
A Pencil Balancing Robot

using a Pair of AER Dynamic Vision Sensors

J. Conradt, M. Cook, R. Berner, P. Lichtsteiner, RJ. Douglas, T. Delbruck

Institute of Neuroinformatics

UZH-ETH Zurich, Switzerland

Email: {conradt, cook, raphael, patrick, rjd, tobi}@ini.phys.ethz.ch

Abstract—Balancing a normal pencil on its tip requires rapid

feedback control with latencies on the order of milliseconds.

This demonstration shows how a pair of spike-based silicon

retina dynamic vision sensors (DVS) is used to provide fast

visual feedback for controlling an actuated table to balance an

ordinary pencil. Two DVSs view the pencil from right angles.

Movements of the pencil cause spike address-events (AEs) to be

emitted from the DVSs. These AEs are transmitted to a PC over

USB interfaces and are processed procedurally in real time. The

PC updates its estimate of the pencil’s location and angle in 3d

space upon each incoming AE, applying a novel tracking method

based on spike-driven fitting to a model of the vertical shape of

the pencil. A PD-controller adjusts X-Y-position and velocity of

the table to maintain the pencil balanced upright. The controller

also minimizes the deviation of the pencil’s base from the center

of the table. The actuated table is built using ordinary high-

speed hobby servos which have been modified to obtain

feedback from linear position encoders via a microcontroller.

Our system can balance any small, thin object such as a pencil,

pen, chop-stick, or rod for many minutes. Balancing is only

possible when incoming AEs are processed as they arrive from

the sensors, typically at intervals below millisecond ranges.

Controlling at normal image sensor sample rates (e.g. 60 Hz)

results in too long latencies for a stable control loop.

I. INTRODUCTION

Balancing an object has been used for many years as a
demonstration of controller design. Such demonstrations in
teaching robotics and robotics contests often are limited to a
single pole rotating about one constrained axis for simplicity,
and typically use a position encoder at the bottom of the object
providing the current angle relative to desired balanced
orientation.

Normal image sensors are hard to use for balancing small
objects because the frame rate limits the response latency,
necessitating complex nonlinear control methods that can
control despite the large signal nonlinearities that develop with
controller delay. One example available online [1] shows a
Sarcos industrial robot balancing a pole approximately 1 m
long with a weighted top and two colored markers which are
used for tracking. Since the angular acceleration by gravity is
inversely proportional to the distance of the center of mass
(COM) from the base, the weighted top shifts the center of

mass away from the hand, easing the task significantly. An
unmodified rod of length L has its COM c = ½·L from the
base. The angular acceleration (in rad/s

2
) caused by

gravity (g) for small angle α (where sin(α) ≈ α) is given by
 = (α·g)/c, representing an angle that increases by a factor of

e every sqrt(c/g) seconds. For a normal pencil of length
L=20cm, the angle increases 10% every 10ms. A simple linear
controller must react within a few ms to balance such an
object t.

Here we show how the use of data-driven spike based
sensors facilitates the application of straightforward linear
control policies with low computational requirements, that
allows visually guided balancing of normal pencils, which
otherwise represents a challenging control problem. The paper
describes the vision sensors and their spiking output data, the
algorithm to compute the pencil’s position in 3d space, the
linear control policy and the balancing robot. We present and
discuss measurements from the running system, and conclude
with a comparison using conventional image sensors.

II. DYNAMIC VISION SENSOR

The dynamic vision sensor (DVS) [2, 5] used as a pair in
this demonstration is an address-event silicon retina that
responds to temporal contrast (Fig 1). Each output spike
address represents a quantized change of log intensity at a
particular pixel since the last event from that pixel. The
address includes a sign bit that distinguishes positive from
negative changes.

Figure 1. DVS pixel and camera architecture. The DVS pixel outputs

events that represent quantized log intensity changes as shown by the

simplified pixel schematic (top left). After transmission of the pixel address

(addr), the pixel is reset. The addresses are timestamped (ts) by the camera's
CPLD on the way to the USB chip's FIFO, and packets of up to 128 TAEs

are transferred to the host PC over USB.

Proc. of the International Conference on Circuits and Systems (ISCAS), Taipeh, Taiwan, accepted (2009)

The DVS has a USB interface that delivers time-stamped
address-events (TAEs) with a resolution of 1us to a host PC,
although in the present applications the timestamps are so far
unused. The DVS’ specifications are summarized in table I.

TABLE I. THE DVS’S ELECTRICAL SPECIFICATIONS

Dynamic range 120dB

Contrast threshold mismatch 2.1%

Pixel array size 128x128 pixels of (40u)2

Photoreceptor bandwidth >= 3KHz

Event saturation rate 1 M-event per second

Power consumption 23mW

The USB interface delivers packets of up to 128 events to the
host PC at a rate of at least 100Hz, but the packets of TAEs
can be sent at a minimum interval of about 128us, limited by
the USB2.0 high speed polling interval.

III. BALANCER HARDWARE

The balancer hardware (Fig. 2) consists of a custom-built
table capable of moving its hand cup in X and Y directions
within a range of 100x100mm. Two parallel linear rollers,
mounted 120mm apart, support a bar with a third linear roller
mounted perpendicular on them. The small cart on the upper
linear roller slides with little friction in Y-direction, but can
also slide easily in X-direction by moving the support bar on
the parallel rollers. The hand mounted on the upper cart is a
small cup lined with foam rubber into which a pencil or other
sharp pointed object can be placed; the foam rubber provides
sufficient friction to be able to rapidly accelerate the hand
without slippage, but does not otherwise support the pencil.

The table is actuated in X and Y directions by two
independent servo motors. The rotary heads of these servos
connect via a 2-segment arm of length 2x100mm to either one
of the slides, which allows the servos to move the linear
rollers by rotating their servo head. The lengths of the arms
and the types of servos (lower bar Futaba BLS451, upper cart
Futaba BLS251) have been selected to yield sufficient torque
and fast response times, maximizing the speed of motion for
the two slides based on their different mechanical
characteristics (e.g. weight, friction).

Mounted on the bar and on the underlying table are linear
position sensors (SpectraSymbol SoftPot SP-L-0100-101-ST),
whose voltage output represents the current position of the cart
in X and Y directions. A 32-bit microcontroller (NXP
LPC2103) running at 64MHz reads the position information at
a rate of 8KHz, low-pass filters the data, and computes servo
control signals. This uC implements a high-speed low-level
control loop to quickly reach desired hand positions in X/Y
space.

Both servo motors have been modified so that their
internal angle feedback potentiometer is replaced by a
constant voltage divider. Each servo’s build-in control
electronic assumes the servo to be permanently in center
position; therefore the pulse width of a PWM signal applied to
the servo motor now directly corresponds to the rotary speed
of the servo head. The servos receive such PWM control input
generated by the uC at a frequency of 250Hz, and
measurements show that changes in PWM width cause
movement of the hand within about 25ms.

The uC is interfaced to a host PC via a serial-to-USB
converter (FTDI-chip FT232R), allowing the PC to specify
desired hand positions. The rate of commands sent is limited
to a minimum interval of 2ms in software, to avoid saturating
the FTDI’s USB bus interface.

The cost of assembling the entire table was about
US$1500, strongly dominated by the custom machining cost
for the servo arms, which are aluminum that is milled out for
low moment of inertia.

Figure 2. Photo of balancer hardware: 2 DVS (top center and top right), the

motion table (center left) on linear rollers actuated by two servos. The system

can balance all objects show at the bottom without modification of
parameters.

IV. BALANCER SOFTWARE ARCHITECTURE

Processing of TAEs from the 2 DVSs and generation of
desired hand positions is computed on a 2.6GHz Core2 Duo
PC running Windows XP and jAER [4, 6], a Java software
package that facilitates computation in AE-based systems. The
TAEs from the 2 DVSs are captured over separate USB2.0
interfaces. Each interface is served by its own thread running
at maximum priority, and the data from each DVS is
processed at the moment that it is delivered from the USB
driver. Optional rendering of DVS output is done in a separate
lower-priority thread that combines the 2 streams into a single
binocular stream displayed on the PCs monitor along with
annotations such as the pencil tracker output. A jAER GUI
allows adjustment of tracker and control parameters. All
source code for the balancer is open-source and can be
examined in the package ch.unizh.ini.jaer.projects.
pencilbalancer in the jAER project [6].

V. PENCIL TRACKING ALGORITHM

The algorithm we use to track the pencil proceeds in two
stages. The first stage, done independently for each vision
sensor, uses each incoming event to efficiently update an
estimate of the line where the pencil appears to be from that
vision sensor's point of view. The second stage combines the
two line estimates from the two vision sensors, taking
perspective into account, to generate a 3D estimate of the line
containing the pencil.

The goal of the first stage is to identify the line cor-
responding to where the pencil is in vision sensor coordinates
from the sensor's point of view. Every event that arrives is
treated individually to update the estimate of this line. The
estimate of the line is maintained as a Gaussian in the "Hough

X DVS Imager

Y DVS Imager

Upper Cart

space" of possible lines. Since the log of the Gaussian is a
quadratic, our estimate of the line is stored as just the 5
coefficients of the quadratic (not including the constant term).
This allows our estimate to be stored very compactly, with no
discretization.

The equation for the line, x=m·y+b, describes a line in m
and b (the two dimensions of the Hough space) when x and y
are given by the event. To update the quadratic for a newly
arrived event, we simply decay the old quadratic slightly,
replacing the decayed portion with the information from the
new event. Since the new event corresponds to a line in the
Hough space, it contributes a quadratic which has its
minimum on this line, and grows parabolically away from the
line. This quadratic has coefficients A=y

2
, B=2·y, C=1,

D=-2·x·y, and E=-2·x, given an event from pixel (x,y). When
we need to produce an estimate of the slope and x-intercept of
the pencil, we report the lowest point of the quadratic, which
is given by (b,m) = (D·B - 2·A·E, B·E - 2·C·D)/q, where
q=4·A·C-B·B.

The second stage combines the two lines from the first
stage into a single line in 3D space. If the true position of the
pencil is given by (x,y,z)=(X+t·αX,Y+t·αY,t), then the sensors at
(0,-yr,0) and (xr,0,0) will see the line as:

(x,z) = ((X+t·αX)/(Y+t·αY+yr), t/(Y+t·αY+yr))
(y,z) = ((Y+t·αY)/(xr-X-t·αX), t/(xr-X-t·αX)).

We receive these as a base and slope for each sensor:

 b1 = (X/(Y+yr), 0) s1 = dx/dz = αX-X·αY/(Y+yr)
 b2 = (Y/(xr-X), 0) s2 = dy/dz = αY+Y·αX/(xr-X).

We can solve these for X,αX,Y,αY in terms of b1,s1,b2,s2:

 X = (b1·yr + b1·b2·xr) / (b1·b2+1)
 αX = (s1 + b1·s2) / (b1·b2+1)
 Y = (b2·xr - b1·b2·yr) / (b1·b2+1)
 αY = (s2 - b2·s1) / (b1·b2+1)

This yields the position (X,Y) of the pencil at the height of the
cameras, as well as the slope of the pencil (αX,αY).

VI. CONTROL SYSTEM

The pencil tracking algorithm reports its estimate of the
pencil’s position in 3d space, represented as a pair of position
coordinates (X,Y), and corresponding slopes in x and y
directions (αX,αY). A PD-controller generates desired hand
positions (Xdes,Ydes) based on these four inputs and the position

time derivatives (). In our system all final desired target
values (positions, slopes, and velocities) are zero to keep the
pencil upright in the center of the table. Xdes,Ydes are computed
as follows:

Here gP, gα, and gD denote the gain parameters for base
position, slope, and base velocity, respectively. Selecting
gP = 1 (with gα, gD = 0) moves the hand exactly underneath the
current center of the pencil; whereas values of gp slightly
larger than 1 move the hand further outside, helping the pencil
to tilt backwards towards the center of the table. Intuitively,
the middle term has a similar effect based on the pencil’s

current slope: for larger gains gα, the current tilt of the pencil
more strongly influences the future position of the hand. The
last term counteracts recent drift of the pencil.

We found a large range of gain settings for which the
system exhibits consistent performance. Typical settings are:

gP ≈ 1.3±0.2 gα ≈ 250±100 gD ≈ 70±20

VII. RESULTS

Videos of the balancer in operation that demonstrate its
performance are available online [7].

Our system normally balances an object for several
minutes before losing it. During operation, the PC processor
load varies between 10% and 22% when rendering is disabled;
rendering at 60 FPS increases processor load to around 33%.
Events are processed by the core algorithm at a rate of about 3
million events per second. The total event rate during
operation is between 200k and 300k events/second. Fig 3
shows a histogram of measured update intervals, which
typically range between 125us and 300us, but can reach up to
1.5ms when the pencil is not moving rapidly, or when a
USB1.0 table command is sent. Although USB, Windows XP,
and Java are not typically considered real-time control
environments, we were pleasantly surprised that the maximum
observed update interval was below 10ms. The minimum
observed intervals of 125us between received packets of TAE
suggest that USB2.0 polling interval limits the rate. The
average update rate is about 4 times higher than observed in a
previous robotic goalie [3], because here the average event
rate is much higher.

We used a variety of illumination sources ranging from
uneven (shadowed) sunlight through the windows to
fluorescent lighting of 300lux to incandescent lighting from a
table lamp. Low illumination degraded performance slightly
by increasing DVS noise and decreasing pixel bandwidth, but
generally the balancer is tolerant to a wide range of
illumination conditions as long as it is relatively steady.

Figure 3. Histogram of update intervals. Median interval was 236us;

maximum interval was 9.8ms. The bimodal distribution is due to USB1 and

USB2-devices sharing the bus.

Fig. 4 shows TAEs emitted from one of the two DVS due
to pencil motion along the blue time axis. The solid black axes
represent the field-of-view in sensor space: an event’s position
on the vertical axis corresponds to its height along the pencil;
its position on the horizontal axis shows its displacement with
respect to the center of the setup. Each black dot denotes a
reported event at a given position in sensor space and time.
The red pencil at t = 640ms shows the current estimate of
pencil base and slope. This space-time plot shows oscillations
of pencil position and tilt within the 640ms time window.

1000

500

0
10005000 20001500

update interval (us)

0 DVS pixel hor. 127

0

 D

V
S

 p
ix

e
l
ve

r.

 1

2
7

tim
e

Figure 4. Space-time plot of 54k events (dots) reported from one DVS

sensor during balancing in a time window of 640ms. The pencil’s base over

time and the last tracked position are shown in blue and red. The lower

density of events close to the top reflects lower contrast of the pencil’s rubber

holder in silver-metallic.

Fig. 5 shows recorded control data from our system during
2 seconds of operation. For clarity, we display data of a single
dimension only. The top panel shows raw unfiltered data
whereas the bottom panel shows the same data processed by a
low-pass filter for clarity. The blue trace shows the estimated
position of the pencil (X) over time; the red trace a 100-fold
amplification of the pencil’s slope (αX). Both these signals are
obtained based on spiking visual input only. The green trace
shows the desired position of the cart, as computed in section
VI. The blue position trace follows the green desired position
trace with an average delay of about 50ms. This delay is
probably dominant in limiting the possible object length that
can be balanced.

Figure 5. Recorded traces of position, slope and desired position during a 2s

time window. Upper graph: raw data; lower graph: same data filtered in 3rd

order Butterworth filter (-3dB cutoff frequency set to 30Hz) for clarity.

Fig. 6 is a histogram of X, Y-positions visited by the table
during balancing. The plot clearly shows that the cart typically
stays close to the center of the table, but occasionally needs
much of the available motion space. The center of balancing is
shifted relative to the table’s origin, indicating an offset
between the centers of the two DVS and the center of the
table. In fact, we never properly calibrated the visual system
with the actuated table.

Figure 6. Histogram of relative occurrances of true table positions, red

denoting areas often visited.

VIII. CONCLUSIONS

This paper describes a balancer demonstration that uses spike-
based vision sensors coupled to a standard PC running a
standard preemptive OS. The low latency and sparse output of
the sensors enable a straightforward solution to this balancing
problem, which challenges conventional imaging based
systems. A solution to balancing small objects using standard
image sensors requires running at >1 KHz frame rate. Even at
the relatively low spatial resolution of 128x128 = 16k-pixels
of the DVS sensors, image analysis requires processing pixels
at a rate of 2·16k·1k=32M pixels/second for data acquisition,
which would saturate a USB2.0 hub. Log conversion for
temporal contrast extraction and subtraction against stored
values to obtain event-like equivalents to the DVS output
would require several hundred MIPs of processing before the
remaining processing described here. Quantization noise at the
low end of the conversion scale would limit low light
performance severely, as would the 1ms exposure times,
necessitating bright and uniform lighting. The use of AER
sensors and event-driven methods for computation has
simplified and reduced the cost of implementing this
demonstration, and has shown the advantages of the event-
driven style of computation used in brains.

ACKNOWLEDGMENT

We thank the Institute of Neuroinformatics and the UZH-
ETH for supporting this work.

REFERENCES

[1] Available: http://www.youtube.com/watch?v=lwvTyC7m4LQ

[2] A 128×128 120dB 15us Latency Asynchronous Temporal Contrast
Vision Sensor, (2007) Lichtsteiner, P., C. Posch and T. Delbruck. IEEE
Journal of Solid State Circuits, Feb. 2008, 43(2) 566-576.

[3] Fast sensory motor control based on event-based hybrid neuromorphic-
procedural system. (2007) T. Delbruck, T. and P. Lichtsteiner, ISCAS
2007, New Orleans, 27-30 May 2007 Page(s):845 - 848.

[4] Frame-free dynamic digital vision, T. Delbruck, Proceedings of Intl.
Symposium on Secure-Life Electronics, Advanced Electronics for
Quality Life and Society, University of Tokyo, Tokyo, Japan, Mar. 6-7,
2008, pp. 21-26.

[5] Available: http://siliconretina.ini.uzh.ch

[6] Available: http://jaer.wiki.sourceforge.net

[7] Available: http://www.ini.uzh.ch/~conradt/projects/PencilBalancer.

-60

-40

-20

0

20

40

0 500 1000 1500 2000
-60

-40

-20

0

20

40

Po
si

ti
o

n
/s

lo
p

e
in

 m
m

lo
w

-p
as

s
fi

lt
er

ed
p

o
si

ti
o

n
/s

lo
p

e
in

 m
m

time in ms

position

100x slope

des. position

-50 +500
X position of table in mm

-5
0

+
5

0
0

Y
 p

o
si

ti
o

n
 o

f
ta

b
le

 in
 m

m

