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Abstract— The robust and efficient flight control of insects
provide a powerful model system for autonomous microrobots.
Conversely, robots offer a robust experimental platform on
which to test biological hypotheses. This interaction of biology
and robotics is an exciting but challenging task, because the
vast disparities between both can lead to inaccurate or even
misleading conclusions. In this paper, we present a biorobotic
platform that can arbitrarily define the dynamic couplings
between a fruit fly and a robot. The platform is used to explore
the stability and emergent properties of the biorobotic couple.
The fruit fly’s wing kinematics are measured in real time and
used to drive an autonomous robot. In turn, the robot’s sensory
information is transformed back into visual feedback to the
fly. Using different case studies, we explore how the choice of
feedback influences the success of the biorobotic device. We
discuss the meaning of such feedback in view of biomimetic
implementations.

I. INTRODUCTION

Flies, like many other flying insects, achieve exceedingly
robust flight control despite their inherent instability and
limited neural resources. Studies of biological flight control
aim at gaining a deeper understanding of the biological basis
of locomotor behavior, which can serve as the basis for
biomimetic design principles for robots [1]–[3].

While robotics can benefit from biological research in this
way, robotic platforms can conversely enhance biological
understanding by serving as testbeds to explore and validate
hypothesis of sensorimotor pathways [4], [5]. The freedom
in the design of the robotic device allows to create arbitrary
experimental situations that can be used in a repeatable way
to explore ”cases” that would be unpractical or impossible
to test on the organism itself. Such an approach may also
lead to the identification of emergent behaviors that would
be difficult to identify from the observation of the organism’s
behavior alone [6].

Though such biorobotic implementations are intriguing,
the transfer between a target biological system and its robotic
counterpart is non-trivial and prone to misconceptions [7],
[8]. The transfer starts by modeling the biological process.
The choice of the model’s complexity level is crucial, be-
cause a too general model will lose meaningfulness and a too
complex model may be impossible to realize in an artificial
system.
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Fig. 1. Fly-in-the-loop: the fruit fly’s normal sensory feedback loop is
replaced with a non-invasive biorobotic coupling (grey box).

The model is then implemented in a robotic system.
Because biological systems have different building blocks
and operate at different spatiotemporal scales than engi-
neered devices, this important step always involves a certain
level of abstraction. One of the most important and diffi-
cult effort is to properly take into account the differences
in physical implementation. For instance, the underlying
functional principle of an insect’s compound eye might be
successfully reproduced in an artificial system using very
different building blocks (e.g. a CCD pixel instead of an
ommatidium), as long as the extracted optic flow is the same.

Another big difference is the spatiotemporal scaling: bio-
logical organisms are often orders of magnitude smaller and
faster than their artificial counterparts. Even if we were able
to recreate an exact but scaled copy of a biological process,
the optimality of the biological system might still be lost
through the scaling.

Finally, once the implementation has taken place, we
verify that the artificial system does indeed reproduce the
target biological behavior. The comparison can be made
using different criteria, i.e. this step involves another level of
abstraction. A too lenient criteria might fail to notice strong
drawbacks of the implemented system.

In conclusion, the process of coupling biological and
robotic systems contains several pitfalls. There is the risk
that the biological model is taken out of context and becomes
therefore meaningless. The success of a biologically inspired
robot to reproduce the behavior of the target biological
system is not sufficient to make conclusions about the
validity of the couplings that have been used in between.
These misconceptions may lead to false ’optimality’ claims
for biomimetic robots or even to misleading scientific claims
in the case of robotic-augmented biology.

To investigate this biology/robotic coupling without mak-
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ing assumptions, one approach is to actually take the biolog-
ical control system (the insect), and let the organism control
the artificial system itself. The organism becomes part of
the control loop, in a special kind of non-invasive ”cyborg”
system (See Fig.1). A recent example of such a system was
presented by Hertz et al, where a cockroach drove a mobile
robot by walking on a modified computer mouse ball [9].

In this paper, we present a non-invasive ’Cyborg’ system
as a biorobotic platform to explore the emergent behaviors
resulting from the coupling of a tethered fly and a wheeled
robot (see Fig.1).

The relevance of this work can be separated into three
aspects that address the biorobotic issues stated above. First,
the platform allows a direct interaction with the fly’s sen-
sorimotor pathway, giving a model-free paradigm to gain
a functional understanding of the processes at play. Second,
through the use of flexible transfer functions, the platform al-
lows a vast exploration of the spatial and temporal couplings
in between the robotic and biological system. Finally, the
platform represents a clear artificially-closed-loop paradigm,
with a visual, interpretable, output state - the robot’s behavior
- and therefore helps clarify this complex concept.

Through the understanding of biorobotic couplings, such
cyborg systems may contribute to medicine, in cases where
a prosthetic replaces a disabled biological subsystem while
being controlled by the patient’s brain. To this mean, re-
searchers in the field of neuroprostethics have been studying
techniques to have animals directly control robotic devices
[10]–[13].

II. THE CYBORG SYSTEM

The concept of the Cyborg system is shown in Fig.2 and
pictures of the system are represented in Fig.3. In the Cyborg
Fly, the intended corrective flight maneuvers of a tethered
fly (Fig.2.A) are measured with a high speed camera (2.B).
These data are the input to a user-definable transfer function
(2.C) that generates motor commands for a wheeled robot
(2.D). As the robot moves through a cluttered environment,
it returns sensory information (visual and range data) to a
second transfer function (2.E) that generates an image for
the flight arena (2.F). The fly responds to the visual stimulus,
closing the loop. The individual components are described
in detail below.

A. Fruit fly

We tethered wild-type fruit flies (Drosophila
melanogaster) to a tungsten rod using standard procedures
[14].

B. High speed camera: the digital wing beat analyzer

We measure the fly’s reaction from changes in wing
kinematics using a custom designed high speed vision sys-
tem. The ∼ 230 Hz wing beat frequency of fruit flies puts
stringent constraints on the acquisition and processing of the
images. Our vision system robustly extracts the wing position
in real time at 7000 Hz (3500 Hz per wing) and with minimal
latencies (maximum 150 µs). The system feeds this data into
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Fig. 2. The Cyborg Fly is composed of six processes. Each process is
described in detail below.

an extended Kalman filter. The Kalman filter’s state vector
x provides a real-time estimation of wing beat frequency f ,
amplitude A, phase φ and mean angular position m, which
can be transformed into motor commands to the robot. More
details about the digital wing beat analyzer can be found
under [15] and [16].

C. Fly-to-robot transfer function

The fly-to-robot transfer function transforms the four
Kalman parameters extracted by the high speed vision system
into velocity commands to the wheels of the robot as follows:

(
θ̇l

θ̇r

)
= TFfly-to-robot(xl,xr) (1)

= TFfly-to-robot(Al, Ar,ml,mr, φl, φr, f) (2)

where θ̇l and θ̇r are the angular speed commands to the left
and right wheels of the robot [◦/s ], x =

[
A m φ f

]T ∈
R4 is the state vector of the left and right wing’s Kalman
filters as described in the previous paragraph. Because flies
cannot separately modulate their left and right wing beat
frequencies such that fl = fr = f in (2). Note that each
term in (1) and (2) are intrinsically time dependent and (1)
may be a function of state vectors at different discrete times
(x(t),x(t− 1), ...,x(t− n)).

The choice of (1) is completely unconstrained. Fruit
flies, however, present a small repertoire of robust control
responses: Yaw torque is controlled by varying the difference
of stroke amplitude (Al − Ar) [17]. Lift is controlled by
increasing the mean speed of both wings (A · f) [18]. Thrust
is controlled by a modulation of both pitch (induced by
changes in the mean stroke position m) and total force
magnitude (proportional to A · f ) [19].

15

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on May 31,2010 at 11:47:34 UTC from IEEE Xplore.  Restrictions apply. 



A

B

C D

E

G H

F

Le
ft

  w
in

g 
am

pl
itu

de
 [d

eg
]

110.0

130.0

90.0

70.0
0 642

Time [s]

110.0

130.0

90.0

70.0
0 642

Time [s]Ri
gh

t w
in

g 
am

pl
itu

de
 [d

eg
]

Le
ft

 w
he

el
 s

pe
ed

 [a
.u

.]

250.0

0.0
0 642

Time [s] Ri
gh

t w
he

el
 s

pe
ed

 [a
.u

.]

250.0

0.0
0 642

Time [s]

Fig. 3. Experimental setup and example of data. A: tethered fruit fly viewed from high speed camera. B: Inside view of flight arena C: E-puck robot
inside maze D: Visual flight simulator with high speed camera E: Left wing amplitude F: Right wing amplitude G: Left wheel speed H: Right wheel speed.
The fly-to-robot transfer function for this example is the one formulated in Equ. 3. Initially, the robot is turning right, but then a sudden decrease in the
fly’s left wing amplitude makes it turn left.

As a note of caution, tethered flight is subject to some
quantifiable artifacts [19], because the tether disrupts the
normal sensory feedback to the fly. In other words, a tethered
fly’s responses provide meaningful control signals, but one
should be careful when generalizing these results to free
flight.

Given this knowledge, a first logical approach is to use a
control output that mimics the control of flight. Two general
classes of transfer functions can be built that should result
in a robot mimicking the fly’s intended maneuvers:

• Yaw response of the robot is coupled to the yaw
response of the fly:(

θ̇l

θ̇r

)
= G1

[
1 −1
−1 1

] [
Al

Ar

]
+H1 (3)

where G1 [s-1 ] is the gain from stroke amplitude
difference (proportional to the fly’s turning torque) to
wheel velocity difference (robot wheel velocity), and
H1 is a set speed constant.

• Forward velocity of the robot is coupled to the lift/thrust
response of the fly:(

θ̇l

θ̇r

)
= G2 · f ·

[
1 1
1 1

] [
Al

Ar

]
+H2 (4)

where G2 is the unit-less gain from wing velocity
(proportional to lift force) to forward robot velocity, and
H2 is an added speed constant.

D. Robot

We implemented the experiments on an e-puck (www.e-
puck.org) robot equipped with an array of three linear cam-
eras (102 pixels) each and 8 proximity sensors. The control
of the robot wheels was performed at 50 Hz while the readout
of the linear camera and proximity sensory was performed

at 10 and 20 Hz, respectively. All communications with the
robot were performed through a Bluetooth wireless interface.
The robot control is programmed using microcontroller-
specific C code.

E. Robot-to-fly transfer function

The visual image and/or the proximity sensor from the
robot is employed to generate an image for the flight arena
of the fly:

I(x, y) = TFrobot-to-fly(i,p) (5)

where I(x, y) represents the image to be shown on the flight
arena. i =

(
i1, i2, ..., i318

)
∈ R318 is the linear image from

the three cameras of the robot and p =
[
p1, p2, ..., p8

]
∈ R8

is the output of the eight proximity sensors.
Again, there are an infinite number of transfer functions

that can be implemented. In this case, we focused on stimuli
that are known to create robust yaw and lift responses in
flies. Table I gives a list of the ones we used.

F. LED visual flight simulator

The LED visual flight simulator consisted in a 5x6 cir-
cular array of LED panels, each containing 8x8 LEDs. The
individual panels were based on the design by Reiser et al
[20], and were controlled via a National Instruments Com-
pactRIO device (www.ni.com/compactrio/) through an I2C
communication protocol. The flight simulator was refreshed
at 30-400Hz, depending on the choice of the robot-to-fly
transfer function.

G. Overall system control

The processes were controlled through a LabVIEW in-
terface (National Instruments, www.ni.com) that provides a
simple mean to manage the information flow and give the
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TABLE I
DIFFERENT ROBOT-TO-FLY TRANSFER FUNCTIONS THAT WERE USED

Robot-to-fly transfer function type Description Image

A. Undistorted robot view The fly directly sees the output of the linear cameras.

B. Nearest object defines azimuth
and speed of expansion/contraction

The center of expansion is set in the same direction as the nearest
object. The distance to the object defines the speed of expansion.
A center of contraction is generated at the exact opposite of the
expansion.

C. Brightest object defines stripe
position

The azimuth of the brightest object in the linear camera image defines
the azimuth of the bright stripe in the flight arena.

D. Object distance drives sinu-
soidal grating vertical speed

If the nearest object is to the right (left), the pattern will go up (down,
respectively). The closer the object, the faster the pattern motion.

user the possibility to vary the transfer function parameters
(see Fig.4). The high speed camera system ran on a separate
computer and sent the Kalman state vector via UDP packets
to the LabVIEW computer. The LabVIEW program read
the UDP input and transformed it into motor commands
by employing the user-defined fly-to-robot transfer func-
tion. In parallel, the LabVIEW program logged the sensory
information from the robot and transformed it into a 2D
image (via the user-defined robot-to-fly transfer function)
that was sent to the CompactRIO device through Ethernet.
The CompactRIO device transformed the image into I2C
commands and sent them to the individual panels.

The hardware latency of the whole cyborg system is under
50 ms, mainly limited by the necessity to stream the robot’s
sensory information to the computer via Bluetooth.

III. EXPERIMENTS
A. Naturalistic feedback

In a first set of experiments, we used the most direct,
natural, form of feedback. The robot’s movements were
matched to the predicted free-flight movements of the fly.
This was done by combining Eq. (3) and (4) to have the robot
turn proportionally to the difference in wing beat amplitude
and advance at a speed proportional to the mean wing speed.
Experimental data is shown in Fig.3.E-H. The fly was shown
a live view from the robot’s cameras (Table I.A). These
feedbacks were similar to the feedback used in the cockroach
experiments by Hertz et al [9].

This would seem naively to be the best choice of feedback,
because it represents the most realistic mapping of the
environment onto the animal, and vice versa. Interestingly,
the system did not perform robustly in these circumstances.
The robot would crash into obstacles, not showing the desired
behavior.

B. Amplified naturalistic feedback

To overcome these issues, we enhanced the visual feed-
back to the fly while keeping the same fly-to-robot transfer
function: We generated expansion/contraction stimuli based
on the mean distance of surrounding objects: as an object
got closer, the expansion would accelerate (Table I.B). In
this amplified situation, the Cyborg system showed robust
obstacle avoidance behavior (see ”CyborgFly.mp4” video in
supplementary material). After adjusting the transfer function
gains, the robot drove through the arena for several minutes
while avoiding walls and obstacles.

C. Inverted response feedback

Flies are known to generate a robust stripe fixation be-
havior. We used this tracking behavior to generate obstacle
avoidance in the robot. To this end, we placed the bright
stripe pattern (Table I.C) in the opposite direction of the
closest object. The tracking behavior of the fly was therefore
coupled with the inverse behavior in the robot: obstacle
avoidance.

D. Decoupled response feedback

Taking this artificial coupling even further, we coupled
completely unrealistic behaviors together. For example, we
used the lift response of the fly to control the turning of the
robot: (

θ̇l

θ̇r

)
= G3 ·

[
1 1
−1 −1

] [
f ·Al −H3

f ·Ar −H4

]
+H5 (6)

To adjust the feedback accordingly, we used the mean
distance of obstacles on each side of the robot to control
the speed of ascent/descent of a stripe pattern (Table I.D).
These experiments succeeded equally well in generating
stable obstacle-avoidance behavior.
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Fig. 4. LabVIEW user interface: the user can visualize the fly’s response (center) choose a transfer function type and set its gains (right side). The robot
actuator and sensor data are logged at the bottom and transferred to the panel system via a second transfer function (left).

In summary, all of these experiments show that the emer-
gent behavior of the system produces many non-intuitive
results. Obviously, it is not so that a direct representation of
the mapping leads to the expected, stable, behavior, because
of the large differences in terms of temporal and spatial
scaling. Secondly, if an experimental paradigm does result
in similar behavior, it doesn’t necessarily represent a truly
biomimetic implementation.

IV. DISCUSSION & CONCLUSION

This work set out to experimentally explore the dynamic
couplings present in biorobotic implementations. In doing so,
our platform provides a common framework for the disparate
fields of biology and robotics to understand and evaluate
how they can mutually benefit each other. As Webb shows
[7], the transfer of a target biological process into a robotic
one is a multi-step operation that can be summed up as:
validating a model of a biological system through a robotic
implementation.

In the case where the robotic implementation is used
to better understand a biological process, this validation is
clearly necessary to verify that the robotic model can really
be used as a replacement for the biological one. The robotic
platform can then be employed to make new predictions
about the target system in a whole new set of experimental
conditions. In the case where the robotic implementation is
used to perform the same function as the biological one
(biomimetics), the validation is necessary to make sure that
the target system’s behavior is indeed reproduced.

As we have underlined before, this validation is not
straightforward and is prone to misconceptions. For instance,
if the artificial system’s behavior matches the target system’s
behavior, it does not necessarily mean that the hypothesis is
correct. Conversely, if the artificial system’s behavior does

not match the target system’s behavior, it does not either
mean that the hypothesis is false [7]! Let us illustrate this
concept using the Cyborg Fly.

In our first set of experiments, we showed how a natural-
istic feedback does not necessarily lead to a useful response.
In the experiments, the transfer functions were chosen so that
the robot would perform the fly’s intended movements and
the fly was given a direct visual feedback from the robot.
Nonetheless, the robot failed to perform in any useful way.

The cause of this apparent contradiction lies in the way the
biological and robotic systems are abstracted: we implicitly
hypothesize that the robot reproduces the fly’s behavior. For
this, we use models of insect flight control (Eq. (3) & (4))
and transcribe them into commands that generate similar
types of responses in the robot. However, the fly and the
robot systems are very different and their responses cannot
be so easily compared. The fly turns 90◦ within 50 ms,
the robot takes at least one hundred times longer. The fly
uses its wings to advance through a fluid volume while the
robot rolls on a flat two-dimensional surface. The claim that
”the robot reproduces the fly’s behavior” has not taken into
account neither the vast spatiotemporal differences nor the
differences in implementation that was necessary to compare
these disparate systems. In these first experiments, the fly
probably saw a quasi-static image that generated very little
optical flow. With the lack of meaningful visual feedback, a
robust closed-loop behavior can not be expected.

It is interesting to note that we are fast at finding a
critical cause to the failure of our system. However, had the
system worked, e.g. due to some artifact, we would have very
likely not seen or even intentionally ignored the differences
cited above, on the basis that the system was functional.
This first set of experiments therefore shows how important
it is to correctly make abstraction of the spatiotemporal
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and implementation differences, and to critically analyze the
outcome of a biorobotic implementation.

In the second set of experiments, we showed how we
can overcome these differences by altering the model: we
link the distance of an object to the expansion speed of a
stimulus. By doing so, we compensate for the discrepancy in
time constants between the fly and the robot by introducing
a derivative operator (position is transformed into speed).
This results in a functional closed-loop behavior, where the
fly-driven robot is able to avoid obstacles. The underlying
hypothesis, however, has changed. We cannot claim anymore
to have a naturalistic feedback as we have added an ampli-
fication term. This change of hypothesis is often neglected
in biorobotic approaches, where the model modifications are
seen as small adjustments that help the system run smoothly.
As these modifications accumulate, their combined effect
can become more important than the biological model itself,
strongly undermining the ”bio-inspired” aspect.

For the biomimetic case, this results in a non-biomimetic
engineered device that is simply ill-named. This does not
have a very dramatic effect, except if the optimality of the
biological system is (falsely) used as an argument during the
design phase. For the biorobotic case, this can lead to false
scientific claims and is therefore quite dangerous, especially
if the model modifications are not openly declared and are,
as a consequence, very hard to find.

Our third and fourth experiments showed that it is not
sufficient for a robotic system to perform just like its bio-
logical counterpart to claim that the underlying processes
are the same. To illustrate this, we used a partially (III-
C) or completely (III-D) decoupled processes to generate
stable closed-loop turning behavior (Eq. 6). In our case, we
have done it intentionally. Unfortunately, such effects are
often unforeseen artifacts of the experimental paradigm, and
can lead to false claims. For instance, the turning behavior
of fruit flies in tethered setups is strongly affected by the
lack of gyroscopic feedback. It is therefore dangerous to
make conclusions on free-flight turning based on tethered
experiments.

The simple ”success/failure” classification done here has
the advantage of providing clear, unambiguous, results for
our different case studies. Our future work will nonetheless
complement this qualitative assessment, and characterize
quantitatively the performance of the Cyborg system.

In summary, the biorobotic platform presented here offers
a unique way to analyze the couplings between biology and
robotics. Our work has demonstrated how the choice of
coupling between the biology and robotic processes often
lead to unexpected properties. From these observations, the
guidelines to a meaningful pursuit of biorobotic approaches
can be drawn. Such understanding is crucial to biomimetic
implementations and robotic-augmented biology. It may also
potentially benefit the medical field of brain-robot interfaces.
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