
Steering with an aVLSI Motion Detection Chip

Rico Moeckel, Roger Jaeggi, and Shih-Chii Liu
Institute of Neuroinformatics

University of Zürich and ETH Zürich

Winterthurerstrasse 190, CH-8057 Zürich, Switzerland

Email: moeckel,jaeggir,shih@ini.phys.ethz.ch

Abstract— We demonstrate the capabilies of a 1D motion
detection chip in steering a car in a simulated racing game. The
chip implemented in a 1.5 μm CMOS VLSI process, is comprised
of 24 motion pixels that extracts optical flow in parallel. The
local optical flow values go to a single-layer perceptron whose
output is used to steer the car in the racing game. Because of
the continuous-time operation of the motion detection chip, the
computationally expensive task of generating a control signal for
the car based on the visual scene is largely alleviated.

I. INTRODUCTION

Optical flow or motion is a signal widely used in robot

steering. The typical approaches used in robotic systems

for extracting optical flow include digital cameras with a

supporting processor [1], [2]; optical mouse chips [3]; discrete

electronic circuits [4]; and single-chip continuous-time analog

motion processors [5]. The most common approach described

in the robotics literature is to transmit picture frames from

digital camera systems to a digital processor that then performs

the computationally expensive task of extracting optical flow

from these images. Because of the high computational power

needed for optical flow estimation, the computation is often not

performed on the robot but on an external personal computer

(PC) [4], [6].

We believe that single chip analog motion processors can

simplify the estimation of optical flow on this robotics systems

with high temporal resolution and consuming very little power.

This approach has the advantage that the motion detection

is done on a single chip that directly estimates the optical

flow on the focal plane. Examples of the use of these motion

detection chips in controlling robots can be found in [5],

[7], [8]. The algorithms implemented in single chip motion

processors can be divided into either (a) intensity-based and

(b) token-based algorithms. In intensity-based algorithms, the

optical flow is computed from the gradient of pixel intensities

over space and time [9], [10] or by correlating neighboring

pixel intensities [11], [12]. Token-based algorithms first extract

low-level features like contrast edges, and then estimate the

optical flow from the correlation of these local features or by

measuring the time that a feature takes to travel across two

pixels as in [13].

Our motion detection chip is based on a token-based time-

to-travel algorithm. Various schemes have been adopted on

chip to reduce the dependence of the computed motion on

background intensity and contrast. The computed motion is

invariant to changes in background intensity over at least three

decades due to the inclusion of the adaptive photoreceptor

circuits in [14]. The computed motion is also invariant to

image contrast, C down to values of 2.5% due to the contrast

edge detection circuits. (The image contrast C is defined

as C = Imax−Imin

Imax+Imin
∗ 100%, where Imax and Imin are the

maximum and minimum intensity values of the scene.)

The circuits run in continuous time thus the temporal

resolution of the computed motion does not depend on a clock

frequency as would happen in the case of motion estimation

using image frames from a digital camera.

We first describe the chip in Section II and the demo

setup in Section III. In Section IV we give details on the

implementation of the controller and finally we show results

in Section V.

Fig. 1. Architecture of motion detection chip. 24 motion detection pixels are
aligned in a linear array and calculate optical flow based on a time-to-travel
algorithm. A scanner circuits supports access to the local motion values.

II. MOTION DETECTION CHIP

The details of the motion detection chip have been presented

in [15]. It was fabricated in a 2-metal 2-poly 1.5 μm CMOS

process and consumes 5mW. An overview of the chip archi-

tecture is shown in Fig. 1. The chip has a one-dimensional

array of 24 motion pixels that implement a time-to-travel

algorithm. Each motion pixel contains a photodiode and an

analog photoreceptor circuit [14] that convert a temporal

change of light intensity into a transient voltage signal. The

output signal is further amplified and high-pass filtered by a

circuit descibed in [12].

From this amplified high-pass filtered output, we look for

a contrast edge. Optical flow is determined by measuring the

978-1-4244-1684-4/08/$25.00 ©2008 IEEE 1036

Fig. 2. Left: Sample-and-hold circuit for measuring feature speed. Right:
Behavior of voltage Vsample that measures and Vsample that stores traveling
time of contrast edge traveling from a pixel 1 to its neighbor pixel 2. Vsample

is shown for a given (solid line) value and a higher value of the velocitybias
(dotted line) parameter.

time that a contrast edge takes to travel between neighboring

pixels. This time delay is measured by a sample and hold

circuit shown in Fig. 2: When a motion pixel sees a contrast

edge it outputs a pulse P1 that is used to charge up the

capacitor Csample. The charge on the capacitor leaks away

once P1 has disappeared so the Vsample voltage decreases

linearly thereafter. The neighboring pixel outputs a pulse P2

once the contrast edge travels across it. This pulse is used

to sample Vsample which has a high value when the speed

of the contrast edge was high and a lower value for a lower

speed. This sampled value is stored on a separate capacitor

Chold. The discharge rate of Csample can be adjusted by the

velocity bias parameter thus allowing us to tradeoff between

the range and resolution of speeds that can be measured. A

high discharge rate gives us a better resolution for high speeds

but a smaller range of detectable speeds (see Fig. 2). A scanner

circuit similar to that described in [16] allows us access to the

two channels of direction at each of the 24 motion pixels.

Fig. 3. Speed characterization for the 24 motion pixels for a given value of
the velocity bias. The speed of the visual stimuli was varied between 0 and
100 degrees per second. The motion output was measured for one direction
of motion of the stimuli.

In Fig. 3, we show a characterization of the output of

the 24 motion pixels for visual stimuli moving from right

to left. We used sinusoidal gratings of various spatial and

temporal frequencies. The measured motion outputs proved to

be dependent only on the speed of the grating over 2 orders

of magnitude. The speed is computed from Vhold in Fig. 2.

Fixed pattern noise on the chip leads to the variance in the

motion values at different pixels for the same stimulus speed.

Fig. 4. Screen shot of one frame in the racing car simulation. The visual
field of the motion detection chip is indicated by the red box. The box on the
right shows the local motion values of the chip that are used to steer the car.

III. EXPERIMENTAL SETUP

To demonstrate the capabilies of the motion chip in a

real time task we used it to control a simulated car in a

racing game. The simulation environment was completely

generated in Matlab. The visual stimuli were created with

Psychtoolbox [17], [18]. A typical screen shot of the game is

shown on the left side of Fig. 4. During the game the car at the

bottom of the screen is steered using the local motion outputs

of the motion chip to avoid collisions with the walls on both

sides of the road. The chip was placed so that it monitors the

far end of the street as indicated by the red box. For a straight

street, the motion chip outputs a typical 1D optical flow field

shown on the right of Fig. 4. If the street curves to the left

or right of the screen, the optical flow field will shift and this

shift is used to adjust the postion of the car in the next frame.

Fig. 5. Demo setup. The motion chip computes optical flow based on the
racing game generated by a PC. A microcontroller continuously scans the local
motion values from the chip, converts the analog values to digital ones and
sends them via a serial interface (RS232) to the PC where a simple controller
updates the position of the simulated car based on the motion values. The
microcontroller is further responsible for adjusting the velocity bias that sets
the current detectable speed range.

A picture and a schema of the whole setup are shown

in Fig. 4. The analog local motion values from the motion

chip are continuously scanned by a microcontroller in a

frame-based fashion and converted into digital values with a

resolution of 7 bit. Furthermore the microcontroller adjusts the

1037

velocity bias of the motion detection chip. Due to the limita-

tion of the analog-to-digital converter, the minimum readout

time per pixel is currently set to 100μs which corresponds

to a sampling rate of 10 KSamples/s. To reduce the amount

of data that needs to be transmitted to the PC and because

the motion values change slowly over time, we only do the

motion readout at 100 frames per second. We send the motion

data with a baud rate of 38400 baud/s to the PC that runs the

controller for adjusting the position of the car.

IV. CONTROLLER

Fig. 6. The perceptron calculates the current position of the street based on
the 24 local motion values.

For steering the simulated car based on the local motion

values, we decided on a simple controller based on the well-

known perceptron shown in Fig. 6. The 24 motion values are

inputs to the perceptron that produces an output based on the

weighted sum of the inputs following the equation:

output = f(
24∑

i=1

weighti ∗ inputi) (1)

where f is the sigmoid function. The weight vector is updated

using the following supervised learning rule

Δweight = η ∗ (supervisor − output) ∗ input (2)

where the weight change Δweight is determined based on

the difference between the supervisor signal (that is the

desired output) and the current output of the perceptron. η is

a constant that is used to adjust the amount of weight update

per learning step.

V. RESULTS

During the training phase, the perceptron was trained with

different segments of the racing simulation. A typical evolution

of the displacement error during this training phase is shown in

Fig. 7. The error value defined in screen pixels is the difference

between the distance of the current position of the center of

the street and the perceptron output based on the local motion

values. The displacement error decreases below 60 pixels after

8000 weight updates.

An example of a final weight distribution at the end of a

learning phase is shown in Fig. 8. For this experiment, the

motion chip was placed in front of the screen so that the center

Fig. 7. Average estimation error of the current position of the center of the
street measured in pixels. Error bars indicate the standard deviation. After
the supervised training phase of the perceptron, the error decreases below 60
pixels.

Fig. 8. Final weight values for the inputs of the perceptron after 8000
learning steps. The perceptron learned to steer the simulated car towards the
center of the street which was approximately in the field of view between
motion pixels 12 and 13.

of the street was approximately in the visual field of pixel

numbers 12 and 13. Even though the weight distribution is

asymmetric, the net output of the perceptron is close to zero

which means that the car will stay in its current horizontal

position. The unsymmetric weight distribution is probably due

to the fact that the motion chip was not looking at the center

of the screen. The perceptron has the potential to correct for

displacement errors of the chip with respect to the center of

the screen as well as for fixed pattern noise in the motion

output and lens aberrations.

The trajectory of the car through the racing game after

training is shown in Fig. 9. The car was able to drive close

to the center of the street without colliding with the walls.

However a more complex controller like a PID controller that

allows better estimation of the next street position based on the

history would be necessary to reduce the displacement error

to zero.

1038

Fig. 9. Horizontal position of the center of the street (solid line) and the
location of the car (dashed line) on the screen in units of pixels.

VI. CONCLUSION

We describe an experimental setup for steering a car in

a racing simulation based on the outputs of a novel motion

detection chip. The chip computes 24 local motion values in

parallel and in continuous time. We fuse the motion values to

find the displacement error of the simulated car in relation to

the center of the street with the help of a one-layer perceptron

that produces a steering output based on the weighted sum of

the local motion values. Because of the inclusion of circuits

on the motion chip to model the properties of cells in the

stages prior to the motion computation in biological systems,

and the learning through the perceptron, we get a robust setup

that (i) is adaptive to approximately three orders of magnitude

of change in background light intensity; (ii) operates over

a large range of contrasts down to a contrast of 5%; (iii)

supports pixel-level optical flow variations over two orders of

magnitude without bias changes; (iv) adapts to displacement

errors of the placement of the motion chip in front of the

screen, and (v) is robust to variance across the local measured

motion values. So we demonstrate how to largely simplify the

difficult task of steering a car with the help of the motion

chip that performs the computationally expensive processing

optical flow estimation at a high temporal resolution. To give

the reader a feeling of the capabilities of this chip, we allow

them to compete against the chip in the demo setup.

ACKNOWLEDGMENT

The authors would like to thank T. Delbrück for discussions

on the circuits. This work is partially supported by SNF

Research Grant 200021-105545/1.

REFERENCES

[1] J.C. Zufferey, A. Klaptocz, A. Beyeler, J.D. Nicoud, and D. Floreano, “A
10-gram microflyer for vision-based indoor navigation,” in Proceedings
of the IEEE International Conference on Intelligent Robots and Systems,
October 2006.

[2] M. Epstein, S. Waydo, S. Fuller, W. Dickson, A.D. Straw, M.H. Dick-
inson, and R.M. Murray, “Biologically inspired feedback design for
Drosophila flight,” in American Control Conference, 2007.

[3] H.J. Dahmen, “Extracting egomotion from optic flow: Limits of accuracy
and neural matched filters,” in Motion Vision, Springer, 2000.

[4] F. Ruffier, and N. Franceschini, “Optic flow regulation: the key to aircraft
automatic guidance,” in Robotics and Autonomous Systems Journal, vol.
50, pages 177-194, 2005.

[5] L. Reichel, D. Liechti, K. Presser, and S.C. Liu, “Range estimation on a
robot using neuromorphic motion sensors,” in Robotics and Autonomous
Robots, vol. 51, pages 167-174, 2005.

[6] S. Bermudez i Badia, P.F.M.J. Verschure, “A collision avoidance model
based on the Lobula giant movement detector (LGMD) neuron of the
locust,” in Proceedings of the IEEE International Joint Conference on
Neural Networks, vol. 3, pages 1757-1761, July 2004.

[7] R. Etienne-Cummings, V. Gruev, and M. Abdel-Ghani, “VLSI imple-
mentation of motion centroid localization for autonomous navigation,”
in Advances in Neural Information Processing Systems 11, MIT Press,
pages 685-691, 1999.

[8] M. Massie, C. Baxter, J.P. Curzan, M.C. McCarley, and R. Etienne-
Cummings, “Vision chip for navigating and controlling micro unmanned
aerial vehicle,” in Proceeedings of IEEE International Symposium on
Circuits and Systems, pages 786-789, 2003.

[9] R. Etienne-Cummings, J. Van der Spiegel, and P. Mueller, “Hardware
implementation of a visual motion pixel using oriented spatiotemporal
neutral filter,” in IEEE Transaction on Circuits and Systems II, vol.
46(9), pages 1121-1136, 1999.

[10] A. Stocker, “An improved 2D optical flow sensor for motion segmen-
tation,” in Proceeedings of IEEE International Symposium on Circuits
and Systems, pages 332-335, 2002.

[11] R.R. Harrison, “A biologically inspired analog IC for visual collision
detection,” in IEEE Transaction on Circuits and Systems I, vol. 52, no.
11, pages 2308-2318, November 2005.

[12] S-C. Liu, “A neuromorphic aVLSI model of global motion processing
in the fly,” in IEEE Transactions on Circuits and Systems II, pages
1458-1467, 2000.

[13] J. Kramer, R. Sarpeshkar, and C. Koch, “Pulse-based analog VLSI
velocity sensors,” in IEEE Transaction on Circuits and Systems II, vol.
44, pages 86-101, 1997.

[14] P. Lichtsteiner and T. Delbrück, “64x64 event-driven logarithmic tempo-
ral derivative silicon retina,” in Proceedings of the 2005 IEEE Workshop
on Charge-Coupled Devices and Advanced Imager Sensors, June 2005,
Nagao Prefecture, Japan, 9–11 June.

[15] R. Moeckel and S-C. Liu, “Motion detection circuits for a time-to-travel
algorithm,” in IEEE International Symposium on Circuits and Systems
(ISCAS 2007), pages 3079-3082, May 2007.

[16] C.A. Mead and T. Delbrück, “Scanners for visualizing activity of analog
VLSI circuity,” in Analog Integrated Circuits and Signal Processing,
vol. 1, pages 93-106, 1991.

[17] D.H. Brainard, “The psychophysics toolbox,” in Spatial Vision, vol. 10,
pages 433-436, 1997.

[18] D.G. Pelli, “The VideoToolbox software for visual psychophysics:
Transforming numbers into movies,” in Spatial Vision, vol. 10, pages
437-442, 1997.

1039

