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Spikes and Bursts in Two Types of Thalamic Projection
Neurons Differentially Shape Sleep Patterns and Auditory
Responses in a Songbird
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In mammals, the thalamus plays important roles for cortical processing, such as relay of sensory information and induction of rhythmical
firing during sleep. In neurons of the avian cerebrum, in analogy with cortical up and down states, complex patterns of regular-spiking
and dense-bursting modes are frequently observed during sleep. However, the roles of thalamic inputs for shaping these firing modes are
largely unknown. A suspected key player is the avian thalamic nucleus uvaeformis (Uva). Uva is innervated by polysensory input, receives
indirect cerebral feedback via the midbrain, and projects to the cerebrum via two distinct pathways. Using pharmacological manipula-
tion, electrical stimulation, and extracellular recordings of Uva projection neurons, we study the involvement of Uva in zebra finches for
the generation of spontaneous activity and auditory responses in premotor area HVC (used as a proper name) and the downstream robust
nucleus of the arcopallium (RA). In awake and sleeping birds, we find that single Uva spikes suppress and spike bursts enhance sponta-
neous and auditory-evoked bursts in HVC and RA neurons. Strong burst suppression is mediated mainly via tonically firing HVC-
projecting Uva neurons, whereas a fast burst drive is mediated indirectly via Uva neurons projecting to the nucleus interface of the
nidopallium. Our results reveal that cerebral sleep-burst epochs and arousal-related burst suppression are both shaped by sophisticated
polysynaptic thalamic mechanisms.
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Introduction
In mammals, the thalamus is a central relay of ascending sensory
information and of corticocortical information (McCormick and
Feeser, 1990; Guillery and Sherman, 2002). Mammalian thalamic
neurons act in a “relay” mode of high regular spike rates in awake
subjects and in a “burst” mode in sleeping subjects (Glenn and
Steriade, 1982; Weyand et al., 2001; Swadlow et al., 2002); their
afferents are divided into drivers (which for higher-order tha-
lamic relays are of cortical origin) and modulators (with origin
mostly in the brainstem and the reticular nucleus). Currently,
almost nothing is known about the physiology of thalamic pro-
jection neurons in the avian brain.

In the songbird thalamus, there are several cerebrum-
projecting nuclei involved in sensory processing and song con-
trol. For example, auditory input from the brainstem is relayed to
the cerebrum mainly via the thalamic nucleus ovoidalis (Vates et

al., 1996). Auditory input is also relayed via the thalamic uvae-
form nucleus (Uva), although Uva appears not to have a critical
function in eliciting auditory responses in its target areas, which
are HVC and the nucleus interface of the nidopallium (NIf) (Fig.
1a) (Nottebohm et al., 1982; Coleman et al., 2007). Uva also
receives somatosensory and visual inputs (Wild, 1994). As in
mammalian thalamic relays, Uva receives information about on-
going motor instructions via respiratory and brainstem nuclei
(Reinke and Wild, 1998) and is innervated by cholinergic fibers
(Akutagawa and Konishi, 2005). One of Uva’s behavior-related
functions is to control the temporal patterning of learned songs
(Williams and Vicario, 1993; Coleman and Vu, 2005).

In many vocal control areas, such as NIf, HVC, and the down-
stream robust nucleus of the arcopallium (RA), there are audi-
tory neurons that are selective to the bird’s own song (Katz and
Gurney, 1981; McCasland and Konishi, 1981; Coleman and
Mooney, 2004; Theunissen et al., 2004). Auditory responsiveness
and selectivity are strongly modulated by the behavioral state of
birds, such as sleep, wakefulness, anesthesia, and arousal (Vicario
and Yohay, 1993; Dave et al., 1998; Schmidt and Konishi, 1998;
Cardin and Schmidt, 2003). For example, during sleep, neurons
in HVC and RA respond to auditory stimulation, but responses
can be gated off by arousal or by electrical stimulation of Uva,
with a remarkably rapid transition on a millisecond time scale
(Williams and Nottebohm, 1985; Williams, 1989; Nick and Kon-
ishi, 2001; Coleman et al., 2007). A similar gating also applies to
spontaneously generated spike bursts that are frequently ob-
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served in HVC and RA neurons during
sleep, but almost never in awake, nonsing-
ing birds (Yu and Margoliash, 1996; Dave
et al., 1998; Hahnloser et al., 2002). Both
sleep bursts and auditory responses in
HVC are driven from NIf (Cardin and
Schmidt, 2004; Coleman and Mooney,
2004; Hahnloser and Fee, 2007). To date,
little is known about the neural mecha-
nisms by which Uva projection neurons
influence and gate sleep-related activity in
the cerebrum. In head-fixed zebra finches,
we explore the involvement of Uva for the
generation of spontaneous and auditory-
evoked activity in NIf, HVC, and RA.

Materials and Methods
Our experimental system of head-fixed, sleep-
ing birds and methods of spike train data anal-
ysis have been described previously (Hahnloser
et al., 2006). All experiments were performed in
accord with protocols approved by the Veteri-
nary Office of the Canton of Zurich, Switzer-
land, and in accordance with the Guide for the
Care and Use of Laboratory Animals (National
Academy of Sciences, 1996).

Subjects. Zebra finches (Taeniopygia guttata)
were obtained from commercial suppliers
Qualipet (Dietlikon, Switzerland) and Animal
Diffusion (Villarimboud, Switzerland) and our
own breeding colony. Data were taken from a
total of 40 adult (�90-d-old) zebra finches.

Surgery. Birds were anesthetized with 1–3%
isoflurane in oxygen, and small holes (�200
�m) were made in the dura over HVC, RA, and
Uva; wound margins were treated with xylo-
caine gel (2%; Astrazeneca, Zug, Switzerland).
The animal was placed in a small foam restraint
and subsequently moved to the recording appa-
ratus without further anesthesia. Unlike in pre-
vious experiments, we did not administer mel-
atonin to promote sleep.

Electrical stimulation and electrophysiology.
For antidromic identification of UvaHVC neu-
rons, we inserted bipolar stimulation electrodes
into HVC (Teflon-insulated 50-�m-diameter
stainless steel wires spaced 0.5 mm apart) (Fig.
1a). Electrical stimulation was produced using
an isolated stimulation unit (A.M.P.I., Jerusa-
lem, Israel) delivering single monophasic 50 –
500 �A current pulses of 0.2 ms duration. Anti-
dromic identification of UvaNIf neurons was
performed in different birds using monopolar
current pulses of 0.2 ms duration, delivered
through 100 k� anodal tungsten electrodes
placed in the centers of NIf and HVC (cathodal
electrodes were placed on the surface of the
brain). In 3 of 11 putative UvaNIf neurons, we
did not observe spike responses to HVC stimu-Figure 1. Identification of Uva neurons using antidromic stimulation in HVC. a, Schematic drawing of a song control pathway,

showing the main premotor and motor areas and the experimental design. Uva projects to NIf and to HVC. HVC projects to RA,
which in turn innervates neurons in DM in the midbrain and respiratory neurons in PAm in the medulla. These subpallial structures
both project back to Uva, thus closing a respiratory–motor feedback loop (dashed arrows). We identified Uva neuron type by
electrical stimulation in HVC and recorded from RA, HVC, NIf, and Uva neurons of the right hemisphere. Stim, Stimulation. b,
Electrical stimulation in HVC elicits spike responses in Uva neurons. bi, UvaHVC neurons exhibit spike collisions in response to HVC
stimulation (200 �A) at small time lags after spontaneous spikes (arrows), but not at large time lags. bii, biii, UvaNIf neurons
respond to 60 �A HVC stimulation (bii) and to 30 �A NIf stimulation (biii), but spike collisions are only observed for NIf
stimulation, not for HVC stimulation (bii, biii, bottom traces). c, During sleep, the average ISI pdf of n � 11 UvaHVC spike trains
peaks at an interval of 30 – 40 ms. UvaHVC cells produce few bursts (ISIs smaller than 10 ms). d, The average auto-covariance

4

function of n � 11 UvaHVC spike trains has a long tail up to a
time lag of 2–3 s (arrow), indicating frequent epochs of in-
creased firing rates. e, f, The average ISI probability density
function (e) and the average auto-covariance function (f ) of
UvaNIf neurons reveal frequent burst ISIs and epochs of in-
creased firing lasting several hundreds of milliseconds (arrow).
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lation even at very high stimulation amplitudes. We decided to include
these cells in our analysis of UvaNIf neurons, because results were quali-
tatively similar for these cells.

Note that we also identified an additional class of putative Uva inter-
neurons that responded to low-intensity stimulation in HVC and NIf but
did not exhibit spike collisions in response to either NIf or HVC stimu-
lation. We did not extensively record and analyze these cells, their firing
behaviors were similar to those of UvaNIf cells. We also encountered Uva
neurons with very low latency variability (�100 �s) but quite frequent
absences of spike collisions (no collisions in response to �20% of stim-
uli). Because such lack of collisions could be attributable either to synap-
tically generated spike bursts in projection neurons or to indirect anti-
dromic activation of nonprojection neurons, we took a conservative
stance and discarded these cells from further analysis.

RA and HVC recordings were performed with sharp glass electrodes
(5–15 M�, borosilicate, 1.0 mm outer diameter, 0.7 mm inner diameter)
filled with 3 M KCl. HVC interneurons were identified based on their high
spike rates compared with HVC projection neurons (Hahnloser et al.,
2006). Uva recordings were performed either with similar glass elec-
trodes or with tungsten metal electrodes (2–5 M�; Micro Probe, Gaith-

ersburg, MD). Extracellular signals were bandpass filtered (0.3–13 kHz)
and digitized to 16 bits precision at a sampling rate of 30 kHz on a
Pentium-based PC running custom Labview software (National Instru-
ments, Austin, TX).

Electrical Uva stimulation in Figure 10 was performed using a mo-
nopolar stimulation electrode placed in the center of Uva. Orthodromic
response thresholds in HVC were typically 10 �A, and in NIf they were
typically 5 �A.

Drug and dye injections. Injections were made from pulled-glass pi-
pettes (�20 �m tip size) using a pressure injection system (Picospritzer
II; Parker Hannifin, Fairfield, NJ). We injected saline (0.9% NaCl),
GABA (250 mM; Sigma-Aldrich, Buchs, Switzerland), or lidocaine (4%
dissolved in 0.9% NaCl; Sigma-Aldrich) at 20 psi in �8 ms steps. We
controlled the injected volume by assessment of the meniscus displace-
ment within the pipette. To inactivate Uva for prolonged periods as in
Figure 8a, we injected �10 nl of GABA every 10 s. After Uva recording
and injection experiments, a small dose of fluororuby (23 nl) or Alexa
Fluor 488 (44 nl) was injected into Uva. In two birds, Alexa Fluor 488 was
coinjected with either GABA or glutamate to assess drug leakage. Ani-
mals were killed by intramuscular injection of 20% Nembutal or by

Figure 2. UvaHVC neuron spikes are negatively correlated with spikes in HVCI neurons and bursts in RA neurons. a, Extracellular record of an UvaHVC–HVCI pair recorded during sleep. b, IFR
functions of the neurons in a. Periods of high UvaHVC firing (top, thick horizontal bars) are coincident with periods of reduced HVCI bursting (bottom). UvaHVC bursts �100 Hz have been truncated
for better visibility of low firing rates. c, The cross-covariance function of this neuron pair (top) and the average covariance function of n � 7 UvaHVC–HVCI pairs in three birds (bottom) both exhibit
a broad dip extending up to 3 s of UvaHVC spikes and sharp positive and negative peaks close to zero time lag (arrows). To not smear over the sharp peaks, almost no smoothing was applied
(4-ms-wide Gaussian). d, e, Same as b and c, but for RA instead of HVCI neurons (n � 8 UvaHVC–RA pairs). RA single spikes have been removed for the computation of covariance functions (see
Materials and Methods). Smoothing was performed with a 20-ms-wide Gaussian.
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cranial dislocation. The brain was removed for histological examination
of unstained slices to verify the locations of drug injection sites (see
supplemental Fig. 1, available at www.jneurosci.org as supplemental ma-
terial). In none of the birds injected with glutamate was leakage of Alexa
Fluor into the basal forebrain or the brainstem detectable.

Statistics. Unless specified, all statistical tests refer to the Wilcoxon
rank sum test of equal medians. Statistical significance was defined by
p � 0.01. For the analysis of spontaneous activity, we included all cells for
which at least 200 s of data with the bird’s eyes closed were recorded, and

for the analysis of auditory responses, we in-
cluded all cells exposed to at least 16 renditions
of the bird’s own song (BOS).

Instantaneous firing rate. In the figures, we
represented spike trains by the instantaneous
firing rate (IFR) function, a continuous func-
tion defined by the inverse of the interspike in-
terval surrounding time t.

Burst firing rate. A burst spike train is formed
by removing single spikes from a spike train
(single spikes are defined as spikes that do not
form an interspike interval smaller than 10 ms
with either the preceding or the following
spike). The average firing rate of the remaining
spikes in a burst spike train is referred to as the
burst firing rate (BFR) (see Figs. 4b, 7b, 8a).

Interspike interval probability density function.
To display the firing statistics of neurons, we
computed the interspike interval (ISI) probabil-
ity density function (pdf) h(�) (� stands for the
ISI). Bin centers �i were chosen on a logarithmic
scale (i � 1, . . . , 100); h(�i) is simply a normal-
ized ISI histogram satisfying �ih(�i) � 1.

Cross-covariance function. The (cross-) co-
variance function CAB(t) between two spike
trains �A and �B (modeled as sums of � func-
tions) is a measure of relative spike density fluc-
tuation. It is a function of the time lag t between
spike pairs and is computed as

CAB�t� �
1

T�
0

T

�B�s � t��A�s�ds � �A�B,

where �Aand �B are the mean firing rate of neu-
rons A and B, and T is the duration of the re-
cording. The first term on the right side of this
equation is known as the cross-correlation func-
tion. When the spike train in just a single neu-
ron A is inserted into this equation (�A � �B),
the resulting function is the auto-covariance
function. The average auto-covariance func-
tions in UvaHVC and UvaNIf cells are displayed
in Figure 1, d and f.

We smoothed covariance functions by con-
volution with a Gaussian window of SD of 20 ms
in Figures 2e and 5ci, and of 4 ms in Figures 2c, 3,
and 5cii. The smoothed covariance functions
were downsampled by summation of covari-
ance values over 1 ms bins. The significance of
(positive or negative) peaks in covariance func-
tions were assessed using 99% confidence
thresholds that corresponded to three jackknife
SDs (Thomson and Chave, 1991). The jackknife
SDs were estimated by removing spikes in 20 s
windows (Hahnloser et al., 2006). Only signifi-
cant peaks are reported in the text.

Cross-covariance functions can have wide
peaks or troughs resulting from slow comodu-
lated firing in cell pairs. To subtract these co-
modulations, we computed the coherency func-

tion �AB(	) between cells A and B in the frequency domain by Fourier
transforming and normalizing the cross-covariance function (see also
Kimpo et al., 2003):

�AB�	� �
CAB�	�

�CAA�	�CBB�	�
,

where CAA(t) and CBB(t) are the auto-covariance functions of the spike
trains. The coherency functions were inspected for peaks in the time

Figure 3. UvaHVC bursts correlate with RA and HVCI bursts during sleep. a, IFR plots of a simultaneously recorded UvaHVC–HVCI

pair (no clipping of UvaHVC firing rates). Inset, The raw signals of an UvaHVC burst (arrow) followed by an HVCI burst. b, The
covariance functions of the same neuron pair for UvaHVC single spikes (dashed line) and UvaHVC burst spikes (solid line): UvaHVC

bursts tend to precede HVCI spikes. c, The population UvaHVC–HVCI covariance function for UvaHVC single spikes (dashed line) has
a negative dip at 0 ms (arrow), and for UvaHVC burst spikes (solid line) it has a peak at 10 ms (n � 7 neuron pairs). For better
visibility, the burst-related covariance function has been stretched by a factor of four in the vertical direction (labeled “4	”). d,
The population UvaHVC–RA covariance functions for RA burst spikes and UvaHVC single spikes (dashed line) and for burst spikes in
both RA and UvaHVC neurons (solid line; the peak at 16 ms is weakly significant; p � 0.05; n � 9 neuron pairs). Note that the
population covariance functions in c and d are based on concatenating all simultaneously recorded spike trains, because averag-
ing over individual covariance functions as in Figure 2c did not work well (some UvaHVC cells did not produce enough burst spikes).
e, Bar plot of the average number of HVCI spikes per 30 ms window as a function of the average number of (all) UvaHVC spikes fired
in the preceding 30 ms windows. Error bars indicate SEM.
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domain �AB(t) after inverse Fourier transformation of �AB(	). Smooth-
ing of coherency functions �AB(t) was done by convolution with a Gauss-
ian of SD of 4 ms.

Results
Antidromic stimulation experiments
reveal Uva neurons projecting to NIf and
to HVC
Using antidromic stimulation in HVC and NIf,
and single-unit recordings in Uva of head-fixed
zebra finches (see Materials and Methods), we
were able to distinguish two classes of Uva pro-
jection neurons. HVC-projecting Uva neurons
(UvaHVC neurons) exhibited spike collisions
when stimulated in HVC at small time lags af-
ter spontaneous spikes (Fig. 1bi). Putative NIf-
projecting Uva neurons (UvaNIf neurons) ex-
hibited spike collisions in response to low-
amplitude NIf stimulation (Fig. 1biii). To
eliminate a possible confound with UvaHVC

neurons that tended to also be activated by NIf
stimulation as a result of their axons passing in
close proximity to NIf, we also performed HVC
stimulation to identify UvaNIf neurons: UvaNIf

neurons often responded to HVC stimulation
but did not display spike collisions, consistent
with orthodromic activation of UvaNIf neurons
via UvaHVC axons (Fig. 1bii).

Additional analysis showed that near-
threshold HVC stimulation at 1 Hz produced
latencies to the first spike in UvaHVC neurons in
the range 1.1–5.4 ms (mean, 2.5 
 1.6 ms; n �
11 cells), with small latency variability (SD) in
the range 16–70 �s (mean, 44 
 19 �s; n �
11). UvaNIf neurons exhibited small spike la-
tencies and small latency variability to NIf stim-
ulation (latencies, 0.8–1.7 ms; variability,
13–60 �s; n � 11 UvaNIf neurons). Thus, anti-
dromic activation is associated with small
spike-latency variability. However, the con-
verse was not always true, because in some neu-
rons with small latency variability, we quite fre-

quently observed absence of spike collisions (see also Materials
and Methods). Therefore, all Uva cells were identified using the
collision test.

Figure 4. UvaHVC firing negatively correlates with RA bursting during BOS playback. a, Raster plots of simultaneously recorded UvaHVC and RA spike responses (tick marks) to BOS playback. UvaHVC

spikes are not obviously locked to the stimulus, but RA burst spikes are. b, The burst firing rate in RA neurons to BOS playback is a monotonically decreasing function of the firing rate in UvaHVC neurons
(mean 
 SEM; n � 8 UvaHVC–RA pairs).

Figure 5. UvaNIf neurons. a, Raw traces of a simultaneously recorded UvaNIf–HVCI pair. UvaNIf bursts frequently precede
HVCI bursts. b, The IFR plots of the same neuron pair reveals dense UvaNIf bursting. ci, The covariance function of this neuron
pair exhibits a negative dip that extends up to several seconds after UvaNIf spikes (top trace, 20 ms smoothing kernel). cii, The
average covariance function of eight UvaNIf–HVCI pairs (4 ms kernel) reveals a very large positive peak at a time lag of 3 ms of
UvaNIf burst spikes (solid line) and a flat and negative covariance behavior for UvaNIf single spikes (dashed line). Note the
different time scales in ci and cii.
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During sleep, UvaHVC neurons produce mostly single spikes,
whereas UvaNIf neurons frequently produce spike bursts
During sleep, UvaHVC neurons had an average firing rate of 22 Hz
(n � 11); they produced ISIs in a typical 30 – 40 ms range, and
infrequently they also produced bursts (ISIs smaller than 10 ms)
(Fig. 1c). On average, UvaHVC neurons burst every 12 s with 2.8
spikes per burst and 306 Hz burst firing rate; in total, �1.5% of
UvaHVC spikes were associated with bursts. Firing rates in
UvaHVC neurons were quite irregular with frequent epochs of
increased firing, as revealed by the average auto-covariance func-
tion (see Materials and Methods and Fig. 1d).

Similar to UVAHVC neurons, UvaNIf neurons had an average
firing rate of 21 Hz (n � 8); however, UVANIf neurons burst more
frequently with an average of 2.3 bursts per second, 3.0 spikes per
burst, and 326 Hz burst firing rate. In total, �35% of UvaNIf

spikes occurred in bursts. By assessment of ISI pdfs and auto-
covariance functions, UvaNIf neurons produced relatively few
single spikes and displayed shorter epochs of increased firing than
did UvaHVC neurons (Fig. 1e,f).

In the following, to distinguish between influences of Uva
single spikes and Uva burst spikes (the complement of single
spikes), we frequently removed either single spikes or burst spikes
from Uva spike trains before the analysis. Accordingly, in the
following we distinguish between (regular) spike measures,
single-spike measures (burst spikes removed), and burst-spike
measures (single spikes removed). In all neuron types, our crite-
rion for single spikes was that interspike interval pairs had to
exceed 10 ms each. This definition is commensurate with our

previous work and coincides nicely with
the location of local minima in ISI pdfs and
auto-covariance functions of UvaHVC neu-
rons (Fig. 1c,d).

Tonic firing in UvaHVC neurons has
suppressive effects on HVCI and
RA neurons
We studied the relationships between Uva
and HVC activity by recording from HVC
interneurons (HVCI neurons), but not
from HVC projection neurons, because
the latter fire extremely sparsely during
sleep. To explore the influence of Uva in
shaping activity along the motor pathway,
we also recorded from RA neurons, known
to be strongly driven by activity in RA-
projecting HVC neurons (Hahnloser et al.,
2006). HVC is necessary for generation of
RA spike bursts but not RA single spikes.
To avoid corruption of our analysis by RA
single spikes, we often removed single
spikes from RA spike trains before the
analysis.

HVCI neurons and RA neurons display
strongly modulated firing patterns during
sleep (Danóczy and Hahnloser, 2006;
Hahnloser et al., 2006). In paired record-
ings with UvaHVC neurons, we found that
occasional periods of suppressed bursting
in HVCI and RA neurons were often asso-
ciated with periods of high tonic firing
rates in UvaHVC neurons (Fig. 2a,b,d). Co-
variance functions between spikes in
UvaHVC and HVCI neurons, as well as be-

tween spikes in UvaHVC and burst spikes in RA neurons, both
displayed a large and wide negative peak (dip) that extended up to
several seconds after UvaHVC spikes: in seven of seven UvaHVC–
HVCI pairs and in eight of nine UvaHVC–RA pairs (RA single
spikes removed), the median covariance in the interval [0 s, 2 s] of
UvaHVC spikes was significantly smaller than in the interval [�10
s, �8 s] (Fig. 2c,e). Thus, after UvaHVC spikes there was a robust
and long-lasting suppression of HVCI firing. Also, in six of seven
UvaHVC–HVCI pairs, a sharp peak a few tens of milliseconds
before UvaHVC spikes (Fig. 2c, top arrow) emerged, suggesting
that HVCI spikes drive spikes in UvaHVC cells after a few tens of
milliseconds. Finally, in four of seven UvaHVC–HVCI pairs, there
was a sharp dip �1 ms after UvaHVC spikes, indicating that
UvaHVC cells might mediate fast inhibition onto HVC.

How can we reconcile the apparent coexistence of fast and
slow inhibition mediated by UvaHVC spikes? Of course, the wide
cross-covariance dips do not necessarily imply that single
UvaHVC spikes mediate long-lasting inhibition, because impor-
tant factors that contribute to the width of cross-covariance func-
tions are the widths of associated auto-covariance functions (i.e.,
the auto-covariances of UvaHVC and HVCI spike trains). One
method of subtracting effects of auto-covariance is to inspect
coherency functions rather than cross-covariance functions (see
Materials and Methods). Indeed, when we evaluated coherency
functions in UvaHVC–HVCI pairs (data not shown), the wide dips
disappeared, but the sharp peaks and dips close to zero time lag
remained, reinforcing the view that Uva is indirectly excited by
HVC spikes and feeds back fast and brief inhibition.

Figure 6. Spike raster plot of a UvaNIf–HVCI pair during BOS playback. The UvaNIf neuron (top raster) increases its firing during
playback. During the first few song playbacks on top (delimited by the two vertical bars on the right), the HVCI neuron produces
only very few bursts. At the same time, the UvaNIf cell displays higher tonic background firing (both before and during playback).
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In RA neurons, no sharp dip was seen,
but positive peaks were seen at �7 ms (on
average), implying that UvaHVC spikes
were often preceded first by HVCI spikes,
then by RA bursts. Note that the covari-
ance results for RA neurons depended
strongly on removal of single RA spikes. In
contrast, results remained qualitatively un-
changed when single HVCI spikes were re-
moved, presumably because most HVCI

neurons have low tonic firing rates (Hahn-
loser et al., 2006).

UvaHVC and HVCI neurons often burst
sequentially, with HVCI bursts following
UVAHVC bursts (Fig. 3a). To explore pos-
sible excitatory effects of UvaHVC bursts,
we tested whether the positive peaks in co-
variance functions in UvaHVC cells were as-
sociated with single UvaHVC spikes or with
burst spikes. Interestingly, for both HVCI

and RA neurons, when removing UvaHVC

burst spikes, the positive covariance peaks
remained at negative time lags. However,
when we removed single UvaHVC spikes in
five of six UvaHVC–HVCI pairs, the positive
covariance peaks appeared at positive time
lags (one UvaHVC cell did not produce
bursts), suggesting an excitatory effect of
UvaHVC bursts (Fig. 3b– d). Furthermore,
UvaHVC bursts appeared to have graded ef-
fects on HVCI bursts: the average number
of HVCI spikes fired in 30 ms windows was
an increasing function of the average num-
ber UvaHVC spikes fired in preceding 30 ms
windows (Fig. 3e). This result was quite ro-
bust for HVCI and UvaHVC time windows
ranging from 20 to 100 ms.

In summary, until now our results suggest that single UvaHVC

spikes are inhibitory and driven by cerebral feedback via the
brainstem (e.g., via the dorsomedial nucleus of the intercollicular
complex and the nucleus paraambigualis) and that UvaHVC

bursts are excitatory and drive cerebral bursts.

Spikes are responsive to playback of the bird’s own song in
few UvaHVC neurons
Multiunit recordings in anesthetized birds have revealed strong
auditory responses in Uva to playback of BOS (Coleman et al.,
2007), suggesting that such Uva responses may be relayed to the
cerebrum also during sleep. To that end, we investigated auditory
responses of identified Uva projection neurons in sleeping birds.
Whereas RA cells burst in a more or less stereotypical manner in
response to BOS playback, we found no obvious BOS-locked
firing in many UvaHVC cells (Fig. 4a). In total, only two of eight
UvaHVC cells (n � 4 birds) had significantly increased average
firing rates during BOS playback compared with equally sized
time windows before playback ( p � 0.01). The number of BOS-
responsive UvaHVC cells did not change when either UvaHVC sin-
gle spikes or burst spikes were removed, suggesting that weak
BOS responses are associated with both single spikes and spike
bursts. Covariance functions between UvaHVC spikes and RA
burst spikes elicited by BOS playback (data not shown) were
similar to covariance functions in Figure 2e, suggesting that ef-
fects of Uva on its targets do not qualitatively change during

sensory processing. Most interestingly, the average rate of RA
burst spikes (the BFR) in response to BOS playback was a smooth
and decreasing function of the number of UvaHVC spikes (Fig.
4b). These results indicate graded suppressive effects of UvaHVC

spikes onto both spontaneous and auditory-evoked RA bursts.

Paired UvaNIf–HVCI recordings reveal an excitatory drive
mediated by UvaNIf bursts
UvaNIf neurons tended to burst densely during sleep, with many
UvaNIf spikes preceding HVCI spikes by a few milliseconds (Fig.
5a,b). UvaNIf–HVCI covariance functions displayed a negative
dip that extended up to 2 s after UvaNIf spikes, and they peaked at
positive time lags of UvaNIf spikes (7–9 ms; seven of eight UvaNIf–
HVCI pairs; three birds). In all seven pairs, the average covariance
peak persisted no matter whether all UvaNIf spikes were included
or burst spikes only (Fig. 5ci,cii). In contrast, removal of UvaNIf

burst spikes caused the covariance peak to disappear in all seven
pairs, resulting in a flat and typically negative function (Fig. 5cii).

In summary, both types of Uva projection neurons displayed
single spikes that led to reduced HVCI and RA bursting on a long
time scale, and they displayed spike bursts that tended to precede
HVCI and RA bursts by a few milliseconds. The major difference
between the two types of Uva projection neurons was that UvaNIf

neurons produced bursts �30 times more often than did UvaHVC

neurons, implying that predominance of UvaNIf burst spikes ap-
peared to strongly drive HVC bursts, whereas predominance of
UvaHVC single spikes appeared to suppress HVC bursts.

Figure 7. Uva inactivation leads to burst-rate increases in RA neurons. a, IFR function of an RA neuron during sleep. During the
time interval marked by the thick horizontal line, 115 nl of lidocaine is injected into Uva, leading to a transient increase in RA
bursting. b, Bar plot summarizing the average increase in RA burst-firing rate in the 60 s interval after lidocaine injections (filled
circles) and GABA injections (open circles), compared with the 60 s interval before the injections (n � 7 injections in 3 birds). The
rightmost bar depicts the average burst-firing rate in the interval 400 – 460 s after the injections (recovery). c, The average ISI pdf
of RA neurons before the injection (solid line) and during inactivation (dashed line). Both curves exhibit peaks at 5 and �5 ms
(arrows), but of different relative amplitudes. Inset, ISI pdfs of RA burst spike trains reveal that burst shapes are unchanged during
Uva inactivation (left peaks are identical), but interburst intervals are shortened: the peak associated with interburst intervals
shifts from 1.2 to 0.7 s during Uva inactivation (tilted arrow).
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In some UVANIf neurons, burst spikes are BOS responsive
We were able to record from seven UvaNIf neurons during BOS
playback. In three of seven cases (n � 4 birds), the UvaNIf

neuron significantly increased its firing rate during playback
( p � 0.01), with an example shown in Figure 6. In Figure 6,
also note that after approximately nine BOS playbacks, the
UvaNIf neuron reduced its firing density, whereas the simulta-
neously recorded HVCI neurons increased its burst responses;
presumably this comodulated firing was caused by the bird’s
arousal. The fraction of responsive UvaNIf neurons did not
change when we evaluated BOS responsiveness for burst
spikes only. However, only a single UvaNIf remained BOS re-
sponsive when UvaNIf burst spikes were removed. Similar to
the spontaneous case, BOS-related UvaNIf–HVCI covariance
functions (data not shown) peaked at positive time lags, sug-
gesting that UvaNIf spikes may be involved not only in gener-

ation of HVC spontaneous sleep bursts but also in shaping
HVC auditory responses.

Pharmacological inactivation of Uva increases
cerebral bursting
We explored whether the suppressive effects of UvaHVC single
spikes were dominant over the excitatory effects of UvaNIf bursts
by pharmacologically manipulating Uva activity. If UvaNIf bursts
are more important for the generation of HVCI bursts, then
HVCI bursting should diminish after Uva inactivation. If, how-
ever, UvaHVC single spikes are able to prevent HVCI neurons
from bursting, then inactivating Uva should lead to increased
HVCI burst firing rates. We reversibly silenced Uva by injecting
the sodium-channel blocker lidocaine (4% lidocaine), or, to
avoid accidental inactivation of fibers of passage, the inhibitory
neurotransmitter GABA (250 mM GABA in 0.9% NaCl) into Uva
of sleeping birds. Injected volumes were either 110 or 55 nl, cor-
responding to spheres of �300 and 240 �m radius, both larger
than the presumed volume of Uva. No qualitative differences
between GABA and lidocaine injections were seen: in either case,
HVCI bursting (n � 3) and RA bursting (n � 7) transiently
increased for a few minutes after Uva inactivation (Fig. 7a,b). We
analyzed the RA data in more detail and found that many aspects
of RA neuron spike trains were identical before and after the
injections: normalized interspike-interval histograms exhibited
two identically located peaks corresponding to a regular firing
mode and a bursting mode (Fig. 7c). However, the relative
heights of these peaks during Uva inactivation were such that RA
neurons spent more time in the bursting mode when UvaHVC

spikes were absent. Indeed, when we removed RA single spikes,
we found that RA burst shapes were unchanged during Uva in-
activation (as assessed by the density of small interspike inter-
vals), except that RA bursts occurred more often during inacti-
vation (as assessed by the left-shift of the ISI peak corresponding
to interburst intervals) (Fig. 7c, inset).

BOS responses in RA neurons are enhanced by
Uva inactivation
RA neurons significantly increased their burst firing rates in
response to BOS playback, both before and during Uva inac-
tivation (Fig. 8a). Despite this increase in playback-evoked
responses, high temporal precision of individual RA bursts
was maintained during Uva inactivation (Fig. 8b). Thus, Uva
seems to have no major influence on the detailed timing of
stimulus-evoked RA bursts. BOS-response enhancement was
specific to Uva inactivation: Uva injections of vehicle (0.9%
NaCl) and GABA injections 0.8 mm dorsal of Uva did not
cause significant changes in RA bursting (n � 2 birds each). In
two birds, GABA injections 0.8 mm anterior of Uva caused
strong suppression of RA responses to BOS playback; histo-
logical examination revealed fluorescent staining of the lateral
part of nucleus ovoidalis, suggesting that the decrease of RA
auditory responses was caused by diminished auditory input,
but not by Uva inactivation. These results show that the pre-
sumed UvaNIf drive of HVC activity during sleep and during
BOS playback (Fig. 6) has little relevance for generation of
HVC and RA burst responses.

Pharmacological activation of Uva leads to burst suppression
and to shut-off
To test further whether UvaHVC spikes can cause suppression
of sleep-related and auditory-evoked HVCI and RA bursts, we
injected the excitatory neurotransmitter glutamate (in 0.9%

Figure 8. Uva inactivation enhances RA burst responses to BOS playback. a, Bar plot showing
that RA burst firing rates in response to BOS playback increase during Uva inactivation (n � 4
steady GABA injections in 3 birds for a duration of 16 BOS stimuli each). RA neurons respond to
BOS playback both before and during Uva inactivation (“Spont” bars indicate spontaneous RA
BFRs measured during silent periods just before playback onsets). b, Raster plot of an RA spike
train in response to BOS playback before and after GABA is steadily injected into Uva (GABA
injection onset is indicated by the horizontal arrow). Uva inactivation slightly increases tempo-
rally locked RA burst responses (vertical arrow).
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NaCl) into Uva. When we pressure in-
jected small volumes (23 nl) of 12 mM

glutamate into Uva of sleeping birds, we
observed no significant reduction in RA
bursting (n � 3 injections in 3 birds; p �
0.01). At equal volume but higher con-
centration (23 nl of 50 –200 mM gluta-
mate), we observed robust suppression
of auditory-evoked and spontaneous RA
bursts (Fig. 9a). Suppression was tran-
sient, and bursting recovered within
20 – 40 s. On average, 50 mM glutamate
injections into Uva significantly reduced
spontaneous and evoked RA burst-spike
rates from 2.1 to 0.2 Hz (20 s windows
before and after injection) (Fig. 9b).

At higher concentration and injected
volumes, RA and HVCI neurons often dra-
matically increased their spike frequency,
and RA spike amplitudes gradually dimin-
ished until they disappeared in noise, sim-
ilar to what in a different set of experiments
has been termed “neuron shut-off” (Shea
and Margoliash, 2003) (Fig. 9c,d). The time
interval between injections and observa-
tions of the shut-off state ranged from sev-
eral seconds up to �1 min. Shut-off
seemed to be facilitated by arousal, because
in one bird shut-off coincided with eye
opening on two occasions. RA neuron
spiking recovered from the shut-off state
within 1–2 min (n � 3 neurons in 3 birds),
but in two cases, firing patterns were qual-
itatively different after recovery (Fig. 9c),
suggesting that some irreversible damage
to Uva may have occurred. For this reason,
we discarded all data recorded after the ob-
servation of shut-off events.

Electrical Uva stimulation activates
HVC via NIf
Our pharmacological experiments show
that Uva’s overall inhibitory influence on
HVC and RA bursts correlates most
strongly with the firing behaviors in UvaHVC cells, not in
UvaNIf cells. To explicitly address the presumed excitatory
drive provided by UvaNIf bursts, we electrically stimulated Uva
before and after NIf inactivation. Electrical stimulation of Uva
is known to activate HVC neurons (Williams, 1989; Coleman
et al., 2007), but the relative contributions of the direct and
indirect Uva pathways for this activation remain unclear. We
found that low-intensity Uva stimulation (5–20 �A monopha-
sic current pulses of 0.2 ms duration) led to spike responses in
HVC neurons with a mean latency of 6.0 ms (range, 4.9 – 6.7
ms; n � 6 HVC neurons in 3 birds). Low-intensity Uva stim-
ulation also led to orthodromic spike responses in NIf (5–10
�A current pulses of 0.2 ms duration), with a shorter average
spike latency of 2.1 ms (range, 1.3–2.8 ms; n � 6 NIf neurons
in 2 birds). NIf and HVC multiunit responses to Uva stimula-
tion were strongly correlated: the correlation coefficient of
root-mean-square extracellular voltages in HVC and NIf in
0.5–15 ms windows after Uva stimulation ranged from r �

0.45 to 0.68 ( p � 10 �5; n � 5 recording sites in 3 birds) (Fig.
10a).

Injections of 55 nl of GABA (250 mM) into NIf led to complete
suppression of HVC responses to high-intensity (70 �A) Uva
stimulation (n � 7 injections in 3 birds) (Fig. 10b). Orthodromic
spike responses in HVC remained suppressed even when Uva
stimulation amplitude was increased to �10 times the threshold
value (up to 300 �A). GABA injections (55 nl) 500 �m ventral of
NIf did not lead to suppression of HVC responses (n � 2 birds).
In one of two birds, GABA injections (55 nl) 500 �m dorsal of NIf
led to partial suppression of HVC responses. We reexamined this
case by smaller injections (11 nl) that led to suppression when
injected into NIf but not when injected 500 �m dorsally. We infer
from these results that electrical Uva stimulation activates HVC
via NIf and that UvaNIf bursts are indeed part of a functional
excitatory pathway from Uva to HVC. Furthermore, the com-
plete absence of HVC responses during NIf inactivation provides
evidence that positive correlations between UvaHVC and HVCI

Figure 9. Dose-dependent effects of glutamate injections into Uva. a, IFR response of an RA neuron to BOS playback during
sleep. During the time interval marked by the thick horizontal line, 23 nl of 50 mM glutamate is injected into Uva, leading to a
transient suppression of BOS-locked bursting. b, Bar plot summarizing the reduction in RA burst-firing rate in the 15 s interval
after glutamate injections, compared with the 15 s interval before the injection. The connected circles depict data from different
injections (n � 3 birds). c, Spontaneous sleep-related spiking is shut off in this RA neuron after injecting 110 nl of 100 mM

glutamate into Uva. Spiking recovers within several seconds, but with visibly different statistics than before. The inset shows the
shut-off event in which extracellular spike amplitudes dissapear in noise. d, Illustration of dose dependence of shut-off effect. In
this HVCI neuron, BOS responses were transiently suppressed after 3 and 7 nl injections of 1 M glutamate into Uva. Approximately
1 min after a 14 nl injection, the HVCI neuron shut off (tilted arrow).
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bursts are attributable to common direct and
indirect input from UvaNIf neurons.

Uva firing is modulated by arousal
In most song-control brain areas, such as RA
and HVC, neural activity is strongly gated de-
pending on the behavioral state of birds, such
as sleep, wakefulness, and anesthesia (Dave et
al., 1998; Schmidt and Konishi, 1998; Cardin
and Schmidt, 2004). Based on the negative
correlations between UvaHVC spikes and RA
bursts, we expected UvaHVC neurons to in-
crease their firing when birds are woken from
sleep. Indeed, when we aroused birds by brief
air puffs [the awake state was assessed by open
eyes and by lack of bursts in RA neurons
(Hahnloser et al., 2006)], UvaHVC firing rates
significantly increased from 12.8 to 27.3 Hz
(burst firing rates in RA neurons significantly
decreased from 2.9 to 0.02 Hz) (Fig. 11a,b).
Interestingly, although arousal led to increases
in average UvaHVC firing rates, average
UvaHVC burst firing rates significantly de-
creased from 0.49 to 0.10 Hz (Fig. 11biii).
Arousal led to significant increase of UvaNIf

firing rates from 15 to 27 Hz (n � 8 UvaNIf

neurons in 4 birds) (Fig. 11biv). Unlike in
UvaHVC neurons, arousal led to increased
UvaNIf burst firing rates in all eight UvaNIf neu-
rons examined (data not shown). Assuming
an excitatory drive mediated by UvaNIf bursts
onto NIf, these findings agree with our previ-
ous findings of little or no behavioral-state de-
pendence of NIf projection neuron activity
(Hahnloser and Fee, 2007).

Uva firing contributes to RA burst
suppression associated with arousal
Both the wake–sleep dependence of UvaHVC

firing and the suppressive action of UvaHVC

spikes onto RA bursts suggest that UvaHVC

spikes might be strongly implicated in mediat-
ing the behavioral-state dependence of burst-
ing in RA. To test for this possibility, we
aroused birds by air puffs after Uva inactiva-
tion. If Uva controls the behavioral-state de-
pendence of RA activity, then RA bursting
should be unaffected by arousal when Uva is
silenced. If, instead, a common neuromodula-
tory input to Uva and RA leads to behaviorally
mediated firing modulation in these areas,
then RA bursting should be strongly sup-
pressed, regardless of Uva activity. We tested
Uva’s involvement in RA burst suppression by
delivering arousing air puffs after reversibly
inactivating Uva by large lidocaine or GABA
injections. The time interval between injection
onset and air puff delivery was on the order of
40 s (range, 20 – 60 s), during which we verified
the bird’s sleep state by visual control of closed
eyelids. We found that waking birds after inac-
tivating Uva significantly reduced bursting in
RA but did not completely abolish it (Fig.

Figure 10. Uva drive of HVC is mediated via NIf. a, Uva stimulation (10�A) leads to short-latency responses in NIf (top trace in paired
traces)andlong-latencyresponsesinHVC(bottomtraceinpairedtraces).Simultaneouslyrecordedtracesarelinkedinpairsontheleftofthe
plot. HVC and NIf response strengths (rms of voltage traces) are correlated: single-burst responses (single dashed ellipse) and double-burst
responses (two dashed ellipses) appear mostly in pairs. b, Inactivating NIf (55 nl of 250 mM GABA injection; horizontal arrow) completely
suppressesorthodromicHVCresponsesto70�AUvastimulation.Recoveryisobservedafterseveralminutes.
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12a,b). Thus, it appears that UvaHVC spik-
ing is only a part of the input required for
RA to generate burst suppression associ-
ated with arousal.

Discussion
Our experiments revealed that during
sleep, single spikes in UvaHVC neurons me-
diate inhibition and bursts in UvaNIf neu-
rons mediate excitation to their respective
cerebral targets. In the following, we dis-
cuss the evidence and possible implications
for this dichotomy of Uva firing behavior.

Uva single spikes seem to have a distinc-
tive inhibitory role, because the dips in
spike-covariance functions involving Uva
neurons and RA or HVC neurons were ab-
sent for Uva burst spikes, and because no
covariance peak was seen at a positive time
lag of Uva single spikes. In contrast, Uva
bursts seem to have an excitatory role, be-
cause covariance functions with RA and
HVC neurons displayed highly significant
peaks at positive time lags of Uva burst
spikes. UvaNIf bursts seem to be very effec-
tive in driving NIf activity, because ex-
tremely low Uva stimulation was sufficient
to trigger strong orthodromic NIf re-
sponses. With estimated latencies for the
Uva–HVC drive of 7 ms (Fig. 5c), and of 5
ms for the NIf–HVC drive (Hahnloser and
Fee, 2007), we estimate that UvaNIf bursts
drive NIf activity in just 2 ms. Because even
high-intensity Uva stimulation was not
able to activate HVC neurons during NIf
inactivation, we speculate that the ten-
dency of HVCI spikes to follow UvaHVC bursts arises mainly from
common direct and indirect input from UvaNIf neurons rather
than from direct excitatory drive provided to HVC by UvaHVC

bursts.
UvaHVC cells seem to be driven by input from HVC and RA,

because small positive covariance peaks were seen at negative
time lags of single UvaHVC spikes. Although the peak times may
deviate by �10 ms from assumed polysynaptic spike propagation
times, the possibility that Uva cells are driven by indirect HVC
input has interesting implications from the viewpoint of feedback
control. In engineered systems (such as in amplifiers), negative
feedback has a stabilizing function. Thus, if excitatory RA bursts
are transmitted to Uva indirectly via the dorsomedial nucleus
(DM) and/or the nucleus paraambigualis (PAm), and these
bursts induce increased tonic spike rates in UvaHVC neurons (as
suggested by our covariance analysis), then the suppressive action
of UvaHVC single spikes can help to stabilize HVC and RA burst
rates via a negative feedback loop.

Single spikes in UvaHVC neurons seem to dampen cerebral
bursting not only during unperturbed sleep but also during sen-
sory processing. In our head-fixed sleeping bird preparation,
many fewer Uva cells were activated in response to BOS playback
than we could have expected from the number of BOS-
responsive multiunit sites in Uva of anesthetized animals
(Coleman et al., 2007). One reason for this discrepancy could be
related to anesthesia, and another reason could be that the mul-
tiunit analysis emphasizes spike bursts, the latter of which are

carriers of BOS responses in Uva projection neurons. Recordings
of single units in anesthetized animals will hopefully provide
more insights into this conundrum in the future.

We have shown that Uva participates in arousal-triggered
suppression of RA bursting. However, large lidocaine injections
into Uva did not prevent arousal-related RA burst suppression
from occurring. Therefore, our study agrees with evidence that
wake–sleep gating in RA involves gating sources in addition to
Uva, such as noradrenergic neuromodulation (Cardin and
Schmidt, 2004). Interestingly, arousal did not suppress bursting
in UvaNIf cells, but to the contrary, bursting in these cells was
increased by arousal. Although the incongruent behaviors in the
two Uva cell types is puzzling, this latter finding agrees with our
observation that in our head-fixed bird preparation, NIfHVC neu-
rons also burst in the awake state (Hahnloser and Fee, 2007). The
observation of arousal-triggered increase in UvaNIf bursting also
suggests the view that in HVC, UvaHVC single-spike suppression
dominates over UvaNIf spike-burst excitation when in conflict.

The synaptic mechanisms by which UvaHVC single spikes are
able to mediate HVC burst suppression are largely unknown.
Intracellular recordings have revealed that electrical Uva stimu-
lation can induce either IPSPs or EPSPs in HVC neurons
(Coleman et al., 2007), although the monosynaptic nature and
neurotransmitter type associated with these potentials have not
been established yet. Similarly, the burst generation mechanisms
in Uva projection neurons are currently unknown, and it is con-
ceivable that similar to projection neurons in a different thalamic

Figure 11. UvaHVC and UvaNIf firing depends on the behavioral state. a, IFR plots of an UvaHVC–RA pair. When the bird is
aroused by a light air puff (arrow), RA bursting stops, whereas UvaHVC tonic firing increases. b, Bar plots summarizing firing
changes related to arousal. Firing rates and burst firing rates were measured in equal time windows before and after the air puffs.
The durations of these windows were set by the time during which the awake state could be verified in terms of open eyes.
bi– biv, BFRs in RA (bi) and UvaHVC (biii) neurons drop significantly, whereas IFRs in UVAHVC neurons (bii) and in UvaNIf neurons
(biv) significantly increase.
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nucleus, Uva bursts are generated by a hyperpolarization-
dependent mechanism (Luo and Perkel, 1999). Analogies of Uva
projection neurons can also be drawn with thalamic relay cells in
the mammalian literature. Similar to UvaHVC cells, thalamic relay
cells in mammals can fire in regular and burst modes associated
with different levels of alertness and sleep phases (McCormick
and Bal, 1997; Sherman, 2001; Weyand et al., 2001; Saper et al.,
2005). Bursts in thalamic relay neurons are positively correlated
with spikes in their target areas (e.g., cortical interneurons)
(Swadlow and Gusev, 2001), similar to our observations in Uva
projection neurons. Furthermore, thalamic firing patterns in
mammals are strongly regulated by cholinergic input (Steriade,
2004). The dense innervations of Uva by cholinergic fibers
(Akutagawa and Konishi, 2005) suggests that mechanistically, the
waxing and waning of tonic spiking in UvaHVC cells might be
influenced by the cholinergic system. Cholinergic neuromodula-
tion might be coincident in both types of Uva projection neurons;
at least, this could explain some of their common behavior, such
as the wide negative dips in covariance functions (compare Figs.
2c, 5c).

All our pharmacological Uva manipulations induced ef-
fects most compatible with presumed action on UvaHVC cells,
not UvaNIf cells (with the possible exception of the shut-off
state elicited by large glutamate injections, which we find hard
to interpret). For example, when Uva cells are silenced by
GABA injections, effects of uninterrupted bursting in HVCI

and RA neurons are in agreement with absence of UvaHVC

single spikes, not UvaNIf bursts. Similarly, we found that small
doses of glutamate suppress HVC bursting, in agreement with
the notion that glutamate injections increase tonic firing in
UvaHVC cells, not bursting in UvaNIf cells. Overall, these find-
ings can help us to refine the current view of sleep-burst gen-
eration in cerebral song-control areas, discussed in the
following.

NIf seems to be the single source of cerebral sleep bursts: on
the one hand, it was previously shown that NIf input is necessary
for HVC sleep-burst generation; on the other hand, we have
shown here that HVC cells continue to burst when Uva is si-
lenced, suggesting that NIf bursting can be entrained intrinsically
without Uva input. What then is the relationship between Uva

and NIf activity during sleep? In HVC-projecting NIf neurons,
there is a lack of pronounced burst epochs during sleep (Hahn-
loser and Fee, 2007). Here we have observed a similar absence of
long and pronounced burst epochs in UvaNIf neurons (Figs. 1f,
4b). Presumably, the role of UvaNIf bursts is to affect the timing of
NIfHVC bursts but not the overall rate of bursting in NIf and
downstream areas. In simple words, NIf seems to be the static
motor that drives cerebral sleep bursts and Uva the dynamic
break that frequently overrules the NIf drive. In a recent model-
ing study, such Uva function produced excellent results in ex-
plaining a large body of pairwise spike correlation data in HVC
and RA (Weber and Hahnloser, 2007).

The role of Uva activity for song production remains largely
unknown, but we imagine that UvaHVC and UvaNIf neurons could
have important roles, as elaborated in the following.

Singing is a bilateral behavior associated with highly synchro-
nized activity between the right and left HVCs (Vu et al., 1998;
Schmidt, 2003; Schmidt et al., 2004). Interhemispheric HVC syn-
chronization contrasts with the absence of bilateral connections
between forebrain song-control areas (including Uva). Bilateral
connections exist between DM and PAm (feeding into Uva)
(Reinke and Wild, 1998; Ashmore et al., 2005). The idea that Uva
is involved in the mediation of interhemispheric synchronization
is consistent with lesion studies, because bilateral and unilateral
lesions of Uva severely impair singing with song recovery only
after unilateral lesions (Williams and Vicario, 1993; Coleman and
Vu, 2005). However, bilateral NIf lesions do not severely impair
singing (Cardin et al., 2005), which implies that if Uva is indeed a
bilateral coordinator, then we expect UvaHVC cells to be the main
players involved. That is, we can imagine that bilaterally coordi-
nated UvaHVC activity constitute a trigger signal for singing be-
havior. For example, before singing, UvaHVC firing could sup-
press HVC activity. In combination with an excitatory NIf burst
(triggered by UvaNIf neurons), these could constitute an effective
triggering signal for HVC premotor bursts. At least, such an idea
is consistent with a putative inhibitory role of UvaHVC spikes and
with theoretical work that suggests that inhibition has excellent
synchronization properties (Van Vreeswijk et al., 1994; Bush and
Sejnowski, 1996).

Figure 12. Uva activity contributes to state-dependent firing modulation in RA. a, Arousing birds by air puffs after lidocaine or GABA injections leads to partial suppression of RA bursting. b, Bar
plot summarizing the reduction in RA burst firing measured in 30 s windows before and after waking, both within 3 min of the injections (n � 6 injections in 3 birds; lidocaine injections shown by
filled circles and GABA injections shown by open circles).
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