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Abstract—Balancing a normal pencil on its tip requires rapid 

feedback control with latencies on the order of milliseconds. 

This demonstration shows how a pair of spike-based silicon 

retina dynamic vision sensors (DVS) is used to provide fast 

visual feedback for controlling an actuated table to balance an 

ordinary pencil. Two DVSs view the pencil from right angles. 

Movements of the pencil cause spike address-events (AEs) to be 

emitted from the DVSs. These AEs are transmitted to a PC over 

USB interfaces and are processed procedurally in real time. The 

PC updates its estimate of the pencil’s location and angle in 3d 

space upon each incoming AE, applying a novel tracking method 

based on spike-driven fitting to a model of the vertical shape of 

the pencil. A PD-controller adjusts X-Y-position and velocity of 

the table to maintain the pencil balanced upright. The controller 

also minimizes the deviation of the pencil’s base from the center 

of the table. The actuated table is built using ordinary high-

speed hobby servos which have been modified to obtain 

feedback from linear position encoders via a microcontroller. 

Our system can balance any small, thin object such as a pencil, 

pen, chop-stick, or rod for many minutes. Balancing is only 

possible when incoming AEs are processed as they arrive from 

the sensors, typically at intervals below millisecond ranges. 

Controlling at normal image sensor sample rates (e.g. 60 Hz) 

results in too long latencies for a stable control loop. 

I. INTRODUCTION 

Balancing an object has been used for many years as a 
demonstration of controller design. Such demonstrations in 
teaching robotics and robotics contests often are limited to a 
single pole rotating about one constrained axis for simplicity, 
and typically use a position encoder at the bottom of the object 
providing the current angle relative to desired balanced 
orientation. 

Normal image sensors are hard to use for balancing small 
objects because the frame rate limits the response latency, 
necessitating complex nonlinear control methods that can 
control despite the large signal nonlinearities that develop with 
controller delay. One example available online [1] shows a 
Sarcos industrial robot balancing a pole approximately 1 m 
long with a weighted top and two colored markers which are 
used for tracking. Since the angular acceleration by gravity is 
inversely proportional to the distance of the center of mass 
(COM) from the base, the weighted top shifts the center of 

mass away from the hand, easing the task significantly. An 
unmodified rod of length L has its COM c = ½·L from the 
base. The angular acceleration (  in rad/s

2
) caused by 

gravity (g) for small angle α (where sin(α) ≈ α) is given by 
 = (α·g)/c, representing an angle that increases by a factor of 

e every sqrt(c/g) seconds. For a normal pencil of length 
L=20cm, the angle increases 10% every 10ms. A simple linear 
controller must react within a few ms to balance such an 
object t. 

Here we show how the use of data-driven spike based 
sensors facilitates the application of straightforward linear 
control policies with low computational requirements, that 
allows visually guided balancing of normal pencils, which 
otherwise represents a challenging control problem. The paper 
describes the vision sensors and their spiking output data, the 
algorithm to compute the pencil’s position in 3d space, the 
linear control policy and the balancing robot. We present and 
discuss measurements from the running system, and conclude 
with a comparison using conventional image sensors. 

II. DYNAMIC VISION SENSOR 

The dynamic vision sensor (DVS) [2, 5] used as a pair in 
this demonstration is an address-event silicon retina that 
responds to temporal contrast (Fig 1). Each output spike 
address represents a quantized change of log intensity at a 
particular pixel since the last event from that pixel. The 
address includes a sign bit that distinguishes positive from 
negative changes. 

 
Figure 1.  DVS pixel and camera architecture. The DVS pixel outputs 

events that represent quantized log intensity changes as shown by the 

simplified pixel schematic (top left). After transmission of the pixel address 

(addr), the pixel is reset. The addresses are timestamped (ts) by the camera's 
CPLD on the way to the USB chip's FIFO, and packets of up to 128 TAEs 

are transferred to the host PC over USB. 
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The DVS has a USB interface that delivers time-stamped 
address-events (TAEs) with a resolution of 1us to a host PC, 
although in the present applications the timestamps are so far 
unused. The DVS’ specifications are summarized in table I. 

TABLE I.  THE DVS’S ELECTRICAL SPECIFICATIONS 

Dynamic range 120dB 

Contrast threshold mismatch 2.1% 

Pixel array size 128x128 pixels of (40u)2 

Photoreceptor bandwidth >= 3KHz 

Event saturation rate 1 M-event per second 

Power consumption 23mW 

The USB interface delivers packets of up to 128 events to the 
host PC at a rate of at least 100Hz, but the packets of TAEs 
can be sent at a minimum interval of about 128us, limited by 
the USB2.0 high speed polling interval. 

III. BALANCER HARDWARE 

The balancer hardware (Fig. 2) consists of a custom-built 
table capable of moving its hand cup in X and Y directions 
within a range of 100x100mm. Two parallel linear rollers, 
mounted 120mm apart, support a bar with a third linear roller 
mounted perpendicular on them. The small cart on the upper 
linear roller slides with little friction in Y-direction, but can 
also slide easily in X-direction by moving the support bar on 
the parallel rollers. The hand mounted on the upper cart is a 
small cup lined with foam rubber into which a pencil or other 
sharp pointed object can be placed; the foam rubber provides 
sufficient friction to be able to rapidly accelerate the hand 
without slippage, but does not otherwise support the pencil. 

The table is actuated in X and Y directions by two 
independent servo motors. The rotary heads of these servos 
connect via a 2-segment arm of length 2x100mm to either one 
of the slides, which allows the servos to move the linear 
rollers by rotating their servo head. The lengths of the arms 
and the types of servos (lower bar Futaba BLS451, upper cart 
Futaba BLS251) have been selected to yield sufficient torque 
and fast response times, maximizing the speed of motion for 
the two slides based on their different mechanical 
characteristics (e.g. weight, friction). 

Mounted on the bar and on the underlying table are linear 
position sensors (SpectraSymbol SoftPot SP-L-0100-101-ST), 
whose voltage output represents the current position of the cart 
in X and Y directions. A 32-bit microcontroller (NXP 
LPC2103) running at 64MHz reads the position information at 
a rate of 8KHz, low-pass filters the data, and computes servo 
control signals. This uC implements a high-speed low-level 
control loop to quickly reach desired hand positions in X/Y 
space. 

Both servo motors have been modified so that their 
internal angle feedback potentiometer is replaced by a 
constant voltage divider. Each servo’s build-in control 
electronic assumes the servo to be permanently in center 
position; therefore the pulse width of a PWM signal applied to 
the servo motor now directly corresponds to the rotary speed 
of the servo head. The servos receive such PWM control input 
generated by the uC at a frequency of 250Hz, and 
measurements show that changes in PWM width cause 
movement of the hand within about 25ms. 

The uC is interfaced to a host PC via a serial-to-USB 
converter (FTDI-chip FT232R), allowing the PC to specify 
desired hand positions. The rate of commands sent is limited 
to a minimum interval of 2ms in software, to avoid saturating 
the FTDI’s USB bus interface. 

The cost of assembling the entire table was about 
US$1500, strongly dominated by the custom machining cost 
for the servo arms, which are aluminum that is milled out for 
low moment of inertia. 

 
Figure 2.  Photo of balancer hardware: 2 DVS (top center and top right), the 

motion table (center left) on linear rollers actuated by two servos. The system 

can balance all objects show at the bottom without modification of 
parameters. 

IV. BALANCER SOFTWARE ARCHITECTURE 

Processing of TAEs from the 2 DVSs and generation of 
desired hand positions is computed on a 2.6GHz Core2 Duo 
PC running Windows XP and jAER [4, 6], a Java software 
package that facilitates computation in AE-based systems. The 
TAEs from the 2 DVSs are captured over separate USB2.0 
interfaces. Each interface is served by its own thread running 
at maximum priority, and the data from each DVS is 
processed at the moment that it is delivered from the USB 
driver. Optional rendering of DVS output is done in a separate 
lower-priority thread that combines the 2 streams into a single 
binocular stream displayed on the PCs monitor along with 
annotations such as the pencil tracker output. A jAER GUI 
allows adjustment of tracker and control parameters. All 
source code for the balancer is open-source and can be 
examined in the package ch.unizh.ini.jaer.projects. 
pencilbalancer in the jAER project [6]. 

V. PENCIL TRACKING ALGORITHM 

The algorithm we use to track the pencil proceeds in two 
stages. The first stage, done independently for each vision 
sensor, uses each incoming event to efficiently update an 
estimate of the line where the pencil appears to be from that 
vision sensor's point of view. The second stage combines the 
two line estimates from the two vision sensors, taking 
perspective into account, to generate a 3D estimate of the line 
containing the pencil. 

The goal of the first stage is to identify the line cor-
responding to where the pencil is in vision sensor coordinates 
from the sensor's point of view. Every event that arrives is 
treated individually to update the estimate of this line. The 
estimate of the line is maintained as a Gaussian in the "Hough 
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space" of possible lines. Since the log of the Gaussian is a 
quadratic, our estimate of the line is stored as just the 5 
coefficients of the quadratic (not including the constant term). 
This allows our estimate to be stored very compactly, with no 
discretization. 

The equation for the line, x=m·y+b, describes a line in m 
and b (the two dimensions of the Hough space) when x and y 
are given by the event. To update the quadratic for a newly 
arrived event, we simply decay the old quadratic slightly, 
replacing the decayed portion with the information from the 
new event.  Since the new event corresponds to a line in the 
Hough space, it contributes a quadratic which has its 
minimum on this line, and grows parabolically away from the 
line.  This quadratic has coefficients A=y

2
, B=2·y, C=1, 

D=-2·x·y, and E=-2·x, given an event from pixel (x,y). When 
we need to produce an estimate of the slope and x-intercept of 
the pencil, we report the lowest point of the quadratic, which 
is given by (b,m) = (D·B - 2·A·E, B·E - 2·C·D)/q, where 
q=4·A·C-B·B. 

The second stage combines the two lines from the first 
stage into a single line in 3D space. If the true position of the 
pencil is given by (x,y,z)=(X+t·αX,Y+t·αY,t), then the sensors at 
(0,-yr,0) and (xr,0,0) will see the line as: 

(x,z) = ( (X+t·αX)/(Y+t·αY+yr), t/(Y+t·αY+yr) ) 
(y,z) = ( (Y+t·αY)/(xr-X-t·αX), t/(xr-X-t·αX) ). 

We receive these as a base and slope for each sensor: 

  b1 = (X/(Y+yr), 0) s1 = dx/dz = αX-X·αY/(Y+yr) 
  b2 = (Y/(xr-X), 0) s2 = dy/dz = αY+Y·αX/(xr-X). 

We can solve these for X,αX,Y,αY in terms of b1,s1,b2,s2: 

   X  = (b1·yr + b1·b2·xr) / (b1·b2+1) 
   αX = (s1 + b1·s2) / (b1·b2+1) 
   Y   = (b2·xr - b1·b2·yr) / (b1·b2+1) 
   αY  = (s2 - b2·s1) / (b1·b2+1) 

This yields the position (X,Y) of the pencil at the height of the 
cameras, as well as the slope of the pencil (αX,αY). 

VI. CONTROL SYSTEM 

The pencil tracking algorithm reports its estimate of the 
pencil’s position in 3d space, represented as a pair of position 
coordinates (X,Y), and corresponding slopes in x and y 
directions (αX,αY). A PD-controller generates desired hand 
positions (Xdes,Ydes) based on these four inputs and the position 

time derivatives ( ). In our system all final desired target 
values (positions, slopes, and velocities) are zero to keep the 
pencil upright in the center of the table. Xdes,Ydes are computed 
as follows: 

 

 

Here gP, gα, and gD denote the gain parameters for base 
position, slope, and base velocity, respectively. Selecting 
gP = 1 (with gα, gD = 0) moves the hand exactly underneath the 
current center of the pencil; whereas values of gp slightly 
larger than 1 move the hand further outside, helping the pencil 
to tilt backwards towards the center of the table. Intuitively, 
the middle term has a similar effect based on the pencil’s 

current slope: for larger gains gα, the current tilt of the pencil 
more strongly influences the future position of the hand. The 
last term counteracts recent drift of the pencil. 

We found a large range of gain settings for which the 
system exhibits consistent performance. Typical settings are: 

gP ≈ 1.3±0.2 gα ≈ 250±100 gD ≈ 70±20 

VII. RESULTS 

Videos of the balancer in operation that demonstrate its 
performance are available online [7]. 

Our system normally balances an object for several 
minutes before losing it. During operation, the PC processor 
load varies between 10% and 22% when rendering is disabled; 
rendering at 60 FPS increases processor load to around 33%. 
Events are processed by the core algorithm at a rate of about 3 
million events per second. The total event rate during 
operation is between 200k and 300k events/second. Fig 3 
shows a histogram of measured update intervals, which 
typically range between 125us and 300us, but can reach up to 
1.5ms when the pencil is not moving rapidly, or when a 
USB1.0 table command is sent. Although USB, Windows XP, 
and Java are not typically considered real-time control 
environments, we were pleasantly surprised that the maximum 
observed update interval was below 10ms. The minimum 
observed intervals of 125us between received packets of TAE 
suggest that USB2.0 polling interval limits the rate. The 
average update rate is about 4 times higher than observed in a 
previous robotic goalie [3], because here the average event 
rate is much higher. 

We used a variety of illumination sources ranging from 
uneven (shadowed) sunlight through the windows to 
fluorescent lighting of 300lux to incandescent lighting from a 
table lamp. Low illumination degraded performance slightly 
by increasing DVS noise and decreasing pixel bandwidth, but 
generally the balancer is tolerant to a wide range of 
illumination conditions as long as it is relatively steady. 

 

Figure 3.  Histogram of update intervals. Median interval was 236us; 

maximum interval was 9.8ms. The bimodal distribution is due to USB1 and 

USB2-devices sharing the bus. 

Fig. 4 shows TAEs emitted from one of the two DVS due 
to pencil motion along the blue time axis. The solid black axes 
represent the field-of-view in sensor space: an event’s position 
on the vertical axis corresponds to its height along the pencil; 
its position on the horizontal axis shows its displacement with 
respect to the center of the setup. Each black dot denotes a 
reported event at a given position in sensor space and time. 
The red pencil at t = 640ms shows the current estimate of 
pencil base and slope. This space-time plot shows oscillations 
of pencil position and tilt within the 640ms time window. 
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Figure 4.  Space-time plot of 54k events (dots) reported from one DVS 

sensor during balancing in a time window of 640ms. The pencil’s base over 

time and the last tracked position are shown in blue and red. The lower 

density of events close to the top reflects lower contrast of the pencil’s rubber 

holder in silver-metallic. 

Fig. 5 shows recorded control data from our system during 
2 seconds of operation. For clarity, we display data of a single 
dimension only. The top panel shows raw unfiltered data 
whereas the bottom panel shows the same data processed by a 
low-pass filter for clarity. The blue trace shows the estimated 
position of the pencil (X) over time; the red trace a 100-fold 
amplification of the pencil’s slope (αX). Both these signals are 
obtained based on spiking visual input only. The green trace 
shows the desired position of the cart, as computed in section 
VI. The blue position trace follows the green desired position 
trace with an average delay of about 50ms. This delay is 
probably dominant in limiting the possible object length that 
can be balanced. 

 

Figure 5.  Recorded traces of position, slope and desired position during a 2s 

time window. Upper graph: raw data; lower graph: same data filtered in 3rd 

order Butterworth filter (-3dB cutoff frequency set to 30Hz) for clarity. 

Fig. 6 is a histogram of X, Y-positions visited by the table 
during balancing. The plot clearly shows that the cart typically 
stays close to the center of the table, but occasionally needs 
much of the available motion space. The center of balancing is 
shifted relative to the table’s origin, indicating an offset 
between the centers of the two DVS and the center of the 
table. In fact, we never properly calibrated the visual system 
with the actuated table. 

 

Figure 6.  Histogram of relative occurrances of true table positions, red 

denoting areas often visited. 

VIII. CONCLUSIONS 

This paper describes a balancer demonstration that uses spike-
based vision sensors coupled to a standard PC running a 
standard preemptive OS. The low latency and sparse output of 
the sensors enable a straightforward solution to this balancing 
problem, which challenges conventional imaging based 
systems. A solution to balancing small objects using standard 
image sensors requires running at >1 KHz frame rate. Even at 
the relatively low spatial resolution of 128x128 = 16k-pixels 
of the DVS sensors, image analysis requires processing pixels 
at a rate of 2·16k·1k=32M pixels/second for data acquisition, 
which would saturate a USB2.0 hub. Log conversion for 
temporal contrast extraction and subtraction against stored 
values to obtain event-like equivalents to the DVS output 
would require several hundred MIPs of processing before the 
remaining processing described here. Quantization noise at the 
low end of the conversion scale would limit low light 
performance severely, as would the 1ms exposure times, 
necessitating bright and uniform lighting. The use of AER 
sensors and event-driven methods for computation has 
simplified and reduced the cost of implementing this 
demonstration, and has shown the advantages of the event-
driven style of computation used in brains. 
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