires in the circuit correspond to
molecules, the gates in the circuit correspond to reactions, the designer of the
circuit corresponds to the source of randomness in the Stochastic Chemical
Reaction Network, and the ability to implement a given function corresponds
to the reachability question for the Stochastic Chemical Reaction Network.

The idea for the forward direction is that we consider all possible inputs to
the circuit simultaneously. Since we know what we are trying to implement, we
know how many inputs there are, and what the possible values for each input
are, and thus we know exactly how many distinct possible states the entire
circuit can be in. For example, if there are five boolean inputs, then there are
25 = 32 possible states for the circuit (one for each possible combination of
values on the input wires), and every wire in the circuit can have its behavior
described by a vector of length 32, giving the value of that wire in each of the
32 possible states the circuit might be in. In this example, the five inputs to
the circuit would be described by the following vectors:

(0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0, 1)
(0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1)
(0,0,0,0,1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0,1,1,1,1)
(0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1)
(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, 1)
The vector describing an output of a gate is easily calculated from the vectors

for the inputs.

The corresponding chemical reaction network will be designed to have
one species for each possible vector. (In the example above, there would be
232 gpecies.) Then, each gate available in the implementability question is
converted into a long list of chemical reactions: For each possible combination
of input vectors to the gate, we provide a chemical reaction which takes those
species as reactants and produces the appropriate species (those corresponding
to the correct outputs of the gate for these inputs) as products.

The starting state for the chemical reaction network is one molecule of
each of the species used as inputs (in the example above, recalling that each
vector is a species, the starting state would be the five listed vectors), and the
target state for the reachability question is simply the corresponding set of



12 Matthew Cook, David Soloveichik, Erik Winfree, and Jehoshua Bruck

output vector species for the target gate in the implementability question. It is
clear from the design that the target state is reachable in the chemical reaction
network if and only if the target gate is implementable in the implementability
question.

Now we will show the other direction, that any reachability question for
a chemical reaction network can be reduced to an implementability question
for gates without fan-out.

The idea for this direction is to design some gates that can only be use-
fully combined by following exactly the reactions of the given network. The
alphabet of values used by the gates will consist of one symbol for each of
the chemical species, plus an extra symbol “e,” which we will think of as an
error symbol. There will be one gate per reaction, plus one extra gate. Each
reaction will be converted into a gate with as many inputs as reactants and as
many outputs as products. For example, the reaction A+ 2B — C'+ D would
become a gate with 3 inputs and 2 outputs, and the computation performed
by the gate is almost trivial: It outputs € on every output, unless its inputs
are (A, B, B), in which case it outputs (C, D). Other reactions are similarly
converted. We also provide an extra gate with two inputs and two outputs,
which is a two-wire identity gate, except that if either input is €, then both
outputs are e. Otherwise the first output matches the first input, and the
second output matches the second input. The purpose of this gate is to allow
the error symbol € to spread from one wire to another, as we will see shortly.

The initial state and target state for the reachability question then become
the inputs and outputs of the target gate, and again every other possible input
should lead to all outputs being e.

Any satisfactory solution to this implementability question clearly cor-
responds to a partially ordered sequence of reactions that demonstrates a
positive answer to the reachability question. Conversely, any sequence of re-
actions reaching the target state of the reachability question can be directly
converted into a circuit of gates that is almost guaranteed to implement the
target gate. The only potential problem is that if the input given to the cir-
cuit differs just slightly from the intended input, then some of the gates will
still be getting exactly the inputs that were intended, and for some circuits,
it may not be the case that all outputs are €, but rather just some subset
of them. It is for this reason that we supplied the extra “error propagating”
gate. If necessary, this gate can be used many times at the end of a circuit
(2n-3 times for a circuit with n outputs) to ensure that if any outputs are
€, then all outputs must be e. Clearly the availability of this gate will not
otherwise affect the ability to simulate the sequence of reactions. Thus, the
answer to the gate implementability question will match exactly the answer
to the chemical reachability question.
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5 Almost Universal: Primitive Recursive Computation

It has long been known that certain questions about whether a Petri net
“might do X” are decidable, where typical values of X are, in the language of
Stochastic Chemical Reaction Networks, “keep having reactions forever” or
“grow without bound” or “reach a certain state” or “produce at least some
given quantities of given species” [10, 28, 9]. These results carry over directly
to Stochastic Chemical Reaction Networks so long as the question does not
ask about the probability of X happening, but only about the possibility of it
happening (i.e. only about whether the probability of X is zero vs. non-zero).

As mentioned in section 4, confluent computation by Stochastic Chemical
Reaction Networks can only implement decidable decision problems. Thus,
for questions about the output of a Stochastic Chemical Reaction Network
(given by some final quantity of the output species) to have any hope of being
undecidable, the output must be probabilistic in nature. We will examine
questions of probability in section 6; here we restrict ourselves to questions of
possibility.

Although the questions of possibility listed above are known to be de-
cidable, their complexity is sometimes not so clear. The complexity of the
problem for X=*%“grow without bound” is known to be doubly exponential
[32], but the complexity of the problem for X=¢%reach a certain state” has
been an open problem for decades [9].

Even though double exponential complexity sounds quite complex, the
complexity of these types of problems can in fact be far greater. Some sus-
pect that the reachability problem (i.e., X=*%reach a certain state”) may have
complexity comparable to primitive recursive functions, which are so powerful
that few natural non-primitive recursive functions are known.

In section 5.3 we present examples of problems whose complexity does
exactly match the power of primitive recursive functions. Specifically, if X =
“have a molecule of S7 present when attaining the maximum possible amount
of S5,” or X = “have a molecule of S; present after taking the longest possible
(over all sequences) sequence of reactions.” These questions are equivalent
in power to primitive recursively defined predicates, where the number of
primitive recursive functions used to recursively build up the predicate is
on the order of the number of molecular species in the Stochastic Chemical
Reaction Network, and the input to the predicate corresponds to the initial
state of the Stochastic Chemical Reaction Network.

To show that such question are no more powerful than primitive recursive
functions, in section 5.2 we show that for any Stochastic Chemical Reaction
Network, it is possible to define a primitive recursive function which can return
the amount of S7 that is produced by whichever sequence of reactions leads to
the largest possible amount of S3. Our proof, while far from straightforward,
is much simpler than previous similar proofs (which used results on bounds
for solutions to bounded versions of Hilbert’s tenth problem), since it gives
an explicitly primitive recursive formula bounding the size of the tree of all
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possible runs of the Stochastic Chemical Reaction Network. The bulk of the
proof lies in defining this bounding function and proving that it indeed bounds
the depth of the tree. This bound enables the definition of a primitive recursive
function which analyzes the entire tree, explicitly finding the run with the
largest amount of S5 and returning the corresponding amount of .S;.

5.1 Primitive Recursive Functions

Primitive Recursive Functions were first investigated in the 1920’s, starting
with Skolem [33], who pointed out that many standard functions on non-
negative integers can be defined using just function composition and recursion,
starting with just the successor function. This surprising fact is illustrated in
figure 2, which shows how functions can be built up in this way, including for
example a function that will tell you whether a number is prime or not.

Recursive Definition

Function Name ifn=0 ifn=m+1
Sn)y=n+1 successor
A(n,a) =n+a addition a S(A(m,a))
M(n,a) =nxa multiplication 0 A(a, M(m,a))
E(n,a) = a" exponentiation 1 M(a, E(m,a))
V(n) = sign(n) positivity 0 1
Pn)=n-1 predecessor 0 m
D(a,n)=a—n subtraction a P(D(a,m))
M(S(R(m, a)),
R(n,a) =nmod a remainder 0 V(D(P(a),
n+1 M(CR(W)G))))
y m7 a )
C(n,a) Z-:HQZ mod ¢ mod product 1 R(a, S($(m))))
V(M(m,

Z(n) =1if n is prime primality 0 {

Figure 2. Examples of Primitive Recursive Functions. Starting with only the
successor function, other functions can be built up one by one using a simple
form of recursion. Where the function being defined is used in its own recursive
definition, the rule is that it must have exactly the same arguments but with
n replaced by m.

The wide range of functions that could be defined in this way led logicians
to wonder whether all mathematical functions could be defined in this way, or
at least all those functions for which there exists a deterministic algorithm for
calculating the value. Recall that this was long before people had ever written
algorithms for electronic computers, before Godel’s famous incompleteness
theorem [34] and before Turing Machines [35], in short, before people had
figured out any satisfactory way of standardizing or formalizing the process
of mathematical calculation. Perhaps this was the way?
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It turned out that this was not the way. In 1928, Ackermann [36] showed
that there is a limit to how fast a Primitive Recursive Function can grow (de-
pending on how many other functions are used to help define it), and there
turn out to exist simple deterministic algorithms for calculating functions that
grow even faster than this limit, as shown in figure 3. Thus, the world of Prim-
itive Recursive Functions is not large enough to encompass all mathematical
calculations.

Row 0 Row 1 Row 2 Row 3
15 15 15 15
1 1 1 1
5 5 5 5
0 0 0 0

0 5 10 15 0 5 10 15 0 5 10 15 0 5 10 15
Ap(n)=n+1 Ai(n)=n+2 Az(n)=2n+3 Az(n)=2""3-3
1,2,3,4,5,... 2,3,4,5,6,... 3,5,7,9,11,... 5,13,29,61,...

Figure 3. An illustration of the Ackermann function. The Ackermann func-
tion A;(n) is a function of two variables, i and n. The i*® row of the Ackermann
function, A;, can be constructed visually from the previous row A;_; as shown:
A zig-zag line starts going up at z = 1, and bounces back and forth between
the function values (shown as dots) and the line z = y. The function values hit
by the zig-zag line become the entries for the next row. The formal definition is
Ao =85, Aix1(0) = Ai(1), Aixi(m + 1) = A;(Ait1(m)). Although each row is
a Primitive Recursive Function, the diagonal f(n) = A, (n) grows faster than
any Primitive Recursive Function in the same sense that 2" grows faster than
any polynomial.

Not long after Ackermann’s paper made it clear that Primitive Recursive
Functions were merely a strict subset of the functions that can be calculated,
Herbrand in 1931 [37] and Godel in 1934 [38] defined General Recursive Func-
tions, which in 1936 were argued by both Church [39] and Turing [35] to
correspond exactly to the set of all functions that can possibly be calculated
in any algorithmic way. This argument was accepted by most people, and is
now well known as the Church-Turing Thesis.

A major distinction between the General Recursive Functions and the
Primitive Recursive Functions is that the latter (and also Ackermann’s func-
tion) are defined for all inputs—that is to say, computation eventually halts
and produces an output, no matter what the input is—whereas the former in-
clude additional functions, some of which halt only for some inputs. Figuring
out which General Recursive Functions halt for which input is known as the
Halting Problem, and it is formally undecidable: there is no General Recur-
sive Function that will always correctly determine whether a given algorithm
halts.
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While most people turned their attention at this point to General Recur-
sive Functions, Rézsa Péter [40] continued to develop the theory of Primitive
Recursive Functions, treating them not as a historical mistake, but as an op-
portunity for study. Her work makes it clear that the following definition is
an equivalent way to define Primitive Recursive Functions:

Definition: Primitive Recursive Functions are exactly those functions
which can be computed by a Turing Machine in time bounded by some row
of the Ackermann function.

This definition makes it evident that just about every algorithm ever used
for practical calculation is in fact Primitive Recursive, since most rows of the
Ackermann function grow far faster than the time required for any practical
calculation.

Although Péter’s work showed that many seemingly different definitions
all lead to this same set of functions, the definitions were rather abstractly
mathematical in nature, none of them corresponding to what we would think
of today as a fundamental computational model like a Turing Machine. So
it is interesting that Primitive Recursive Functions arise here in relation to
Stochastic Chemical Reaction Networks, a fundamentally reality-based model.

5.2 A Primitive Recursive Bound on the Depth of the Tree of
Reachable States

Theorem 1. Given two states A and B, in order to determine whether start-
ing from A a Stochastic Chemical Reaction Network can reach a state with
at least as many molecules as B is decidable and requires a search tree of size
bounded by a primitive recursive function of the number of molecules of each
species and the stoichiometric coefficients of the reactants.

Here we present the details of our proof that the tree of possible execution
paths of a Stochastic Chemical Reaction Network has depth bounded by a
primitive recursive function whose “degree” is on the order of the number of
species in the Stochastic Chemical Reaction Network.

For those familiar with the subject, the algorithm is nearly identical to
Karp and Miller’s [10] but the rest of the proof is much more direct than
comparable previous proofs which relate other questions about the tree to
primitive recursive functions. See also [15].

The Algorithm

In this section we will present an algorithm for finding which species can be
produced and which cannot. That is, it will find out whether any reachable
states have non-zero levels of any species of interest. In fact, it will do slightly
more: For any given set of molecule quantities (such as (104,3B,...)), the
algorithm can find out whether or not it is possible to reach any state that
has at least these levels of these species.
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Figure 4. The search tree for the system of figure 1, starting on the left
with state (A, B, D). Solid lines represent single reactions, while dotted lines
represent any number of further repetitions of a completed cycle that purely
increases a molecular quantity, leading to the attainability of arbitrarily large
quantities of that species, shown for example as @. The dashed circles are
repeats of previous states and thus do not require further exploration even if
further reactions are possible.

In this example, the search tree is finite. Must this always be the case?
If so, then there are no undecidable questions among questions which can be
answered by scanning the full search tree. This section shows that the search
tree is finite, and indeed boundable by a primitive recursive function.

The algorithm is simply to search through the full tree of all possible
reaction sequences, using a couple of simple tricks to try to avoid getting
stuck in infinite loops.

If state B has at least as many molecules of each species as state A does,
then we will say that B > A. On the other hand, if B has more of some species
and less of others than A has, we say that B and A are incomparable: A %2 B
and B ? A.

A fundamental observation is that if the system is in state A at some point,
and then later it is in state B, and B > A, then the sequence of reactions that
led from A to B may be repeated arbitrarily many times before continuing.
This would appear to be a serious obstacle to exhaustively searching the space
of reachable states, but in fact it will be the key to bounding the search. When
this happens, we can consider two cases: B= A or B > A.

If B = A, then this sequence of reactions leading from A to B had no effect,
and may be omitted entirely. In particular, it is clear that the shortest sequence
of reactions leading from the initial state of the system to any particular final
state will not visit any state more than once. Thus, no possibilities will be
missed if the search tree is simply pruned at any point where a previous state
is repeated.

On the other hand, if B > A, that is, if B has strictly more of some species
than the earlier state A had, then by repeating this sequence of reactions,
an arbitrarily large amount of those species may be produced. We will call
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such species freely generatable after the sequence of reactions from A to B
has occurred. If at any later point in the calculation, some potential reaction
is not possible because one of the freely generatable species has run out,
we can simply retroactively assume that more repeats of the sequence from
A to B were performed back at the time when that species became freely
generatable, and this will allow the potential reaction to proceed after all.
For this reason, when a species becomes freely generatable, it may effectively
be removed from the problem statement, reducing the problem to a simpler
problem. So although the search tree cannot be pruned when B is reached,
the subtree beyond that point corresponds to searching the space of a simpler
problem, in which a further repetition of the reaction sequence leading from
A to B would indeed lead to pruning, since states A and B are equal in the
reduced problem. The algorithm therefore specifies the quantity of a freely
generatable species as oo, a value which is considered larger than any other
value, and which is unchanged by the addition or removal of molecules.

It remains to show that the search tree is always finite, and thus this
algorithm will always terminate.

The Data Structure

Now we will define a data structure whose purpose will be to help us define
the bound in the next section.

At each point in the search tree, there is a (usually infinite) set S of all
states S satisfying S 2 A for every A which is an ancestor of that point in
the search tree. We will call this set of states S the remaining states for that
point in the search tree, because these are the states which, if reached on the
next step, will not lead to pruning or simplification. Our proof will examine
this set of states and use the structure of this set to provide a bound on how
much deeper the search tree can be.

For any given point in the search tree, we represent the set of remaining
states by lists L;, with each entry in list L; representing an i-dimensional
region of remaining states, specified by n — i integers (specifying quantities of
n — i of the n species). The union of all regions from all lists exactly yields
the set of remaining states for the given point in the search tree.

When a reaction takes the system to a new state (taking the search to a
new point in the search tree), the lists are modified by eliminating each list
entry which represents a region containing any state greater than or equal to
the new state. Each eliminated entry is replaced by new entries in the list
of next lower index. The new entries are found by considering all regions of
dimension one less than the old region, lying within the old region, with a
previously unspecified coordinate now specified as some particular integer k,
with 0 < k < m, where m is the number of molecules present, in the new
state, of the species corresponding to the dimension now being specified. In
general, this might lead to some redundancy, if some of the new regions lie
inside other existing regions, but we will not need to worry about this.
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Figure 5. Left: An example of a possible entry in list L4, for a system with 7
species. Right: All the entries that will be added to list L3 to replace the entry
on the left, if the system arrives at state (2,4, 1, 3,3, 3,0). The union of the new
3-dimensional regions is precisely that portion of the old 4-dimensional region
which is 7 the new state.

The lists for the initial state of the system are created similarly, with the
“old” region taken to be the full n-dimensional space, just a single entry in list
L,. Thus, a system started in state (g1, g2, ..., ¢ ), where g; is the quantity of
the " species, will start with >, ¢ entries in list L,,_;. Similarly, whenever
an entry in list IL; is replaced by new entries in list I,_; due to a new state
(q1,42; -, n), the number of new entries will be ), 5 g;, where P is the set
of species whose quantity is unspecified in the old entry.

If the i*" species becomes freely generated, all list entries in all lists will
have their i*" entry changed to be specified as oo, which may move some
of them to the list of next lower index: Since oo is treated by the lists as a
specified quantity, any list entry which previously did not specify the quantity
of the " species will now have one fewer unspecified quantities, and will thus
move to the list of next lower index.

It remains to show that these lists eventually get exhausted as the algo-
rithm progresses deeper into the tree. For readers familiar with the game of
Chomp [41], this process is quite similar to Chomp on infinite boards.

The Bound

To each point in the search tree, with its state and its lists, we can assign
a positive integer as described below. We will see that regardless of which
reaction is performed at the next step, the positive integer assigned to the
ensuing point in the search tree will always be less than the positive integer
assigned to the current point. Since the positive integer strictly decreases with
depth, it is in fact a bound on the depth.

The integer for a given state A and lists IL; is defined for a system with n
species in the following non-trivial way:
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where r is the number of non-freely generatable species, gmax is the largest
number of molecules present of any of those r species, and m, a constant, is
one more than the maximum coefficient appearing on the right hand side of
any reaction.

The functions f; are defined as follows:

filz) = fiom (@)
folx)=x+1

These definitions are not meant to capture intuitive notions of any mean-
ingful functions, but rather are designed to (a) be explicitly primitive recur-
sive, and (b) be of a form that enables the necessary proof steps below to
work.

In these definitions, the exponents on the functions denote multiple ap-
plications of the function, so for example f3(x) = fs(fs(fs(x))). Each f;, as
well as B, is a Primitive Recursive Function, since it is easy to define repeated
application of a function: Given a function g(z), we can define h(n,x) = ¢g"(x)
using the recursive definition h(0,2) = 2, h(m + 1,2) = g(h(m,z)).

It is straightforward to show that the functions f;(x) are strictly increasing
in z, and that f;41(x) > fi(x). Thus, if the exponents appearing within the
definition of B are in any way reduced or shifted to the right, 8 will decrease.

This can be used to show that regardless of whether a reaction leads to
a remaining state or leads to a new freely generatable species, B will always
decrease.

If a reaction results in one or more freely generatable species, then some
parts of the exponents may shift to the right, and r will decrease. In the
exponent of fy, the decrease of r will more than make up for any increase in
Gmax (by the definition of m), so B will decrease as promised.

If a reaction leads to a remaining state, then one or more list entries will
be replaced by other entries. Each i-dimensional entry to be removed will
be replaced by .. p ¢; entries that are (i — 1)-dimensional. This number of
new entries is no more than 7 - gmax, since P, the set of species of unspecified
quantity, is of size i. So the exponent of f; is reduced by 1 while the exponent of
fi—1 increases by at most i-gmayx. In the formula for 9B, then, an f; gets replaced
with f/ % and then this exponent is possibly reduced. But the original f;
was equivalent (by definition) to f"“"™, where z is the full argument (which
must be at least ¢max, Since gmax appears in the exponent of fy), so even just
the fi% portion was bigger than the replacement, and the f/"; portion more
than compensates for any increase in the exponent of fy due to any change in
Gmax- The total effect is therefore again a decrease in B.

Thus we have finished showing that B, a primitive recursive function of
the initial state, bounds the depth of the search tree. Thus both the depth
of the tree, and its total size (being at most exponential in the depth), are
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not only finite but bounded by a primitive recursive function of the initial
state. In the next section we will see examples which cannot be bounded by
anything smaller than this.

5.3 The Max-Path Problem

We have shown that any Chemical Reaction System can be analyzed by Prim-
itive Recursive Functions, but the reverse question is also interesting: Can any
Primitive Recursive Function be calculated by a Chemical Reaction System?
This question raises conceptual issues not present in the forward question,
since Chemical Reaction Systems are inherently nondeterministic, it being
unspecified at each step which reaction should occur next. Thus one must
choose how to define which of the possible sequences of reactions should be
considered as leading to the correct (or incorrect) calculation of the function.
If one chooses, say, the longest possible sequence of reactions (the deepest leaf
in the search tree), or the sequence that leads to the most molecules being pro-
duced (either of all species put together, or of some particular species), then
it is indeed possible to calculate any Primitive Recursive Function, where
the input and output are given as numbers of molecules of certain species.
These choices provide an exact equivalence in power between Chemical Re-
action Systems and Primitive Recursive Functions. Admittedly, this is not a
practically useful notion of calculation by a SCRN—if I have the chemicals
in my lab, how do I perform an experiment that indicates the output of the
computation?—but it does help clarify the boundary between decidable and
undecidable questions about SCRNs.

Theorem 2. For any primitive recursive function f, a Stochastic Chemical
Reaction Network can be designed with special species Sin, Sout, and Spmaz
computing [ as follows. Starting with n molecules of Sy, (and some fized
number of molecules of other species) the reachable state with the maximal
amount of Spar will have exactly f(n) molecules of Sout.

We prove this theorem with a construction. We begin by presenting, for
any chosen fixed integer i, a SCRN that Max-Path-computes the i*" row of
the Ackermann function. This simple example of Max-Path “computing” by
SCRNS is enlightening in and of itself, but more importantly, it plays a crucial
role in our general construction, where it is used to bound the number of steps
taken by a Register Machine that computes the Primitive Recursive Function
in question.

SCRNs for Rows of the Ackermann Function

Figure 1(a) gives a SCRN that computes 2". This example can be generalized
to compute any chosen row of the Ackermann function. Since the Ackermann
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function grows faster than any primitive recursive function, the full Acker-
mann function cannot be Max-Path computed by any single SCRN; using a
different SCRN for each row of the function is the best we could hope to do.

Yo—-X+W

Yi—-X+Y
X+Yo—=2Z14+Ye Yo—X+Y1 W+2Z,—-Y1
X+Ys—Z+Ys Ys—X+Y> W+ 2Z>—Ys
X+Yi—Zia+Y; Yi—=X+Yi W+ Zio1—Yia

Figure 6. A Chemical Reaction System for nondeterministically computing
entries for the first ¢ rows of the Ackermann function using 2i + 2 species.
However, as shown in this paper, no Chemical Reaction System with a finite
number of species is able to compute all rows of the Ackermann function. To
compute an entry in the i*® row, A; (n), start this Chemical Reaction System
in the state (Y;,nX). Then, the maximum number of molecules of X that can
be produced is exactly A;(n), achievable by always choosing the first possible
reaction from the list.

We prove that the construction works by proving the two sides: First, we
prove that starting in state (Y;,nX) we can produce A;(n) X’s. Second, we
prove that no more than A;(n) X’s can be produced.

We prove the first part by induction on row index . Our inductive assump-
tion will be that from (Y;_1,nX) we can get to (W, A;—1(n)X). (The base case
is easy to confirm.) Now starting with (¥;,nX), we first convert all X’s to
Z;_1’s by reactions in the first column. Then through a reaction in the second
column we reach (Y;_1, X,nZ;_1), and the inductive assumption allows us to
reach (W, A;—1(1)X,nZ;_1). Now we repeatedly use the first possible reaction
in the third column, producing (Y;—1, same X, one fewer Z;_1), followed by
the inductive assumption, producing (W, A;_1 (previous X), same Z,;_1), un-
til we can no longer use that reaction in the third column. At this point, we
have produced

L
n+1 times

This shows that it is indeed possible to produce A4;(n) X’s.
Now we argue that no more than A;(n) X’s can be produced from (Y;, nX).
The proof consists of showing that the expression

Ti(Tioa (- (To( AT (AP (#X)))))) where Ti(m) = A4 (AFYi(m)

does not increase no matter which reaction is performed, assuming there is a
exactly one of the Y’s or W present (an invariant enforced by our system).
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Since the initial value of this expression is A;(n) when starting in (Y;,nX),
we would then know that no more than A;(n) X’s can be produced.
The following two lemmas are useful.

Lemma 1 A;(A4;(m)) > A;j(Ai(m)) fori>j
Lemma 2 A;(m) > A% | (m)

Proof. First we expand A;(n) = A;—1(A;—1(---(1))) where the composition
occurs n + 1 times. Except in edge cases, the lemma is then equivalent to
showing that A;_1(--- (1)) > n where the composition occurs n — 1 times.
This inequality holds because applying the Ackermann function increases the
argument by at least one. 0

Now we will use these lemmas to show that each of the three types of
reactions (in the three columns) does not increase our expression.

Consider the reaction X +Y; — Z;_1 + Y;. The reaction takes subex-
pression T;(T;—1(--- (#X))) = Afizf’l (A;(Ti—1(--- (#X)))) to subexpression
Afizf’lﬂ(Ai(Ti_l(- -+ (#X —1)))). The start subexpression is equal to

AP (AT (Ao (- (HX = 1)) = AFZ (A (Ao(Tioa (- (#X — 1))

using the first lemma. Since A;_1(A;(m —1)) = A;(m), this expression equals
the end subexpression.

Now consider the reaction Y; — X + Y;_1. It takes the subexpression
Ai(AfiZ;’Q (Ti—2(- -+ (#X)))) to the subexpression

AP A (Tioa(-- (#X + 1)) < A2 (A2 (Tisa (- (#X))))

by applications of the first lemma. This is not more than the original subex-
pression by the second lemma.
Lastly consider the reaction W + Z; — Y;. This reaction takes subexpres-
. i Z»;, i Zi—
sion AFZ(ATS T (T (- (#X))) to AFATHATL T (A(Tiea (- (#X))),
which is not greater than the original by applying the first lemma.

SCRNs for Primitive Recursive Functions

Now, we show that given any primitive recursive function f, a Stochastic
Chemical Reaction Network can be designed so that the state with the max-
imal amount of Sy will have exactly f(n) molecules of Sy, where n is given
as input by being the number of molecules of an input species S; when the
system is started. We sketch the proof here.
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Any primitive recursive function can be computed by a Register Machine®.
in time bounded by some row of the Ackermann function (see section 5.1). The
required row can be determined by a structural examination of the primitive
recursive function. Our Stochastic Chemical Reaction Network is designed to
first compute an upper bound B on the running time needed to compute f by
computing the appropriate row of the Ackermann function as in the previous
section.

The Stochastic Chemical Reaction Network then simulates a Broken Reg-
ister Machine (that is, a Register Machine whose decrement instructions may
fail nondeterministically even when the register is not empty) for B steps,
which we know is more than enough time for the Register Machine program
to finish. After each of the B steps (with the halt instruction changed to a nop
(no operation) instruction so that B steps can indeed occur), the Stochastic
Chemical Reaction Network passes control to a “subroutine” which doubles
the amount of Sy (actually, all it can do is allow the amount of Sy to at most
double, but that is good enough). In addition, every successful decrement of
a register produces an extra molecule of So. Thus, Sy winds up being a large
integer whose binary digits are a record of the times at which decrement in-
structions successfully decremented a register. This means that any run with
the largest possible amount of S must have always succeeded at decrement-
ing whenever possible. In other words, it emulated the Register Machine in
the correct, non-broken way. Thus we can be sure that in this run, S; has
been computed correctly. Since the bulk of the time is consumed by doubling
So, the correct run is also the longest possible sequence of reactions for the
Stochastic Chemical Reaction Network, and the same remains true if we ap-
pend a “clean up” routine to the end of the computation, that clears away
the large quantity of Ss.

Thus primitive recursive functions are in perfect correspondence with ques-
tions of the form “How many molecules of S; will there be if a Stochastic
Chemical Reaction Network produces the maximal amount of S57” or “How
many molecules of S7 will there be if the Stochastic Chemical Reaction Net-
work takes the longest possible sequence of reactions?” So although questions
of possibility in Stochastic Chemical Reaction Networks are decidable, we have
shown here that in some ways they have the full power of primitive recursive
functions.

1 See section 6 for a description of Register Machines and Broken Register Ma-
chines, and how SCRNs can be designed to simulate Broken Register Machines.
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6 Ordered Program Models: Register Machines and
Fractran

Because of the above and other decidability results, Petri nets, Stochastic
Chemical Reaction Networks, and VASs are typically conceptually grouped
with non-uniform models such as boolean circuits, as was mentioned in sec-
tion 3. However, when provided with rate constants and evaluated in a prob-
abilistic context, these models are in fact capable of uniform computation as
well.

Bennett [18] proposed a method for simulating a TM that uses a DNA-like
information carrying polymer as the equivalent of a TM tape, with an attached
chemical group representing the head position and head state.® Reactions
then occur on this polymer that mimic the operation of the TM. The SCRN
corresponding to this system has a different species for each polymer sequence,
length, and the “head” chemical group and location. A single molecule then
represents a single TM (tape and attached head), and reactions transform
this molecule from one species to another. Thus infinitely many species and
infinitely many reactions are needed to represent Bennett’s biomolecular TM
simulation as a SCRN (although augmented combinatorial formalisms, which
go beyond SCRNs, can represent Bennett’s chemical TMs and other Turing-
universal polymer-based chemical machines; see for example [21].)

Taking a different approach of storing and processing information, we show
that SCRNs with a finite set of species and chemical reactions are Turing
universal in probability — they can execute any computer program for any
length of time, and produce the correct output with high probability. Thus
to increase the complexity of the computation performed by SCRNs it is not
necessary to add new reactions or species (as is the case when simulating
circuits or using arbitrarily complex polymers). Our method, building on [16]
as described in [14], involves showing that Register Machines (RMs) can be
simulated by SCRNs for any length of time with little probability of error.
Since it is known that any computer program can be compiled to a RM [42, 13],
we can conclude that any computer program can be effectively compiled to a
SCRN. Also since there exist specific RMs known to be Turing-universal (i.e.
capable of simulating any computer program), we can conclude that there is
a Turing-universal SCRN that can simulate any computer program with high
probability.

5 Recall that a TM consists of an infinite tape, and a head which can be in some
finite number of internal states pointing to a specified position on the tape and
capable of reading and writing from and to the tape. Reading a bit of the tape
allows the head to transition to different internal states and move left or right
depending on the read bit; whether and which symbol is written depends of the
state of the head.
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®

Figure 7. A register machine comparing the value of register Ri to Ra. If
Ri1 < Rs then it outputs 1 in register Rs. If Ry > Rz then it outputs 2 in
register R3z. The start state is indicated with “start” and the halting states are
those without outgoing arrows.

start-

Register Machines are a simplified, idealized abstraction of how computers
work, with a CPU manipulating memory. Minsky showed in the 60’s that Reg-
ister Machines are capable of universal computation. A Register Machine is a
machine that has a fixed number of registers, each of which can hold an arbi-
trary non-negative integer. In addition to the registers, it has a fixed program
which consists of a set of instructions. Every instruction is either an increment
instruction, a decrement instruction, or a halt instruction. The increment and
decrement instructions specify which register is to be incremented or decre-
mented, and they also specify which instruction should be executed next,
after the increment or decrement. Decrement instructions, however, might
not succeed with their intended decrement—if the register is 0, it cannot be
decremented. In this case, the decrement instruction is said to fail, and each
decrement instruction specifies an alternate next instruction to go to in the
case that the decrement fails. The current state of a Register Machine is given
by the values of the registers, along with which instruction is the next one
to execute. A simple example of an RM comparing two integers is shown in
Figure 7. Register Machines are nice because of their simplicity, which makes
it easy for other systems to simulate them.

One variant of Register Machines which in our experience is sometimes
useful is what we call Broken Register Machines. These are the same as Reg-
ister Machines except that decrement instructions are allowed to fail (non-
deterministically) even if the register is non-zero. (If the register is zero, the
instruction is of course forced to fail as before.) It is possible to show that
Broken Register Machines turn out to be equivalent to Petri nets and VASs
(and thus to Stochastic Chemical Reaction Networks as well), although the
equivalence is not quite as direct as for the other systems. The nature of the
equivalence between Broken Register Machines and Stochastic Chemical Re-
action Networks, combined with the fact that Broken Register Machines only
need to decide between two options at a time, enables one to show that in
fact only two priority levels are necessary for a Stochastic Chemical Reaction
Network to be universal.



Programmability of Chemical Reaction Networks 27

Another model that turns out to be related is a lesser known model called
Fractran [11], shown by Conway to be Turing universal. A Fractran program
consists of an ordered list of rational numbers (see figure 1(d)). Execution
is deterministic: starting with a positive integer n as input, we find the first
fraction on the list that produces an integer when multiplied by n, and this
product becomes the new number n’. This process is iterated forever unless
it halts due to no fraction resulting in an integer. Conway showed that any
Register Machine program can be converted directly into a Fractran program:
representing every integer in fully factored form, n = p{* - - - p%m, where p; is
the " prime, the exponents a; ...a; store the contents of the k registers,
while other distinct primes p, are each present iff the Register Machine is
in state h. The denominator of each Fractran fraction conditions execution
on being in state h and — if the operation is to decrement the register — on
having a non-empty register. The numerator provides for increments and sets
the new state. Since Register Machines are Turing-universal (although since
they only allow increment and decrement operations, thus storing all state
in unary, they entail exponential slowdowns compared to more reasonable
computational models), it follows that Fractran is also universal.

Examination of Conway’s construction illustrates the relation to VASs,
Petri nets, and Stochastic Chemical Reaction Networks. Considering the in-
teger n as the vector of exponents in its prime factorization, multiplication
by a fraction corresponds to subtracting the exponents in the denominator
and adding the exponents in the numerator, subject to the condition that
no negative exponents are generated. This corresponds exactly to a Vector
Addition System. Equivalently, each fraction can be interpreted as a chemical
reaction: each species is represented by a unique prime number, and the de-
nominator specifies the reactants and their stoichiometry, while the numerator
specifies the products. (Catalytic reactions would correspond to non-reduced
fractions, and can be avoided as shown in figure 1.) The determinism — and
hence universal computational power — inherent in Fractran execution corre-
sponds to there being a strict priority in which the various possible transitions
are applied.

6.1 Computation in Stochastic Chemical Reaction Networks

If it were possible to prioritize the reactions in a Stochastic Chemical Reaction
Network, then by analogy to the ordered fractions in Fractran, this would
establish the Turing-universality of Stochastic Chemical Reaction Networks.
(This result is also well known in the field of Petri nets, and our analysis
of Register Machines shows that in fact only two distinct priority levels are
necessary. )

By giving higher-priority reactions vastly faster rate constants k., we can
approximate a priority list: almost surely, of all reactions for which all re-
actants are present in sufficient number, a reaction with a much faster rate
will occur first. However, “almost surely” turns out not to be good enough
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for a couple of reasons. First, there is a non-zero probability of the slow re-
action happening at each step, and thus probability of successful output falls
exponentially with the number of steps. Second, the number of molecules of
a given species can potentially exceed any bound, so the ordering of actual
rates po(A) may eventually be different from the specified ordering of rate
constants k.. Especially in light of the decidability results mentioned above,
it is not surprising that this naive approach to achieving Turing universality
with Stochastic Chemical Reaction Networks fails.

If there were some way to increase rate constants over time, this could
solve these problems, but of course, rate constants cannot change. Another
way to promote one reaction over another would be to give the preferred re-
action some extra time to occur before the competing reaction has a chance
to occur. This approach turns out to be workable, and it is not too hard to
set up some reactions that produce a signal after some delay, where the delay
depends on a particular concentration. We refer to such a set of reactions as a
clock. An important technical point is that since the entire computation will
consist of an unknown number of steps, the probability of error at any given
step must be decreasing so that the sum of all the probabilities can remain
small regardless of how long the computation winds up taking. To address
this issue, the clock can at each step increase the concentration that controls
its delay, so that the delays are progressively longer, and thus the probabili-
ties of error are progressively smaller. Fortunately, it turns out that a simple
polynomial slowdown in overall computation time is all that is required for
making the total probability of error (over the entire course of the arbitrarily
long computation) be small.

In the following, we give a construction for simulating Register Machines
with Stochastic Chemical Reaction Networks with only a polynomial slow-
down, and we prove that successful output will occur with fixed probability
1 — € independent of the input and computation time. An initial number of
“precision molecules” can be added to reach any desired level of €. Thus, tol-
erating a fixed, but arbitrarily low, probability that computation will result
in an error, Stochastic Chemical Reaction Networks become Turing universal.
In consequence, the probabilistic variants of the reachability and producibility
questions are undecidable.

The simulation is relatively simple to understand, but its performance is
limited by the fact that it is simulating a Register Machine, which is exponen-
tially slower than a Turing Machine (in the space used by the Turing Machine),
due to its unary representation of information. Can Stochastic Chemical Re-
action Networks do better than this? It turns out that they can. In section 7,
we discuss a more sophisticated algorithm that allows Stochastic Chemical
Reaction Networks to directly polynomially simulate a Turing Machine.
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Probability in SCRNs is Undecidable

Theorem 3. For all 0 < ¢ < 1/2, the following problem is undecidable: given
a Stochastic Chemical Reaction Network C, a species S, and a starting state
A, determine, to within €, the probability that C' starting from A will produce
at least one molecule of S.

To prove this theorem, we will show how Stochastic Chemical Reaction
Networks are capable of simulating Register Machines. First, we define the
correspondence between instantaneous descriptions of Register Machines and
states of Stochastic Chemical Reaction Networks that our construction at-
tains. Then, we show that determining whether a Register Machine ever
reaches a particular instantaneous description is equivalent to ascertaining
whether our Stochastic Chemical Reaction Network enters a set of states with
sufficiently high probability.

Definition 1 An instantaneous description ID of a Register Machine M
with t registers is a vector (a,ci,...,c;) where a is a state of M and ¢; € N
represents the value of register i.

Definition 2 The reachability relation 1D M 1D s defined naturally.
Namely, it is satisfied if M eventually reaches ID' starting from ID.

Definition 3 For two states A and B of a Stochastic Chemical Reaction Net-
work C we write A S B if there is a reaction that takes the system from A to

B. Let <5 be the reflexive transitive closure of <.

Instantaneous descriptions of a Register Machine map to sets of states of
our Stochastic Chemical Reaction Network as follows:

Definition 4 For an instantaneous description ID = (a,c1,...,¢;) of a Reg-
ister Machine M let M(ID,n) be the state of a Stochastic Chemical Reaction
Network that contains exactly:

n molecules of species A,

¢; molecules of R; V1 <1 <t,

1 molecule of S,

and 1 molecule of T, B, B and B" each.

Definition 5 Our Stochastic Chemical Reaction Networks will be said to e-
follow a Register Machine M if there is some ng such that for all instantaneous
descriptions ID and ID’ of M we have:

(a) ID WIip = Pr[M(ID,ng) % M(ID',n) for somen] >1—¢
(b) IDEID = Pr[M(ID,ng) CjM(ID’,n) for some n| < ¢

Theorem 4. For any Register Machine M, and any € > 0, there is a Stochas-
tic Chemical Reaction Network C' that e-follows M.
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In fact, slight modifications of our construction can show that all ques-

tions about whether a Stochastic Chemical Reaction Network “might do X”
mentioned section 5 become uncomputable in the probabilistic setting (“does

X

with probability > €”).

(a) The Clock and Register Logic Modules

L —C——a .
Clock Register
~ Logic
(b) Clock

T+B—-T +B
T"+A—-=T+A
T/+B/_>TII+BI
T"+A—-T + A
T//+B//_>C+BH+A

(c) Register Logic

In state a increment register ¢ and

go to state b = SatC = S+ Ri+T

In state a decrement register ¢ and S.+R; — S
go to state b, or if the register is = S, +C — S, +T
empty go to state ¢ Se+C — S.+T

Figure 8. Simulating a register machine. (a) The communication between
the clock and the register logic modules is through single molecules of species
C and T'. (b) The clock module is responsible for producing a C' molecule once
every so often. The clock module is designed so that the length of time between
receiving a T" and producing a C' slowly increases throughout the computation,
thus slowing down the register logic module to help it avoid error. Specifically,
the more A’s there are, the longer the delay. The clock starts out with ng A’s
and one each of B, B’, and B and T. Every clock cycle not only produces a C,
but increases the number of A’s by one. Thus at the beginning of the k™ cycle,
there are n = k 4+ no molecules of A. The clock’s operation is further analyzed
in figure 9. (c¢) The register logic module simulates the register machine state
transitions. The register logic module starts out with quantities of molecules of
R; indicating the starting value of register i, and a single molecule of species
Sa where a is the start state of the register machine. Note that at all times the
entire system contains at most a single molecule of any species other than the
A and R; species. All rate constants are 1. (The construction will work with
any rate constants.)
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Proof (Proof of theorem /). We construct a Stochastic Chemical Reaction
Network to simulate the Register Machine, consisting of two components:
a clock module and a register logic module (figure 8). The communication
between the modules is established through two species, T" and C, of which
at most a single molecule is present. Whenever the clock releases the C', the
register logic module can complete a step of the register machine (with the
exception of the actual decrement of a decrement instruction), converting the
C into a T in the process. The clock module then takes the T and, after a
delay, releases another C' to repeat the process. The delay imposed by the clock
module makes it exceedingly likely that any decrement waiting to happen will
occur before the next C' is released. This effectively enforces the reaction order
that is necessary for correct computation.

The register logic module has a single molecule of species S, for every state
a of the register machine. The number of molecules of species R; stores the
value of the register i. If the current register machine state a is an increment
state, once the clock module releases the C then the reaction S, + C —
Sy + R; + T increments the ith register and transitions to the next state b. If
the current state is a decrement state and the register ¢ being read is empty,
then the reaction S, + R; — S/, is not possible, and once the clock module
releases the C', the reaction S, + C' — S. + T takes place and transitions to
the state ¢ indicating that the register is empty. If the register i is not empty
(i.e. there is at least one molecule of R; in solution), then the intent is that the
reaction S, + R; — S/, should decrement the register and capture S, before
the clock module next releases a C. (Otherwise, the reaction S, +C — S.+T
could occur first, erroneously sending the register logic module into the state
¢, which is only supposed to happen if the register is empty.)

Thus, the only possible error that can occur in the register logic module
is if S +C — S + T occurs before S, + R; — S/, in a decrement step, when
register ¢ is not empty. By delaying the release of the C, the clock module
ensures that the probability of this happening is low. The delay increases from
step to step sufficiently to guarantee that the union bound taken over all steps
of the probability of error does not exceed e.

Let us analyze the probability of error quantitatively. Suppose the current
step is a decrement step and that the decremented register has value 1. This
is the worst case scenario since if the register holds value greater than 1, the
rate of the reaction S, + R; — S is correspondingly faster, and if the step
is an increment step or the register is zero, then no error can occur. Figure 9
illustrates the state diagram of the relevant process. All of the reactions in
our Stochastic Chemical Reaction Network have the same rate constant of
1. Thus, all reactions with exactly one molecule of each reactant species in
solution have the same reaction rate of 1. There are two reactions for which
this single molecule condition is not true: 7"+ A — T+Aand T"+A — T'+ A,
since there are many A’s in solution. If there are n A’s in solution, each of
these two reactions has rate n. Now, we’ll bound the probability that the clock
produces the C before the S, + R; — S/, reaction occurs, which is a bound on
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the probability of error. The top 4 states in the diagram (figure 9) represent
the 4 possible states of the clock: we either have a T, T', T”, or a C. A new
cycle starts when the register logic module produces the T" and this is the
start state of the diagram. No matter what state the clock is in, the reaction
Se + R; — S! can occur at rate 1 in the register logic module. Once this
happens, no error is possible. On the diagram this is indicated by the bottom
state (no error) which is a sink. On the other hand, if a C' is produced first
then an error is possible. This is indicated by the sink state C' (error possible).

/\/\/\

(start) T

K\ / | \ / (error p0551ble)

\5{;/

produced

(no error)
S -2 n 0 00 S
d s’ 1 -2—-n n 00 s’
— || =10 1 —-2-no00]|-|s
|, 0 0 1 00| |p
q 1 1 1 00 q

Figure 9. The state diagram for a single decrement operation when there are
n A’s and the register to be decremented holds the value 1, and the correspond-
ing system of differential equations governing the instantaneous probabilities
of being in a given state. The numbers on the arrows are the transition rates.
The instantaneous probability of being in state T is s, in state 7" is s’, and
in state 7" is s”. The instantaneous probability of being in the error-possible
state is p and the probability of being in the no-error state is q.

We compute the absorption probability of the error-possible state by solv-
ing the corresponding flow problem. Solving the system of differential equa-
tions in figure 9 for d—f under the condition that Zi =1, ifi = ddit =0, we

find that the absorption probability of the error-possible state is p = m.

Thus the probability of error for a step with n A’s is bounded by p = m.
In order to be sure that the probability that no error occurs during any point
in the computation is larger than 1 — ¢, recall that n increases by one at each
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step, so we need
o0

1
AT
The terms in the above inequality are inversely quadratic in n, so if ng = 1
then the sum is finite (in fact, it is roughly 0.3354). This means that for any
€, we can choose an appropriate ng, the initial number of A’s, to make the
above inequality true.

How fast is the Register Machine simulation? Since each consecutive step is
potentially delayed longer and longer, we need to be careful that the simulation
is not slowed down too much. Indeed, it can be shown that the expected time
to perform ¢ steps of the Register Machine simulation requires at most O(t*)
SCRN time [14].

6.2 Eliminating Dependency on the Number of Molecules Disables
Universal Computation

If the rates of the possible reactions do not depend on the number of molecules
then it can be shown that the system is incapable of universal computation.
In particular, it will be predictable in the sense that the probability that at
least one molecule of a given species is eventually produced can be computed
to arbitrary precision. This precludes the previous output method of using an
indicator species whose production with high or low probability indicates the
outcome of the computation. Further, any other method of output that can be
converted to this form of output cannot be universal either. This includes, for
example, Stochastic Chemical Reaction Networks that enter a specific state
with high or low probability to indicate the output. Specifically, the model
we are considering here is the following: Suppose we are given a Stochastic
Chemical Reaction Network with given constant rates for all the reactions,
and an initial set of molecules. Then at each step, based solely on the reaction
rates, a reaction is chosen. This reaction then occurs if the reactants for it are
present. Such steps continue indefinitely.

The difference between this model and the standard stochastic one is that
in the standard model, the reaction rate is obtained by combining a rate
constant with the current concentrations as described in section 2.1 (eqn. 1),
while here for all reactions v and states A, po(A) = kq, if all the reactants of
o are present in A and 0 otherwise.

Theorem 5. Let S be the infinite set of all states with at least one molecule
of the indicator species present. Suppose for all reactions o and states A,
pa(A) = ko if all the reactants of « are present in A and 0 otherwise. Then
there is an algorithm that given 0 < € and any starting state A, computes

Pr[A <8 for some B € S| within €.
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Let S be the (probably infinite) set of states from which no state in S is
reachable, and let R be the set of states outside S from which it is possible to
reach S. (Note that given any state, the question of whether it is possible to
reach some state in S is computable, as shown in section 5.2.) Note also that
there is a bound b such that for any state A € R, the length of the shortest
sequence of reactions leading from A into S is at most b. This means that
there is some constant py such that for any state r € R, the probability of
entering S within b steps is at least pg. Thus, the probability of remaining in
R must decay at least exponentially.

This implies that the probability that the system will eventually enter S or
Sis 1, and so simply by computing the probabilities of the state tree for R far
enough, one can compute the probability of entering S to arbitrary precision.

7 Efficiency of Computation by Stochastic Chemical
Reaction Networks

Section 6 showed that universal computation (in probability) can be per-
formed by SCRNs, but our construction inherits the ridiculous inefficiency
of Register Machines, which in general require exponential time to simulate
Turing machine computations. Is it possible to use the power of chemistry to
perform computations more quickly and efficiently?

Trivial ways to speed up a chemical computer involve changing environ-
mental conditions such as increasing the temperature or the effective concen-
tration (molecular count per unit volume). In order to discuss the “intrinsic
speed” of the computer we are proposing, we fix the temperature, as well as
the maximum concentration (recall that the volume scales dynamically with
the molecular count in our model, see section 2.1). Then the performance of
the chemical computer will be gauged asymptotically as the size of the “tape”
as well as the number of simulation steps increases. With improved chemical
programming, it turns out that compared to the abstract Turing Machine,
its chemical implementation incurs only a polynomial slowdown. The volume
required, however, inevitably grows exponentially with the size of the tape of
the Turing machine being simulated. This is impossible to avoid since fixing
the number of species there is simply no way to store information in a form
other than unary.

7.1 Stochastic Chemical Reaction Networks Can Efficiently
Simulate Turing Machines

Theorem 6. For any 0 < e < 1/2 and any Turing Machine M we can make
a Stochastic Chemical Reaction Network that, starting with n molecules of
species Sin, (and some number of molecules of other species, dependent on e
but not n), will with high probability (> 1 — €) result in fast (expected time
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polynomial in the running time of M(n)) and accurate (eventually produces
Shait iff M(n) halts) computation.

Of course, by having different output species, the same output method can be
used to indicate a 0/1 output or in fact an integer output encoded in unary.

The overall idea to achieve this fast Turing Machine simulation is to adopt
the Register Machine simulation, but allow more sophisticated operations on
the registers [17, 14]. If in addition to incrementing and decrementing a regis-
ter, we could double or halve the value of any register and check the remainder
in a constant number of clock cycles of the Register Machine simulation, then
we could simulate a Turing Machine in linear time. To do this, we can rep-
resent the accessed portion of the Turing Machine head tape as two integers
whose binary representation encodes the tape to the left and to the right of the
head respectively, such that their least significant bits represent the contents
of the tape cells immediately to the left and right of the head. Since reading
and removing the least significant bit corresponds to halving and checking
for remainder, and writing a new least significant bit corresponds to doubling
and possibly adding one, a single Turing Machine step can be performed in
a small constant number of these enhanced Register Machine cycles. With
registers represented in unary molecular counts, halving would correspond to
a reaction scheme that takes two molecules of one species and produces one
molecule of another species, while doubling would correspond to a reaction
scheme that takes one molecule of one species and produces two molecules
of another species. Conversion of all molecules must take place quickly and
exactly—if a single molecule is not converted, the least significant bit(s) will
be in error. Unfortunately, we will see that halving a register quickly is rather
difficult, but fortunately we will be able to avoid the halving operation.

In the following section, we provide a construction similar to (but not
identical to) that in of ref. [14] and give an informal explanation of how it
works.

The Exploding Computer

To perform computation quickly using molecular counts, we have a number
of challenges. The primary difficulty is that if every molecule matters for a
decision, then the presence or absence of a single molecule (for example, the
parity of a register) must be communicated to all other molecules in the system
that are affected by the decision. But in our model of well-mixed chemistry,
communication happens only by chance collisions between molecules—and
rare species will therefore interact rarely.

The main technique that allows large numbers of molecules to be processed
quickly is for the state changes to occur via explosive chain reactions. These
“explosions” do not necessarily increase the number of molecules; they might
simply change the molecules from one form to another. Each explosion starts
as an exponentially growing chain reaction, until the amount of reactive ma-
terial starts to get used up, at which point it finishes with exponential decay
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of the reactive material. Thus an exponential amount of reactive material can
be processed in a given amount of time, as shown in figure 10. By changing
the number of product molecules in the reaction, the explosion scheme can
be easily transformed into a means to quickly and exactly double the number
molecules present.

The naive implementation of having a halving reaction akin to 2M — M’
is slow for the same reasons as shown in figure 11.

If we are to avoid having to halve the value of a register, we must have
an architecture for computation that only requires doubling when reading
and writing bits to and from memory. To do this, we use the digits of the
memory integer as a queue of binary digits. We can read and remove the most
significant digits (as we will show), we can shift the digits over (by doubling, or
multiplication by a constant), and we can write new low order digits by simply
producing a few extra molecules. Thus freshly written digits get exponentially
amplified step by step until they are the largest contribution to the overall
magnitude, at which point the system is able to detect their value.

A+T—B+T
A+B— 2B

1.0
0.8

B 06 A
A+B 04 B
0.2
0.0

0.0 0.2 04 0.6 0.8 1.0
time—

Figure 10. The time course of a reactant-limited chain reaction explosion,
shown as a conversion from a species A to a species B, initiated by a trigger T'.
If at the beginning, a fraction p of all molecules in the system are A molecules,
then the number of converted molecules grows like €*P*, where ¢ is time and
k is the rate constant of the reaction catalyzed by B. For the first half of the
chain reaction, at least p/2 of the molecules are A, and so the expected time
for the first half to complete is under (2/kp)log|A|/2. For the second half of
the chain reaction, over p/2 of the molecules are B, so each molecule of A
gets transformed at a rate above kp/2, so the quantity of A decreases faster
than €"”*/2 and the expected time for the second half to complete is under
(2/kp) log |A]/2. Thus the total time needed for the explosion to finish is on
the order of log |A|/p.
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A)

Figure 11. (A) To read the most significant digit of M, we compare M (red)
to a known threshold quantity 7' (blue). This is done by a simple reaction,
M+T —T. The goal is that after all the M and T molecules have reacted to
form T, only the species in excess, either M or T, will remain. However, the
time it takes for this reaction to complete will depend on the amounts of M
and 7. (B) If M and T are present in nearly equal quantities, then towards
the end of the reaction only a few molecules of M and a few molecules of T will
remain, and we will need to wait a very long time to be confident that these
last few molecules have found and reacted with each other, especially when the
volume is large. (C) If either M or T is significantly in excess of the other,
with the excess being at least some constant fraction of the entire volume, then
towards the end of the reaction, as one of the species approaches extinction, its
rate of decay will remain exponential, and the reaction will fully finish quickly,
regardless of volume.

Before proceeding, we should make sure that these operations are sufficient
for efficient simulation of Turing Machines. To see this, here’s how to convert a
Turing Machine into a program that uses only queues. First consider a Turing
Machine that uses a fixed amount of space on a binary tape. This finite tape
is encoded in the queue using three bits per cell, one bit for the cell’s value,
an another bit to indicate the cell that the Turing Machine head is reading,
and the third bit to indicate the first and last cells. Note that after one time
step, the tape will be changed only in the three cells around where the head is
reading: the center cell might have a new value, and either of the adjacent cells
might need to be marked to indicate that this is where the Turing machine
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is now reading. To implement a single time step of the Turing Machine, the
new queue program will make a pass through the whole queue, keeping the
most recent three cells memorized at every step. Each step consists of spitting
out the correct new value for the oldest of the three cells and then reading
in one more cell. The queue program knows when it has completed a pass,
thanks to the third bit in each cell. Thus, to simulate Turing Machines that
use arbitrary amounts of tape, the queue program can simply output some
blank cells at the beginning and end of each pass. Overall, the queue program
is slower than the original Turing Machine, but only by a linear factor—if the
original machine took O(t!°) steps, the queue program will take O(t'7) steps.
(Slightly more efficient implementations are possible [43, 14].)

With this queue architecture, the challenge of detecting a single molecule
is avoided; all we need is a scheme that allows the system to be able to read
the high order memory digit quickly and accurately. This can be achieved by
storing integers in the memory using a Cantor-set structure. To be able to
read the most significant digit of the memory integer, we need to compare the
memory integer to a threshold value, and as shown in figure 11 it is important
that the memory integer not be too close to the threshold value. That is, the
magnitude of the memory integer, regardless of the contents of the memory,
should be separated from the threshold value it is being compared to by a gap
that is at least some fixed fraction of the threshold value itself, so that the
comparison will always complete in logarithmic time. The way we will satisfy
this requirement is by using numbers which, in base 3, use only the digits 1
and 2. These numbers have a Cantor-set structure. Thus the highest possible
k+1 digit number starting with 1, namely 2-3F—1 = 1222...23, and the lowest
possible k+1 digit number starting with 2, namely 2.5-35—0.5 = 2111...13, are
separated by an interval that is proportional in size to the numbers themselves,
making the leading digit easily detectable.

The system can write a low order digit into the memory by simply having
just a single molecule present of the species responsible for writing this digit.

We have discussed the representation of the queue (i.e. encoded Turing
Machine tape) as the molecular counts of a register species—but how do we
represent which step of the program is currently being executed? Since the
program contains a finite number of states, it is possible to assign a distinct
molecular species for each program state. In fact, we combine both represen-
tations into one: if the queue program is in state 10 with the integer M in the
queue, then we will have M copies of the molecular species M1y. The molec-
ular count encodes the queue, and the molecular species encodes the program
step being executed. Thus, to push a ‘1’ onto the bottom of the queue and
transition to state 20, we perform an “explosion” that converts the M copies of
M into 2M copies of My and then produce one more Mog. Effectively, the
chemical system is designed as a sequence of conditional explosive reactions,
each of which changes the “color” of the solution.
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(a) In state 10, read high order digit. (b) In state 40, write low order
Go to state 20 or 30 depending on digit. digit z, and go to state 50.
My My
C, Mz C, My

M + Mpz 3My My
Y *
My, C Include this

area only if
tape is being

My (z+1)Myg lengthened.

Clock receives Cq,
Mso produces C after a delay.
DU/ DU/ %)

C4 4_' C3 ﬁ ‘
P, P* P,
2
P, P*I P, Py
C 4_J

C
DU/ DU/

D Mz

Figure 12. Reactions for a chemical system emulating a Turing Machine that
has been converted into a queue program. The horizontal dashed lines represent
clock cycles. This example uses the convention that the program states of the
queue program are multiples of 10, while substates required for the chemical
implementation modify the rightmost digit. Species listed to the side of an
arrow are catalysts for the reaction: At least one of them must be present for
the reaction to occur. In a slight abuse of this notation, when the clock signal
C is used as a “catalyst”, it is actually being converted to Cs. (So, it is not
really being used catalytically—but this notation makes the diagram cleaner.)
M, molecules store the memory integer and encode the program state i. T
molecules (of various sorts) store the comparison threshold. D molecules store
a single ‘1’ in the most significant digit. There is more D than T. P molecules
store the current precision of the system. C is the clock signal. There is exactly
one C molecule at any time. (a) Reading a bit of memory. (b) Writing a bit
of memory. (c¢) Operation of the clock. Any D species (D, D’, D", or D*) can
serve as a catalyst for the conversion of the C in each step.

As in the Register Machine simulation of the previous section, the system
can have a very low chance of ever making a mistake, even though there
is some chance of error at every step, as a result of having the speed of
the system regulated by a clock that slows down over time. Since each step
is more likely to succeed when it is given more time to complete its work,
the slowing clock makes successive steps more and more likely to succeed.
Intuitively, if it makes it through the first several steps without error, later
steps become progressively easier to do correctly, so it’s quite likely to just go
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forever without making any mistakes. Mathematically, the probability of error
decreases at each step fast enough that the sum of all the probabilities of error
converges to a small value. This value can be made arbitrarily small, regardless
of the computation to be done by the Turing machine, simply by starting the
system with a greater number of precision molecules (P in figure 12).

The molecular species and reactions for the simulation are shown in fig-
ure 12. Four clock cycles are required for each step so that the various sub-
operations do not interfere with each other. At each step the clock molecule
C triggers an explosive chain reaction, and the output of that chain reaction
is used to catalyze all the other reactions occurring at that step (with the
exception of comparisons and subtractions, which have no catalysts).

When reading a bit of memory, the reactions compare the memory M
with the threshold 7', as discussed in figure 11. After the first clock cycle,
which performs the comparison, only half of the remaining reactions will occur,
according to the result of the comparison. If T' > M, then the leading digit of
M was ‘1, and only the reactions on the left side will occur. If M > T, then
the leading digit of M was ‘2’, and only the reactions on the right side will
occur. During the second clock cycle, D is subtracted from M either once or
twice, so as to zero out the leading digit (which was just read). During the
third cycle the threshold T is restored, and the fourth cycle cleans up D and
M.

Every read operation must be followed by a write operation, so that the
tape does not shrink. Extra write operations are allowed, so the tape can grow,
but states corresponding to such extra operations must include the reactions
in the gray region. The first clock cycle multiplies M by 3, and if the tape is
growing, then 7', P, and D also get multiplied by 3. The second clock cycle
writes the new digit of M. The third cycle cleans up D, T, and P, and it
also adds D to P. This way, the precision P is always a multiple of D, and
the multiple grows by one with each write operation, so the precision of the
simulation increases at every step. The fourth cycle cleans up M.

The clock molecule is used to trigger the advance from one stage of the
reaction to the next. Therefore, when C is used as a “catalyst”, it is actually
transformed into a Cy, so that it cannot trigger the advance to the following
stage until some time has passed. Effectively, the clock slowly lets the Cy
become a C again. To become a C, it has to work its way down, but since P
is greater than D by a growing factor, the process of the C; becoming a C
becomes slower and slower as time goes on. This slowing of the clock is what
makes the whole system become more and more reliable over time.

A detailed construction based on the same principles is presented in [14],
with an analysis of its error probability and running time. A more efficient
construction can be implemented based on the work of Angluin et al in the
distributed computing literature [17] (see [14, 44]). Simulating t7 s steps of a
Turing Machine using s7s space can be done in polylog(m) -ty time where
m = O0(2°T™) is the total maximum molecular count encountered.
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7.2 Turing Machines Can Efficiently Simulate Robust Stochastic
Chemical Reaction Networks

We have seen that enforcing reaction order, even probabilistically, is enough to
achieve Turing-universality. However, our simulation of Turing Machines (and
Register Machines) by Stochastic Chemical Reaction Networks, uses reaction
propensities rather weakly: while it was essential that one reaction propensity
is higher than another, and increases over time, the exact value of reaction
propensities are not used in the computation. Intuitively we can say that
a Stochastic Chemical Reaction Network behaves “robustly” if its behavior
does not depend crucially upon getting the reaction propensities exactly right.
Formal definitions can be found in [44], as well as the proof that the Turing
Machine embedding based on [17] is robust.

Such robust chemical systems form an interesting class, whose computa-
tional power can be almost exactly captured, bounding above and below the
maximum amount of computation such systems can perform in a unit of time,
compared to a Turing Machine. Although on the order of m reactions can oc-
cur per unit time, where m is the total number of molecules present, the actual
amount of computation is at most polylog(m) Turing Machine steps.

While fast Turing Machine embeddings in robust Stochastic Chemical Re-
action Networks show a lower bound on their computational power, how can
we show that they are not capable of performing more computation per unit
time? The main idea of the argument is that robust chemical systems are easy
to simulate by a Turing Machine. Intuitively, since robust chemical systems are
robust to perturbations in reaction rates, they permit some sloppiness when
trying to predict their behavior. Then, since it is widely believed that there
is no universal way of speeding up Turing Machines, it should not be possible
to speed up arbitrary Turing Machines by embedding them in an chemical
system and simulating the system. With some caveats related to real-number
arithmetic, for robust systems, the problem of estimating the probability of
being in a given state at a given time ¢ can be solved in polylog(m) -t compu-
tation time on a Turing Machine, where m is the maximum molecular count
encountered. This implies that, loosely stated, for robust Stochastic Chemi-
cal Reaction Networks, it is neither possible to embed more than polylog(m)
computation time per chemical unit time, nor is it possible to simulate the
Stochastic Chemical Reaction Network using less than polylog(m) computa-
tion time per chemical unit time [44].

It should be emphasized that the correspondence between Turing Ma-
chines and Stochastic Chemical Reaction Networks is surprisingly tight. One
can simulate the other with surprisingly little loss of efficiency (especially for
programs using little memory where polylog(m) for m = O(257™) is small
compared to t7ar).
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8 Concluding Remarks

The power of different systems to do computation can vary greatly. It has pre-
viously been assumed that systems such as genetic regulatory networks and
chemical reaction networks are much weaker than the gold standard computa-
tional systems such as Turing Machines. On the other hand, we have become
accustomed to proofs that even some of the simplest systems are capable of
universal computation [45, 46], meaning that they are in some senses equiva-
lent in power to Turing Machines, and thus predicting their eventual behavior
is impossible even in theory. Chemical reaction networks have been shown
to be universal when combined with polymer memory [18] or membrane-
separated compartmental memory [22], but researchers have previously as-
sumed that on their own, a finite number of species in a well-mixed medium
can only perform bounded computations [24, 22].

In contrast with this historical intuition, here we have shown that in fact
such “plain” chemical reaction networks can indeed perform unbounded com-
putation, using the concentration (number of molecules) of each species as the
storage medium. We went on to pinpoint both the power and the weakness of
chemical reaction network computation by showing that it is just as fast as
Turing Machine computation, but that it requires exponentially more space.

This universality of chemical reaction networks turns out to derive from
their probabilistic nature. If the possible reactions in a chemical system could
be prioritized, so that the next reaction at each step is always the one with
highest priority, then universal behavior is easily attainable (along the lines
of [12]), but of course chemistry does not behave in this way. However, since
the reaction rates in a chemical system are influenced by the concentrations,
they are somewhat under the control of the system itself, and as we have
shown, this weak form of prioritization turns out to be enough to let the
system perform universal computation with high probability of success.

If we require that the chemical system be guaranteed to give the right
answer without fail, then the system is effectively deprived of the opportunity
to use its reaction rates, since they only influence what is likely to happen, not
what is guaranteed to happen. Indeed, in this situation, the system is incapable
of universal computation. Thus, the stochastic reaction rate foundation turns
out to be the source of the computational power of chemical reaction networks.

Open questions, along the lines of the results we have given, include:

(1) Are continuous Stochastic Chemical Reaction Networks (using mass ac-
tion kinetics) Turing universal?®

(2) Can one have a universal Stochastic Chemical Reaction Network which
has constant probabilities (that don’t depend on concentrations) for all reac-
tions except one, with the remaining reaction having a decaying probability
that depends on time (but not on concentrations)?

6 Eric Stansifer (personal communication) seems to have answered this question in
the affirmative.
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(3) Can Stochastic Chemical Reaction Networks that have reversible reactions
be universal?

(4) What is the power if one wishes to guarantee that all paths in a Stochas-
tic Chemical Reaction Network lead to same result (confluent computation)?
Are we limited to boolean logic circuits, or can we do some sort of uniform
computation?

(5) Can a more efficient Turing Machine simulation be embedded in a non-
robust Stochastic Chemical Reaction Network than a robust one?
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