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Abstract The study of several aspects of the collective
dynamics of interacting neurons can be highly simplified if
one assumes that the statistics of the synaptic input is the same
for a large population of similarly behaving neurons (mean
field approach). In particular, under such an assumption, it is
possible to determine and study all the equilibrium points
of the network dynamics when the neuronal response to
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noisy, in vivo-like, synaptic currents is known. The response
function can be computed analytically for simple integrate-
and-fire neuron models and it can be measured directly in
experiments in vitro. Here we review theoretical and experi-
mental results about the neural response to noisy inputs with
stationary statistics. These response functions are important
to characterize the collective neural dynamics that are pro-
posed to be the neural substrate of working memory, deci-
sion making and other cognitive functions. Applications to
the case of time-varying inputs are reviewed in a companion
paper (Giugliano et al. in Biol Cybern, 2008). We conclude
that modified integrate-and-fire neuron models are good
enough to reproduce faithfully many of the relevant dynami-
cal aspects of the neuronal response measured in experiments
on real neurons in vitro.

Keywords Integrate-and-fire · Mean field · Population
density · Collective dynamics · Attractor · Pyramidal ·
Fast spiking

1 Introduction

Biological networks of neural cells are extremely complica-
ted dynamical systems which comprise a large number of
very diverse elements. Even within a single cortical column,
where the neurons are known to have similar response pro-
perties to external stimuli, the number of neurons can be as
large as 105, and the synaptic connections are of the order
of 109 (Braitenberg and Schüz 1991). A study of detailed
dynamical models of such networks is a difficult task. An
alternative approach is suggested by the analogy between
the neural circuits and physical systems like the spin glasses
in which the number of interacting elements is huge and the
long range interactions allow for important simplifications
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(Mezard et al. 1987). The dynamics of every element, the
spin, are driven by the field generated by thousands of other
spins. If all spins have similar dynamical properties and the
interactions have the same statistical properties, then the
fields felt by different spins are approximately the same. Ana-
logously, the dynamics of a large population of interacting
neurons could be greatly simplified if we focus on the statisti-
cal properties of the total synaptic currents. Such an approach
is named population density approach or mean-field theory
(Knight 1972a,b; Amit and Tsodyks 1991a,b; Treves 1993;
Abbott and van Vreeswijk 1993; Amit and Brunel 1997b;
Fusi and Mattia 1999; Brunel and Hakim 1999; Gerstner
2000; Nykamp and Tranchina 2000), as the fields acting on
different spins, or the total synaptic current to different neu-
rons, are replaced by their mean value across a population of
different interacting elements that behave in a similar way. In
earlier efforts (Knight 1972a,b), only the mean current would
be taken into account. More recently, mean field theory has
been extended to include both the average input current and
the amplitude of its fluctuations (Amit and Tsodyks 1991a,b;
Abbott and van Vreeswijk 1993; Amit and Brunel 1997b).

Once we know the average input current, we need one
more element to characterize the dynamics of recurrent
neural circuits. We need to know how the total somatic cur-
rent is transformed into trains of spikes, that in turn gene-
rate a synaptic current in the connected neurons. If we have
this element, not only can we characterize the average firing
rate of a population, but we can also analyze the dynamical
behavior of circuits in which populations of neurons gene-
rate inputs to themselves. This is fundamentally important to
study the attractor dynamics of recurrent neural circuits and
their states of persistent activity (Amit and Tsodyks 1991a,b;
Amit and Brunel 1997b; Wang 1999), i.e., attractor states
with many potential applications ranging from working
memory (Amit 1995; Wang 2001; Brunel and Wang 2001) to
decision making (Rolls and Deco 2001; Wang 2002; Wong
and Wang 2006) and flexible sensorimotor mapping (Fusi et
al. 2007). The transduction function which transforms the
somatic current into a train of spikes (named response func-
tion1 in this article) provides a compact characterization of
the single neuron properties that are relevant to the collec-
tive behavior of large networks of similar cells. If the res-
ponse function is known, mean field theory allows us to study
systematically the behavior of large connected networks of
spiking neurons (e.g., Amit and Brunel 1997b; Brunel and
Hakim 1999; Brunel 2000a,b; Mattia and Del Giudice 2002;
Fourcaud and Brunel 2002; Del Giudice et al. 2003; Renart
et al. 2003; Curti et al. 2004; Richardson 2007; Moreno-
Bote et al. 2008). It is then valuable to obtain a theoretical

1 We prefer the term ‘response function’ to the more common ‘transfer
function’ or ‘transduction function’ because the latter are often used in
contexts where input fluctuations are neglected.

and experimental characterization of the response function
of cortical neurons, which depends on the specific type of
cell under consideration. One possibility is to build a model,
inject a typical current into a simulated neuron, and observe
its response. On the other hand, for simple enough model
neurons, a theoretical response function can be determined
analytically, facilitating the applicability of the theory and
the comparison with the experimental data. This has been
done for several models in the class of integrate-and-fire (IF)
neurons (e.g., Fourcaud and Brunel 2002; Fourcaud-Trocmé
et al. 2003; Renart et al. 2003; La Camera et al. 2004a;
Moreno-Bote and Parga 2005; Richardson 2007). Experi-
mentally, it is possible to measure neuronal response func-
tions by injecting a real neuron with an appropriate range of
input currents and measuring the neuron’s response (Rauch
et al. 2003; Giugliano et al. 2004; La Camera et al. 2006;
Arsiero et al. 2007). With the use of the dynamic clamp tech-
nique (Robinson and Kawai 1993; Sharp et al. 1993), the
response to injected synaptic conductance transients could
also be characterized (Chance et al. 2002; Higgs et al. 2006).

Beside the theoretical importance of the response function
to study network behavior, its experimental characterization
can be used (i) to classify neurons (e.g., quantify their func-
tional similarity); (ii) to establish how well the simple models
of spiking neurons used in theoretical studies represent the
behavior of real neurons; (iii) to modify simple model neu-
rons so as to improve their ability to predict the behavior of
real neurons, sometimes simply by using effective parame-
ters (i.e., those derived from fitting the theoretical response
functions to the experimental ones). Often these parameters
are different from those directly estimated with more tradi-
tional techniques.

In this article, we review the theoretical and experimental
characterization of the response function of cortical neurons
in the case of stationary statistics of the somatic current. In
particular, we review the results related to the stationary res-
ponse of the neuron on a time-scale of seconds, following a
phase of fast adaptation (hundreds of milliseconds) for the
pyramidal cells. In the reviewed works it is commonly assu-
med that the total synaptic current is well described by a sto-
chastic process known as an Ornstein–Uhlenbeck process,
and by making this assumption we possibly neglect some of
the effects that nonlinear properties of dendritic trees might
have on the statistics of the input. The reduction of the res-
ponse functions of cortical neurons to those of simple IF
models is also reviewed in this article. A complete characte-
rization of such a reduction has been obtained so far only for
current-based inputs, i.e., when the cell is stimulated with
the current clamp technique. A generalization to the case
of more realistic conductance-based inputs, and its compa-
rison with the current-based approximation, is presented at
a theoretical level only, and limited to the case of stationary
inputs. The extension to the case of time-varying statistics,
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responses on longer time-scales and to the nonlinearities due
to backpropagating action potentials are addressed in a
companion article (Giugliano et al. 2008).

This article is organized as follows. In Sect. 2, the rele-
vant characteristics of cortical spike trains are summarized.
In Sect. 3, the theory of the response function of cortical
neurons is presented in the context of mean field theory. In
Sect. 4, some of the applications of the theory are reviewed.
In Sect. 5, we collate the various experimental characteriza-
tions of the response function of pyramidal and fast spiking
neurons obtained in different areas of the rat neocortex, and
compare the theory to the data. We finally discuss some of
the advantages and some of the shortcomings of using the
simplified spiking models and the approach reviewed in this
article.

2 Cortical spike trains

To develop a theory of the response of cortical neurons, we
must have an adequate understanding of the typical neuronal
spike patterns as observed in vivo. Recording neural activity
from the cerebral cortex of anesthetized and awake animals
has shown that such activity is highly variable. In particular,
it is observed (i) a large variability in the inter-spike inter-
vals (ISIs) of the same neuron during spontaneous as well
as stimulus-driven activity (e.g., Noda and Adey 1970; Holt
et al. 1996; Shinomoto et al. 2003); (ii) a large trial-by-trial
variability of the spike count of the same neuron in response
to repeated, identical stimulation, which grows proportio-
nally with the average number of spikes (e.g., Gershon et al.
1998; Lee et al. 1998; Oram et al. 1999; Wiener et al. 2001).
Intracellular recordings of neural activity in the intact brain
have also shown the presence of a large variability at the
level of the subthreshold membrane potential, and have shed
some light on the nature of this variability. In Fig. 1 is shown

the intracellular recording of the membrane voltage of two
pyramidal neurons from the visual cortex of adult cats per-
formed by Holt et al. (1996): one from a slice in response to
a DC current injection (left); one from an intact animal under
DC current injection (middle); and one under visual stimula-
tion (right). Note how a constant current stimulation in vitro
elicits a fairly regular spike train (left), whereas the same cur-
rent injected in vivo (middle) elicits an irregular spike train
very similar to that obtained in response to a visual stimula-
tion (right).

2.1 Recreating in vivo-like activity in vitro

Whatever makes the neural activity irregular in an intact brain
is not present in the DC stimulation in vitro, the traditional
probe of the physiological and cellular properties of corti-
cal neurons (e.g., Connors et al. 1982; McCormick et al.
1985). One explanation for this phenomenon lies in the fact
that a cortical neuron is constantly bombarded by hundreds
of seemingly erratic inputs. Indeed, whatever variability is
contributed by the mechanism of action potential generation
(Gutkin and Ermentrout 1997), this is present in both the
cases illustrated in the left and middle plots of Fig. 1, and thus
it can not account for the striking difference in variability.
This explanation is confirmed by the fact that the irregular
activity shown in Fig. 1 can be recreated in vitro in response
to fluctuating, in vivo-like current, as shown in Fig. 2.

The current injected into the neuron shown in Fig. 2 was
modeled after an Ornstein–Uhlenbeck process (see, e.g.,
(Cox and Miller 1965; Gardiner 1985)),

dI = − I

τI
dt + m I

τI
dt + sI

√
2dt

τI
ξt . (1)

The quantity ξt in Eq. 1 is a Gauss-distributed variable with
zero mean and unitary variance, with the additional property
that 〈ξtξt ′ 〉 = δ(t − t ′), where δ is Dirac’s delta function and

Fig. 1 Neural activity in vitro and in vivo. Comparison of primary
visual cortex cells from adult cats in slice and in vivo. Sample traces
from two pyramidal neurons, one from a slice (left) and one from an
intact animal on the boundary layers II and III that was stimulated by
current injection (middle) and by a bar moving along the receptive field

(right). Note the lack of a large difference in spiking variability in res-
ponse to current and visual stimulation in the intact animal. Used and
modified with permission from Holt et al. (1996). Copyright © 1996 by
the American Physiological Society
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τ  = 50 ms, f = 7.4 spikes/s,CV= 1.27

500 ms

50 mV

I

 = 100 ms, f = 6 spikes/s,CV= 1.32

 = 1 ms, f = 5.6 spikes/s,CV= 0.63

τI

τI

Fig. 2 Neural activity in vitro in response to in vivo-like input
current. Three intracellular somatic recordings performed in vitro from
one pyramidal neuron from layer 5 of the somatosensory cortex of a
juvenile rat are shown. These somatic recordings were obtained in the
whole cell configuration under current clamp in response to current
injection modelled after Eq. 1 (Ornstein–Uhlenbeck process). Mean
(m I ), variance (s2

I ), and time correlation length (reported at the top of
each panel as τI ; see Eq. 1) of the input current were adjusted so as to
have roughly the same output spike rates ( f ) but different coefficients
of variability (CV). See Rauch et al. (2003) for details

〈·〉 means average over time. The process ξt is often referred
to as ‘white noise’ in the literature. This condition defines a
delta-correlated process and means that two values of ξt at
different times t and t ′ are completely independent of each
other. I is Gauss-distributed at any time t , and after a transient
of the order of the τI (the ‘correlation length’), converges to a
process with mean value m I and standard deviation sI . With
the use of current Eq. 1 it is possible to generate in vivo-like
spike trains in vitro with different firing rates, and different
variability at parity of firing rate, as shown in Fig. 2. As
we will show in Sect. 5, by tuning the values of parameters
m I and sI a whole range of in vivo-like spike trains can be
induced in the stimulated neuron.

2.2 Model reduction of cortical spike trains

In this article, we adopt the view that (i) a spike train is
completely defined by the sequence of its ISIs, and (ii) a

good model reduction of cortical neurons is one that predicts
well its spike trains under conditions as close as possible to
the one experimentally measured in the intact brain. How
well, it depends on the underlying problem that a network of
spiking neurons is called upon to describe, and different time
resolutions have been found to be optimal in different systems
(see Victor 2005 for a review). Some authors have assumed as
a criterion that a large percentage of ISIs be predicted within
±2 ms (Jolivet et al. 2004, 2006, 2008). We take a different
approach and demand that the model neuron reproduces well
the first and second order statistics of spike trains in response
to in vivo-like current. A justification for this criterion is that
a level of detail at the millisecond scale is not necessary for
studying patterns of activity that do not vary much on time-
scales of seconds (Sect. 3.1).

We will characterize a spike train by its firing rate (spike
count in an interval divided by that interval’s duration) and
by its coefficient of variability, defined as the ratio of the
standard deviation to the mean of the ISIs. For stationary
spike trains, the firing rate quantifies also the average ISI, and
the coefficient of variability and firing rate together quantify
the variability of the ISIs. For non-stationary spike trains
other measures of variability have been devised and should
be used instead (Holt et al. 1996; Shinomoto et al. 2003;
Kostal et al. 2007; see Gabbiani and Koch 1998 for a primer
on spike train analysis).

2.3 Stationarity of the statistics of the noisy input current

After a transient ∼ τI , the current I of Eq. 1 is auto-correlated
over a time of order τI (its autocorrelation function is
ρ(t, t ′) = s2

I e−|t−t ′|/τI , see, e.g., Cox and Miller 1965), and
for very short τI approaches a white noise process. Even for
finite τI , however, and despite being highly fluctuating in
time, I is a stationary process in the statistical sense, since
the statistics of the current are completely characterized by
the three parameters m I , sI and τI , which are constant. In this
sense, the highly variable spike trains obtained in response
to such a current, shown in Fig. 2, are also stationary. Indeed,
under rather general conditions, the input current Eq. 1 can
be generated at the soma of a target neuron by linear summa-
tion of the post-synaptic potentials (PSPs) arising from many
spike trains that are in turn obtained in response to the same
type of current as Eq. 1.

The parameters m I , sI and τI represent, ideally, the most
important component of the presynaptic contributions to the
neuron under investigation. We shall link these parameters
to presynaptic parameters in a later section (Sect. 3.2). Non-
stationarity could arise from a time-dependence of any of
these parameters. In this manuscript, we will be dealing with
spike trains that are stationary in the sense defined above.

Having defined the scale at which we wish to characte-
rize cortical spike trains, we move to the characterization of
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the input-output relationship at the corresponding level of
description, i.e., the response function.

3 Theoretical analysis of the response of cortical
neurons

The response function characterizes the response of a neu-
ron to its somatic input current and thus plays an essential
role in the dynamics of neural circuits. In the simplified sce-
nario we are going to assume in the following, the average
somatic current and the amplitude of its fluctuations are the
only ingredients considered effective in driving the response
(for more complex scenarios, taking, e.g., into account the
auto- and cross-correlations of input spike trains, see, e.g.,
Sakai et al. 1999; Svirskis and Rinzel 2000; Salinas and
Sejnowski 2002; Moreno et al. 2002; Doiron et al. 2004;
Lerchner et al. 2006; Moreno-Bote et al. 2008). Thus, we
shall define the response function as the output firing rate
as a function of the mean and variance of the input current.
The response function plays a central role in the mean field
theory of networks of spiking neurons (Knight 1972a,b; Amit
and Tsodyks 1991a,b; Abbott and van Vreeswijk 1993; Amit
and Brunel 1997b; Brunel and Sergi 1998; Fusi and Mattia
1999; Brunel and Hakim 1999; Brunel 2000a,b; Nykamp
and Tranchina 2000; Fourcaud and Brunel 2002; Moreno et
al. 2002; Mattia and Del Giudice 2002; Del Giudice et al.
2003; Lindner et al. 2002; Renart et al. 2003; Richardson
2004; Moreno-Bote and Parga 2004; Gigante et al. 2007a;
Richardson 2007; Moreno-Bote et al. 2008). We provide
a brief introduction to this theory in the next subsection. For
a detailed mathematical exposition of the theory, the reader
is referred, e.g., to Abbott and van Vreeswijk (1993); Fusi
and Mattia (1999); Brunel and Hakim (1999); Fourcaud and
Brunel (2002); Moreno-Bote and Parga (2005) and
Richardson (2007).

3.1 Neuronal mean field approach

Consider the neural circuits depicted in Fig. 3. Starting from
a large network of interacting neurons (Fig. 3a), we group
together those neurons that presumably have a similar
behavior in a statistical sense (for example, they fire at the
same average rate). In this example, we consider two popu-
lations of cells: pyramidal neurons, schematically drawn in
black, and gabaergic neurons, in gray. Two pyramidal neu-
rons are labelled in Fig. 3b as “1” and “2”; they receive direct
synaptic input from other neurons in the same population
(red), and from the cells of the population of gabaergic neu-
rons (blue), which in turn produce the typical noisy input
currents as shown in figure (“current into the soma”). Dif-
ferent pyramidal neurons belonging to the same population
will in general be driven by different somatic inputs, either

...

...

...

...

Current into
the soma

Total current
into the soma

A

B

1

2

15

23

11

10

23

19

Fig. 3 Mean field theory for neural circuits. a Two distinct populations
of different types of neurons: pyramidal (black) and gabaergic cells
(gray). Each population is made of different neurons that are tentatively
grouped together due to the similarities in the statistics of the synaptic
input and their response properties. b Two cells (1 and 2, on the right)
from the population of pyramidal neurons. The other pyramidal neurons
(in red labels) and the gabaergic neurons (blue labels) that are connected
(left) to the two cells shown on the right generate an excitatory and
an inhibitory somatic current. If the statistics of the input currents to
all pyramidal neurons is similar—same mean (red and blue lines) and
average amplitude of the fluctuations (red and blue distributions)—then
all the pyramidal neurons within the same population behave in a similar
way and they can be replaced by a single representative neuron (e.g.,
neuron 1)

because the pre-synaptic cells are different, or because the
function that transforms the pre-synaptic spikes into a soma-
tic current are different. However, the statistical properties of
the somatic currents might be the same across different neu-
rons of the same population. In the example of Fig. 3b, the
specific realizations of the noisy somatic currents generated
by the pyramidal neurons are clearly different. Nevertheless,
the average (the red line) and the variance (red bell-shaped
curve) are approximately the same. Similarly, the mean and
the variance of the inhibitory input (in blue) are also approxi-
mately the same. This means that if we replace the actual
somatic inputs with one having the same mean average and
variance across all neurons of the same population, we may
not make a large mistake. This is the basic approximation of
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mean field theory: instead of considering the specific somatic
input driving every individual neuron, we make the assump-
tion that the same fluctuating input drives all the neurons.
If all neurons react in the same way to the input, then it
is unnecessary to study a large number of neurons, as they
would all behave in the same way (in a statistical sense)
under the mean field assumption. Hence, an entire popula-
tion can be replaced by a single representative neuron which
is driven by the mean field. If we know how each neuron
transforms the somatic current into a train of spikes (their res-
ponse function), we then can fully characterize the population
dynamics.

This approach has been named “extended mean
field theory” by Amit and collaborators (Amit and Tsodyks
1991a,b; Amit and Brunel 1997b) because it takes into
account the fluctuations of the input current. It is a strata-
gem that allows us to reduce a population of similar neurons
to the study of a single representative neuron while, at the
same time, taking into consideration non negligible fluctua-
tions. It is important to include the fluctuations in the mean
field approach not only because they are observed in real
neural circuits, but also because they play an important role
in working regimes similar to those observed in vivo (Troyer
and Miller 1997; Fusi and Mattia 1999). When neurons are
driven by fluctuations, the generated spike trains are highly
irregular (Fig. 2). Moreover, the neurons are active also when
driven by a mean current that is below the rheobase (i.e.,
the minimal non-noisy current needed to generate an action
potential). As we will show in more detail in Sect. 4, this
allows for the existence of stable states that have properties
similar to those of the spontaneous activity observed in vivo
(Amit and Brunel 1997b).

The response of a population of neurons can be stationary,
quasi-stationary or time-dependent. By quasi-stationary, we
mean slowly changing with time with respect to the relevant
time-scale of the neural dynamics, which could be the mem-
brane time constant in the case of single neurons, or the tran-
sient response time of a population of neurons considered as
a unitary entity (Knight 1972a). In the quasi-stationary case,
the statistics of the input current produced at the soma of each
neuron, and the resulting spike trains produced by the same
neuron, have quasi-stationary properties (typically, mean,
variance and autocorrelation), and can be self-consistently
described in the mean field approach outlined above. The
same approach can be extended to the case of time-varying
statistics of the input current, with occasional modifications
customized to work for the relevant time-scale under consi-
deration. Some of these extensions are reviewed in the com-
panion paper (Giugliano et al. 2008), whereas in this article
we consider the response of cortical neurons in a regime of
stationary or quasi-stationary activity. In the next subsec-
tions, we consider its quantitative development in the frame-
work of networks of IF neurons.

3.2 The statistics of the somatic current for random
uncorrelated inputs

Assume that a neuron receives inputs from Ne excitatory and
Ni inhibitory neurons through synaptic contacts of strength
Je,i (in units of current), each neuron emitting independent
and irregular spike trains with firing rate νe,i , with each spike
contributing an exponentially shaped PSP with a decay time
constant of τe,i , i.e., ∝ e−t/τe,i . For independent spike trains,
the mean and the variance of the stochastic process, I , deri-
ving from the summation of the PSPs emitted by the presy-
naptic neurons of the same type k ∈ {e, i}, are given by

mk = Nk Jkνkτk, s2
k = 0.5Nk J 2

k νkτk . (2)

A slight modification of the second of these equations
is required if the synaptic weights are not identical but are
drawn from a probability distribution (Amit and Brunel 1997b;
Curti et al. 2004). In general, these equations are valid if the
probability of generating an evoked post-synaptic current is
not correlated to the strength of the synapse, as we assume
here. Moreover, to guarantee the applicability of mean field
theory, we assume that the synapses are random, uncorre-
lated and all have the same distribution within a homoge-
neous population (in other connectivity schemes the mean
field approximation might not capture all the dynamical pro-
perties of the network; see, e.g., Kriener et al. 2008).

We assume next that a large number of small amplitude
PSPs are required to reach the threshold. If this assumption is
sufficient for a diffusion approximation to hold (Richardson
and Gerstner 2005), I can be approximated by the algebraic
sum of two OU component processes each evolving accor-
ding to Eq. 1, with mk , sk given by Eq. 2 and k ∈ {e, i}.
If τe = τi ≡ τI , the two components can be merged in the
single equation (1) with m I = me − mi , s2

I = s2
e + s2

i (Amit
and Brunel 1997b).

3.3 The integrate-and-fire neuron

The characterization of the input current Eq. 1 requires only
a (i) model for the PSPs, (ii) the characterization of the spike
trains as independent stochastic processes, and (iii) the condi-
tions for the diffusion approximation to be valid. To charac-
terize the output spike train in response to a current of type
Eq. 1, a model neuron must be specified. We are interested in
the firing rate and variability of the output spike train. This
can be calculated in analytical terms only if the model neu-
ron is simple enough, for example, in the case of IF neurons.
A single-compartment IF neuron (Stein 1965; Knight 1972a;
Tuckwell 1988) is completely characterized by its membrane
potential at the soma V , i.e., electro-tonic compactness of
the soma is assumed with no role for dendritic nonlineari-
ties (‘point-neuron’ approximation). The membrane poten-
tial integrates its inputs in a linear fashion. When V reaches
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a threshold θ , a spike is said to be emitted and the neuron
is clamped to a reset potential Vr for a refractory time τr

during which it is not sensitive to presynaptic or electrical
stimulation. IF neurons come in a large variety and most of
the material covered in this article applies to most types, see,
e.g., La Camera et al. (2004a). In the following, we shall
limit ourselves to the leaky IF (LIF) neuron driven by an
input current I :

dV

dt
= − V − Vrest

τ
+ I

C
, (3)

where Vrest is the membrane resting potential, C is the mem-
brane capacitance, and τ = RC , where R is the membrane
resistance. To emulate the noisy input current targeting neu-
rons in vivo, the current I is modeled as a stochastic pro-
cess, I (t) = ∑

k∈{e,i}
∑

t>t j,k
s(t − t j,k), where s(t) is the

PSP (here ∝ e−t/τe,i for consistency with Sect. 3.2), and
{t j,k} are the presynaptic spikes’ arrival times from excita-
tory (k = e) and inhibitory (k = i) neurons respectively,
both assumed to be exponentially distributed (Poisson spike
trains; this model is usually credited to Stein 1965). In the
diffusion approximation (Lánský and Sato 1999; Richard-
son and Gerstner 2005)—which, roughly speaking, holds
when a large number of small amplitude PSPs are required to
reach the threshold—and for unitary PSPs (i.e., in the limit
τe,i → 0, which transforms the PSPs in delta functions), the
subthreshold dynamics of the membrane potential obeys the
stochastic differential equation of the OU process,

dV = − V − Vrest

τ
dt + µdt + σξt

√
dt, (4)

where

µ = m I /C, σ = √
2τ ′sI /C (5)

are the average and standard deviation in unit time of the
membrane voltage, and ξt is a Gaussian process with flat
spectrum and unitary variance as in Eq. 1. m I and s2

I are the
average and the variance of the synaptic input current, and√

2τ ′ is a factor to preserve units (τ ′ = 1 ms, see, e.g., Rauch
et al. 2003). Under the conditions specified in Sect. 3.2, m I

and s2
I are given by

m I = Ne Jeνe − Ni Jiνi , s2
I = Ne J 2

e νe + Ni J 2
i νi . (6)

Note that here, unlike Eq. 2, the synaptic time constants do
not appear because we have performed the limit τe,i → 0.

3.4 The response function of integrate-and-fire neurons

The response function of the LIF neuron Eq. 4 is (Capocelli
and Ricciardi 1971; Amit and Tsodyks 1991a; Amit and
Brunel 1997b)

f = �(µ, σ ; τ)≡
⎡
⎢⎣τr + τ

θ̂∫
V̂r

√
πeu2

(1 + erf(u)) du

⎤
⎥⎦

−1

,

(7)

where the “hat” operation applied to θ and Vr is defined by
ẑ ≡ (z −µτ)/σ

√
τ , or ẑ = (Cz −m I τ)/sI

√
2τ ′τ upon use

of Eqs. 5 (Rauch et al. 2003). To derive Eq. 7, the following
boundary conditions must be imposed on Eq. 4: the process
V ∈] − ∞, θ [ is absorbed upon hitting the threshold θ , and
re-enters its allowed domain from Vr after a refractory period
τr (see, e.g., Fusi and Mattia 1999). These boundary condi-
tions formalize the emission of an action potential in this
model and are by far the most commonly used with IF neu-
rons. However, it must be noted that different spike genera-
tion mechanisms may produce a different neuronal response
to fluctuating input (Fourcaud-Trocmé et al. 2003; Fourcaud-
Trocmé and Brunel 2005; Richardson 2007). Eq. 7 is plotted
in Fig. 4 for different values of sI . Its analytical form holds
exactly for a white noise input, but only approximately for
an input given by the OU process Eq. 1 with a small time
constant τI . A better approximation than Eq. 7 for a small τI

has been given by Brunel and Sergi (1998) and it amounts to
an effective modification of the threshold θ̂ and reset poten-
tial V̂r (see also Fourcaud and Brunel 2002). In the absence
of input fluctuations (e.g., for sI → 0), Eq. 7 reduces to the
well-known response function of the leaky integrator (e.g.,
Tuckwell 1988; Burkitt 2006),

�(m I ) =
(

τr + τ ln
m I τ − CVr

m I τ − Cθ

)−1


 (m I τ − Cθ) , (8)

where 
(x) = 1 if x > 0, and zero otherwise. Cθ/τ is
the rheobase current for this model neuron (i.e., the minimal
input current required for an action potential to be emitted
in the absence of input fluctuations, see, e.g., Connors et al.
1982). Note that the LIF neuron is not quiescent below rheo-
base in the presence of input fluctuations, due to the occa-
sional input fluctuation able to drive the membrane potential
across the threshold. In the literature, this activity regime is
called ‘noisy-dominated’, ‘fluctuation-dominated’, or sim-
ply ‘subthreshold’ regime. In the absence of fluctuations, no
spikes can be emitted for inputs below the rheobase. The
simplest response function used in the literature to model
this phenomenon is threshold-linear around the rheobase.
Instead, Eq. 8 has a singularity at rheobase, specifically, its
derivative with respect to m I diverges as m I → Cθ/τ . We
will come back to this point when discussing firing rate adap-
tation in Sect. 3.6.
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Fig. 4 Stationary response function of the LIF neuron. Response func-
tion of the white-noise driven LIF neuron, Eq. 7. Each curve is the f –I
curve for a constant value of the standard deviation of the input current,
sI (nA). The rightmost curve is Eq. 7 in the limit sI → 0, i.e., Eq. 8. Note
the logarithmic singularity at rheobase m I = Cθ/τ ≈ 0.4 nA, i.e., the
minimal constant current required for an action potential to be emitted
in the absence of input fluctuations. Neuron parameters: τ = 26.3 ms,
τr = 9.4 ms, C = 0.53 nF, θ = 20 mV, Vr = 9.9 mV, Vrest = 0 mV

3.5 The response function in the presence of reversal
potentials

The theory presented so far can be extended to the so-called
conductance-based IF neuron, or, more correctly, to the IF
neuron with reversal potentials. This model brings IF neurons
closer to biology by taking into account that the PSPs are
voltage-dependent, i.e., depend on the current state of the
neuronal membrane. Formally, the input current I in Eq. 3
depends on the membrane potential as I = ∑

x ḡx (Vx − V ),
where x identifies the type of receptor mediating the current
(e.g., AMPA, NMDA, etc.), ḡx is its peak conductance, and
Vx its reversal potential. We shall limit ourselves the LIF
neurons with only two classes of conductances, excitatory
and inhibitory, and will refer to it as the conductance-based
LIF neuron. Moreover, we will always consider constant ḡx s,
even though it is more correct in some cases to model ḡx as
voltage-dependent (e.g., Renart et al. 2003).

3.5.1 Conductance-based LIF neuron

The subthreshold membrane potential of the conductance-
based LIF neuron driven by stochastic spike trains as in
Sect. 3.3 obeys

dV = −τ−1(V − Vrest)dt + ge(Ve − V )dPe

+gi (Vi − V )dPi ,

where ge,i = C−1τ ḡe,i are dimensionless peak conduc-
tances, Ve,i are the excitatory and inhibitory reversal poten-
tials, and d Pe,i = ∑

j δ(t − te,i
j )dt are Poisson spike trains

with parameter (firing rate) νe,i . In the diffusion approxi-
mation (Sects. 3.2, 3.3), which heuristically corresponds to
replacing dPx with νx dt + √

νx dtξt , the equation can be put
in a form very similar to Eq. 4 (e.g., Hanson and Tuckwell
1983; Lánský and Lánská 1987; Burkitt 2001); see Table 1.
A slightly different model, where the conductances are taken
to be OU processes like Eq. 1, has been used by Destexhe
and collaborators to recreate the in vivo-like activity in neo-
cortical neurons and investigate the role of noisy, background
synaptic input on their integrative properties (“point-
conductance” neuron, see, e.g., Destexhe et al. 2001).

The subthreshold behavior and the response function of
the conductance-based neuron (under the approximation dis-
cussed in the next subsection) are summarized in Table 1,
together with the analogous quantities for the current-based
neuron. From the table, it is apparent that the main diffe-
rences with respect to the current-based IF neuron are: (1)
the fluctuations depend on the membrane voltage; (2) an
input-dependent, effective time constant τ ∗ appears; (3) the
parameter µ is not the average of the total input current (for
example, part of the input contributes to the leak term −V/τ ∗
and is not considered in µ); (4) the voltage is bounded from
below by the inhibitory reversal potential (below Vi inhi-
bitory inputs become excitatory). Usually the last point is
taken care of by imposing a reflecting barrier at Vi , i.e., a
hard lower bound for the membrane potential (Hanson and
Tuckwell 1983; Lánský and Lánská 1987).

3.5.2 Gaussian approximation for the conductance-based
LIF neuron

The analytical form of the response function of this model
neuron in the diffusion approximation is known and can be
found in, e.g., Johannesma (1968) and Richardson (2004).
When the diffusion approximation holds, another approxima-
tion, called the Gaussian, or ‘effective-time-constant’,
approximation, is also valid, and allows for the response
function to be put in a form very similar to Eq. 7 (Burkitt
et al. 2003). This form is given in Table 1. The table has
been constructed so as to appreciate the formal similarity bet-
ween the response functions of the current- and conductance-
based LIF neurons under this approximation. The Gaussian
approximation holds for

(g2
e νe + g2

i νi )τ
∗/2 
 1, (9)

which is also the limit in which the underlying diffusion
approximation holds (Richardson 2004). The condition
Eq. 9 is fulfilled under typical cortical conditions (Richardson
2004; La Camera et al. 2004a). Heuristically, this approxi-
mation amounts to neglecting the dependence of the diffu-
sion coefficient on V , by replacing σ(V ) in Table 1 with its
average over the free (i.e., spike-less) process, turning the
multiplicative synaptic noise into an additive noise as in the
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Table 1 Model equations and response function of the current-based and conductance-based LIF neuron (the latter, under the Gaussian
approximation; see the text)

Symbol Description Current-based Conductance-based Units

Subthreshold Eq. for V dV = − V
τ∗ dt + µdt + σ

√
dtξt (Same) Voltage

Conditions for a spike if V (t ′) = θ −→ spike, V = Vr for t ∈]t ′, t ′ + τr [ (Same)

µ Infinitesimal input current Ĵeνe − | Ĵi |νi τ−1Vrest + geVeνe + gi Vi νi Voltage time−1

σ 2 Infinitesimal input variance Ĵ 2
e νe + Ĵ 2

i νi g2
e (Ve − V )2νe + g2

i (Vi − V )2νi Voltage2 time−1

τ ∗ Effective time constant τ (τ−1 + geνe + gi νi )
−1 Time

� Response function
[
τr + τ ∗ ∫ θ̂

V̂r

√
πeu2

(1 + erf(u)) du
]−1

(Same) Spikes time−1

ẑ Integrand of response function z−µτ∗
σ
√

τ∗
z−µτ∗

σ(V )|V =µτ∗
√

τ∗

Subscripts e and i stand for “excitatory” and “inhibitory”, respectively. Parameters defining the model neuron: Vrest resting membrane potential,
τ membrane time constant, C membrane capacitance, θ threshold for spike emission, Vr reset voltage after spike emission, τr absolute refractory
period, Ve,i reversal potentials. Parameters defining the input: Ĵe,i synaptic weights in units of voltage, ge,i = C−1τ ḡe,i > 0, dimensionless peak
conductances (ḡe,i , peak conductances), νe,i , firing rate of afferent neurons. The input parameters in units of current are given, in both cases, by
m I = Cµ and sI = Cσ/

√
2τ ′, with τ ′ = 1 ms. Note that σ depends on V in the conductance-based model

current-driven neuron, see Burkitt et al. (2003); Richardson
(2004); La Camera et al. (2004a); Richardson and Gerstner
(2005) for technical details.

3.5.3 Relationship between the response function of the
conductance-based and current-based LIF neurons

Networks of current- and conductance-based neurons differ
qualitatively in several respects (La Camera et al. 2004b;
Richardson 2004; Vogels and Abbott 2005; Kumar et al.
2008b,a); see also Sect. 4.2). However, Table 1 suggests the
possibility to adjust the parameters of one network so as to
induce, in response to the same input, the same fixed points
of asynchronous firing rates in both networks, in the follo-
wing sense. Consider, in both the conductance- and current-
based networks, Poisson input spike trains characterized by
the parameters set � ≡ {νe, ḡe, νi , ḡi }, which can be taken
to define the input. Given the same input �, it is possible to
find a Gauss-distributed current so that the equilibrium firing
rate response of the current-based network, � −→ �(�), is
the same as the response of the conductance-based network,
� −→ �C B(�) (La Camera et al. 2004b), even though the
dynamics through which these points are reached in the two
networks may differ. This holds true for both delta-correlated
(Rauch et al. 2003) and filtered synaptic inputs (τI of few mil-
liseconds, La Camera et al. 2004b), and requires only a rede-
finition of the connectivity of the network of current-based
neurons.

3.6 Firing rate adaptation

When cortical neurons are stimulated with somatic injections
of sufficient strength, the initial rate at which action poten-
tials are emitted undergoes a decay with time, a phenomenon

called firing rate adaptation (McCormick et al. 1985; Lowen
and Teich 1992; Fleidervish et al. 1996; Sanchez-Vives et
al. 2000; Reutimann et al. 2004; Ulanovsky et al. 2004;
Descalzo et al. 2005; La Camera et al. 2006). This decay
can occur at different time-scales, and can lead either to a
stationary firing rate, as illustrated in Fig. 5, or, if stimu-
lation is sufficiently strong and prolonged, to the complete
cessation of spiking activity (Rauch et al. 2003).

Firing rate adaptation is ubiquitous in cortical neurons and
affects their response to both constant and fluctuating current
injections. In models characterized by a threshold-linear res-
ponse function around the rheobase, firing rate adaptation
provides a mechanism for decreasing the slope (or gain) of
the response without affecting its sensitivity to input fluctua-
tions (La Camera et al. 2002; Benda and Herz 2003; Benda
and Hennig 2008), a property that is necessary for IF neu-
rons to reproduce the response function of cortical neurons

0 5 10 15 20
time [s]

f [
sp

ik
es

/s
]

20

40

Fig. 5 Example of firing rate adaption. A spike train (shown at the
top) obtained from a dissociated cortical neuron, cultured in vitro, in
response to an input current modelled after Eq. 1, see Giugliano et al.
(2004) for details. In the bottom panel are shown the temporal decay of
the instantaneous firing rate, measured as the running average firing rate
in a sliding window (circles), and its best exponential fit (dashed line).
The output firing rate, initially ∼ 40 spikes/s, converges to ∼ 22 spikes/s
after an exponential decay with time constant of about 2 s. Used and
modified with permission from Giugliano et al. (2004). Copyright ©
2004 by the American Physiological Society
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(Rauch et al. 2003). In models characterized by a highly
non-linear response at the rheobase, like the LIF model neu-
ron in the absence of noise (Eq. 8), adaptation removes the
singularity and transforms the response function in threshold-
linear (Ermentrout 1998). Firing rate adaptation also plays a
variety of roles in the response to time-varying input current
(reviewed in Giugliano et al. 2008). The theory developed so
far is extended in this section to include the effect of firing
rate adaptation.

3.6.1 Minimal model of firing rate adaptation

Firing rate adaptation is a complex phenomenon affected by
different ion currents (see Table 1 of Sawczuk et al. 1997)
for references and a list of possible mechanisms). We des-
cribe here a simple model based on a synthesis of the cellular
mechanisms underlying adaptation in vitro. The model leads
to an adapted response function good enough to capture the
experimental ones (Rauch et al. 2003; La Camera et al. 2004a;
Giugliano et al. 2004; La Camera et al. 2006; Arsiero et al.
2007). Upon emission of a spike, a quantity AN of a given
ion species N (one can think of Ca2+ or Na+) enters the cell
and modifies the intracellular ion concentration [N ]i , which
then exponentially decays to its resting value in a characte-
ristic time τN (see Fig. 6 for a schematic illustration of this
mechanism). [N ]i dynamics are described by

d[N ]i

dt
= −[N ]i

τN
+ AN

∑
k

δ(t − tk), (10)

where the sum is taken over all the spikes emitted by the neu-
ron up to time t . As a consequence, an outward, N -dependent

+[N  ] i

+N entry

output spike train

input spike train

AHP current

Fig. 6 Model of firing rate adaptation. Upon emission of a spike, a
quantity of a given ion species N enters the cell body (triangle) and
modifies the intracellular ion concentration [N ]i , which then exponen-
tially decays to its resting value in a characteristic time τN , see Eq. 10.
Under the conditions discussed in the text, this causes a feedback cur-
rent proportional to [N ]i (AHP current), which in turn is responsible
for decreasing the output firing rate of the neuron.

current Iahp = −gN [N ]i , proportional to [N ]i through the
average peak conductance gN , results and causes a decrease
in the discharge rate. This current is commonly given the
name of afterhyperpolarization (AHP) (Sah 1996). This term
enters the right hand side of Eq. 4 for the membrane potential
as

dV = − V − Vrest

τ
dt − gN [N ]i dt + µdt + σξt

√
dt (11)

with boundary conditions on V as specified in the absence
of adaptation (Sect. 3.3).

3.6.2 Mean field theory of firing rate adaptation

For slow enough [N ]i dynamics, the steady state (ss) intra-
cellular concentration of [N ]i is proportional to the neuron’s
output firing rate in a time window of a few τN :

[N ]i,ss = τN AN

∑
tk<T

δ(t − tk) ≈ τN AN f. (12)

This causes a feedback current Iahp,ss proportional to [N ]i,ss,
Iahp,ss = −gN [N ]i,ss, which is in general a fluctuating
variable because the output spike train is (Fig. 6). Since
[N ]i dynamics are slow, Iahp,ss is only weakly fluctuating
compared to the input current, so that only the mean input
current m I = Cµ is affected significantly. The total current
felt by the neuron, spiking at rate f , is then m I − α f , with
α = gN τN AN , plus the fluctuating component which is unaf-
fected by adaptation (the case where this can not be assumed
has been studied by Muller et al. 2007). This would cause
the neuron to fire at a reduced firing rate f1, which in turn
causes the mean current to be affected as m I − α f1, and so
on. At equilibrium, the adapted firing rate can be numerically
obtained by solving the self consistent equation

f = �(m I − α f, sI ), α = gN τN AN , (13)

which requires only the knowledge of the response function
� and the value of α. The adapted firing rate is always a stable
fixed point of Eq. 13 (La Camera et al. 2004a). The adapted
response function of the LIF neuron is shown in Fig. 7 (dark
curves). It can be noted that firing rate adaptation linearizes
Eq. 8 around rheobase (Wang 1998). This result holds for all
model neurons whose response function is highly non-linear
at rheobase (Ermentrout 1998).

3.6.3 Mean field theory of adaptation in the absence
of noise

In the absence of noise, [N ]i dynamics are slow for large
τN , i.e., for ISI 
 τN , since the ISI sets the time-scale of
the output spike train (Ermentrout 1998). For τN ∼100 ms,
the value typically used in modeling studies (Wang 1998;
Ermentrout 1998; Liu and Wang 2001), this means that the

123



Biol Cybern (2008) 99:279–301 289

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

mean current [nA]

fir
in

g 
ra

te
 [s

pi
ke

s/
s]

0.36 0.4 0.44
0

5

10

Fig. 7 Stationary response function of the adapted LIF neuron.
Adapted response function of the white-noise driven LIF neuron, Eq. 13
with � given by Eq. 7, plotted as in Fig. 4 (dark curves). Same para-
meters as in Fig. 4, including sI = 0, 0.1, 0.3 and 0.5 nA; adaptation
parameter α = 4 pA·s. The non-adapted response function, Eq. 7, is
also plotted for comparison (light curves). The rightmost curves are the
adapted (dark) and non-adapted (light) response function in the absence
of input fluctuations (sI = 0), i.e., Eq. 13 with � given by Eq. 8 (dark),
and Eq. 8 (light), respectively. Adaptation removes the singularity of
Eq. 8 by linearizing � around the rheobase, see the text for details. The
inset shows an enlargement of the region around rheobase for the curves
with sI = 0 and 0.1 nA

mean field approximation of the adapted firing rate breaks
down below 1/τN � 10 spikes/s. Experimentally, the time
constant τN of the dynamics underlying AHP summation
(Eq. 10) is found to vary in a wide range, from tens of milli-
seconds (fast adaptation) to seconds (slow adaptation), see,
e.g., Powers et al. 1999; La Camera et al. 2006. Slow adap-
tation is naturally amenable to mean field analysis, since a
τN of the order of seconds means a break-down point close
to vanishing firing rate. Not so for fast adaptation, howe-
ver. For example, τN∼20 ms, in the absence of fluctuations
the mean field solution is predicted to break down below
50 spikes/s, which is confirmed by simulations (Fig. 8, com-
pare rightmost curve to symbols). In this case, the N -ions
stored intracellularly are removed too quickly to produce an
effective adaptation of the output spike train, contrary to the
mean field prediction given by the self-consistent solution of
Eq. 13.

3.6.4 Mean field theory of adaptation in the presence
of noise

For fast adaptation, the mean field approach should fail also
in the presence of fluctuations, since in this case the condi-
tion ISI
τN would be replaced by 〈ISI〉
τN , where 〈·〉 is
the average over the spike train. However, it turns out that in
a very irregular spike train, Eq. 13 predicts well the adapted
firing rate also if condition 〈ISI〉
τN is violated (La Camera
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Fig. 8 Comparison of the mean field theory of firing rate adaptation
with simulations. Response function of the adapting LIF neuron, mean
field theory (Eq. 13, dark lines) versus simulations (Eqs. 10, 11, light
symbols) with τN = 20 ms. The response functions are plotted as in
Fig. 4 with sI = 0 and 0.4 nA (from right to left). Neuron parameters
were τ = 20 ms, τr = 5 ms, C = 0.5 nF, θ = 20 mV, Vr = 10 mV,
Vrest = 0 mV and α = 4 pA·s. The inset shows a finer resolution of the
region around the rheobase for the curves with sI = 0 (the symbols are
connected by a line to help visualize the simulated response function).
The mean field approximation in the absence of noise breaks down for
f � 50 spikes/s

et al. 2004a). This is illustrated in Fig. 8 for τN = 20 (leftmost
curve and symbols). In general, the agreement with simula-
tions improves with the amount of input fluctuations, with
the break-down point decreasing and approaching vanishing
firing rates for large enough fluctuations. This may be due to
the fact that, in irregular spike trains, the distribution of ISIs
is typically skewed towards values that are smaller than its
mean, fulfilling the condition ISI
τN most of the time. A
deeper analysis of this phenomenon (and of mean-adaptation
theories in general) can be found in Muller et al. (2007), and
a population density analysis of networks of adapting spiking
neurons has been performed by Gigante et al. (2007a,b).

3.6.5 Adaptive conductance-based IF neuron

The model of firing rate adaptation of Sect. 3.6.2 is easily
extended to the conductance-based IF neuron. The adap-
ted response function is given by the solution of the self-
consistent equation f =�C B(m I − α f, sI ) (La Camera et al.
2004a), where �CB is the response function of the
conductance-based neuron, and m I and sI are µ and σ from
Table 1 in units of current. The agreement with simulations
is shown in Fig. 9. To allow for a comparison with the res-
ponse function of the current-based LIF neuron as shown in
Fig. 7, where sI is constant in each curve, νe was increased
while scaling ḡe as ∼ 1/

√
νe, with ḡi , νi held constant. This
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Fig. 9 Adapted response function of the conductance-based LIF
neuron. Self-consistent solution of f = �CB(m I − α f, sI ) (lines)
against the simulations (symbols) of the full model (Table 1). �C B is the
response function of the conductance-based LIF neuron in the Gaussian
approximation (reported in Table. 1). The response functions are plotted
as ḡeνe → f at constant inhibition, with νi = 500 spikes/s, ḡi = 1 nS
throughout. Each curve is obtained moving along νe and scaling ḡe so
that σ 2

e ≡ ḡ2
e νe constant (σe = 7.0, 16.9, 33.1 nS/

√
s from right to

left), to allow comparison with the current-based neuron in Figs. 4, 5, 6
and 7 (see Table 1 for an explanation of these symbols). Right inset ḡe
[nS] as a function of νe (spikes/s) plotted as ḡe vs log10(νe)). Left inset
sample of membrane voltage (mV, top trace) and feedback current Iahp
(pA, bottom trace; see Sect. 3.6.1) as a function of time (s) for the input
point with µe = 783 nS/s, σe = 33.1 nS/

√
s. Adaptation parameters:

τN = 500 ms, gN AN = 8 pA (so that α = 4 pA·s). Neuron parameters:
τr = 5 ms, C = 0.5 nF, θ = 20 mV, Vr = 10 mV, Vrest = 0, τ = 20 ms,
Ve = 70 mV, Vi = −10 mV. Used and modified with permission from
La Camera et al. (2004a). Copyright © 2004 by The MIT Press.

corresponds to increasing m I (as ∼ √
νe − ḡiνi ) at constant

s2
I (∝ ḡ2

e νe + ḡ2
i νi ) in the current-based neuron (see Table 1).

3.6.6 Other models of adaptation

Other models of firing rate adaptation are also in use in the
literature, among which an adapting threshold for spike emis-
sion (e.g., Holden 1976; Wilbur and Rinzel 1983; Liu and
Wang 2001; La Camera et al. 2004a) which is amenable to
the mean field approach described in this section. The LIF
neuron, endowed with such a mechanism, was found equally
able to fit the response function of rat pyramidal neurons as
did the model with AHP adaptation (La Camera et al. 2004a).
A similar model has been used by Chacron et al. (2001)
to explore the nature of correlations of the ISIs (Chacron et al.
2007; Nawrot et al. 2007) and their theoretical implications
for signal transmission and information transfer
(Lindner et al. 2005). AHP Adaptation, however, is a more
general mechanism and, in some sense, universal, in that
most adapting currents can be described by such a mecha-
nism under reasonable assumptions (Benda and Herz 2003).

Other types of adaptation phenomena, for example, due to
slow inactivation of Na+ channels (Fleidervish et al. 1996),
are present in cortical neurons, and some can also be treated
within the mean field approach as done for AHP-dependent
adaptation, sometimes leading to qualitatively new pheno-
mena like non-monotonic response functions (Giugliano et
al. 2002).

4 Applications of the theory of cortical response
function

Many properties of the behavior of networks of spiking
neurons can be predicted from the knowledge of the
single-neuron response function. In this section we will
review briefly some of those properties related to the attrac-
tive dynamics of recurrent networks, such as the possibility
of the coexistence of spontaneous and stimulus-selective per-
sistent activity in the interval between two relevant events
(Amit and Brunel 1997b; Brunel 2000a), the characteristic
times governing the transient response of the network to a
stimulus (Mattia and Del Giudice 2002; Renart et al. 2003),
and the dynamics leading to perceptual, motor, or rule-based
decisions (Rolls and Deco 2001).

4.1 Attractors of the neural dynamics

Under the mean field assumption of Sect. 3.1, the shape of
the response function can be used to predict the stable ‘fixed
points’ of the dynamics of neural populations, also called
‘attractors’ because the collective activity of the population,
if close to the activity defined by those fixed points, tends
to merge into it. These attractors can be visualized as the
intersections of the response function with the unit straight
line, as shown in Fig. 10a. In the figure, both the input (hori-
zontal axis) and the output (vertical axis) is the firing rate
of the entire population, which in the logical construction of
mean field theory coincides with the firing rate of any repre-
sentative neuron (see Sect. 3.1). At the points in which the
response function (thick or thin curve) intersects the dashed
straight line, the output rate of each neuron of the population
equals its input rate. These fixed points are the attractors of
the population dynamics. Fixed points at which the slope of
the response function is smaller than 1 are stable attractors,
meaning that the collective behavior of the network in this
state is resumed after a temporary disturbance due to small
perturbations.

Since the parameters of the neuron and the properties of
the synaptic connections shape the response function
(two examples, the thick and the thin curves, are shown in
Fig. 10a), the response function can be used to infer the dyna-
mical properties of neural populations and, thus, of cortical
circuits. We illustrate how with a few examples in the next

123



Biol Cybern (2008) 99:279–301 291

0 20 40 60 80
0

20

40

60

80

SA

PA

input firing rate [spikes/s]

ou
tp

ut
 fi

rin
g 

ra
te

 [s
pi

ke
s/

s]
fix

ed
 p

oi
nt

s 
[s

pi
ke

s/
s]

0

20

40

60

PA

SA

J‘J J‘’0 J1 J2

A

B

Fig. 10 Prediction of network behavior by means of its single neurons’
response function. a At the points in which the response function (thick
or thin curve) intersects the straight line (dashed), the output rate of
each neuron of the population equals its input rate (fixed points of the
population dynamics). In the case of the LIF neuron driven by a noiseless
input current (thin curve, Eq. 8), the activity either dies out to zero firing
rate or converges to the fixed point marked ‘asterisk’. In the presence of
input fluctuations (thick curve, Eq. 7), two stable points of self-sustained
network activity can be found if appropriate synaptic wights are chosen,
which we call spontaneous activity (“SA”, ∼ 5 spikes/s), and persistent
activity (“PA”, ∼ 50 spikes/s). The open circle is an unstable fixed point.
Inset enlargement of the region around SA showing that the slope of
the response function is less than 1 at this point. b Fixed points of
the network in a (thick curve) as a function of the average recurrent
synaptic weights J . Coexistence of spontaneous and persistent activity
is possible in the interval [J ′, J ′′] (shaded area). The dark dashed curve
is the ‘unstable manifold’, i.e., the continuous collection of all unstable
fixed points in the bistable region. The three fixed points shown in A are
obtained for J = J1. For J < J ′ (for example, at J0), only spontaneous
activity is stable, whereas for J > J ′′ (for example, at J2), spontaneous
activity is destabilized and only persistent activity at high firing rate is
stable

subsections, where we use the response function to infer the
possibility that the network can sustain a state of so-called
‘persistent activity’ in one or more firing rate regimes.

4.2 Spontaneous activity

A spontaneous, not stimulus-driven neural activity at low
firing rates has been interpreted as a global attractor of
a recurrent network of spiking neurons (Amit and Brunel
1997b). This activity is the result of the interaction between

excitatory neurons, it is self-sustaining both in the presence
and in the absence of an external synaptic input, and is highly
irregular due to the disorder of synaptic connections (van
Vreeswijk and Sompolinsky 1996). The type of synaptic
drive, current-based versus conductance-based, can play a
decisive role (Vogels and Abbott 2005; Kumar et al. 2008b).
For conductance-based inputs, spontaneous activity can per-
sist for long periods of time even in the absence of external
inputs. The survival time of self-sustained activity increases
exponentially with network size (Kumar et al. 2008b).

We base the examples of this section on networks of
current-driven LIF neurons. In the absence of noise, or when
the model neurons are insensitive to input fluctuations, either
the network’s activity dies out or converges to a single non-
zero fixed point. Both possibilities can be predicted by the
shape of the response function as illustrated in Fig. 10a (thin
curve). Since the open circle represents an unstable fixed
point of the population dynamics, a collective activity below
this point will eventually die out, i.e., all neurons will stop
firing (the zero output rate in figure). An initial activity above
the same critical point will converge instead towards the
higher activity state marked ‘*’. It is possible, in theory, to
adjust the neuron parameters so that this state of spontaneous
activity is characterized by very low firing rates. However,
since the firing rate in this state is comparable to the inverse
of the refractory period, it would be significantly higher than
typically observed in cortical recordings in behaving ani-
mals (Miyashita and Chang 1988; Amit and Brunel 1997b;
Yakovlev et al. 1998). This is the case whether one uses, as an
estimate of the refractory period, the minimal observed inter-
val between two successive spikes, or the (typically longer)
effective refractory period obtained by fitting the theoretical
response function to the data (as reviewed in Sect. 5; see
Table 2).

In the presence of fluctuations, however, it is possible to
have a state of spontaneous activity at very low firing rates,
like the closed circle marked “SA” in Fig. 10a. Notice the
two main ingredients for a finite spontaneous activity to be
stable in a single excitatory network of current-driven LIF
neurons: a change in convexity around rheobase due to the
sensitivity to input fluctuations (see the inset of Fig. 10a),
and the presence of an external input (so that for a null recur-
rent input the output firing rate of the population is higher
than zero, as shown in figure). If any of these ingredients is
lacking, the quiescent state is the only stable fixed point at
low firing rates in such a network.

4.3 Stimulus-selective persistent activity

The two closed circles that mark the intersection of the thick
response function with the straight line in Fig. 10a are both
stable attractors, or stable states of persistent activity. In
principle, any self-sustained network activity is to be labelled
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as persistent activity, and that includes spontaneous activity,
persistent activity at higher firing rates, and the inter-trial acti-
vity found in infero-temporal cortex of behaving macaques
(Yakovlev et al. 1998). However, it is common in the litera-
ture to refer to persistent activity as to self-sustained activity
that (i) is expressed at higher firing rates than spontaneous
activity and (ii) that can be obtained in a neural subpopulation
on top of, and without disrupting, the spontaneous activity
of the embedding network (Amit and Brunel 1997b). Some-
times, the property of being stimulus-selective is also assu-
med, that is, the state of persistent activity must be ignited
by the transient presentation (or the activation of an internal
representation) of a particular class of stimuli, and not just
any stimulus. According to this definition, the low rate stable
point marked “SA” in Fig. 10a can be interpreted as the state
of spontaneous activity, whereas the high rate point (PA) can
be interpreted as a state of persistent activity. Indeed, the acti-
vity in state PA occurs at higher firing rate than SA, and its
presence does not destabilize SA (and vice versa).

The conditions for stable coexistence of spontaneous and
persistent activity can be stated in terms of the parameters
defining the network (in particular, the synaptic strength),
and can be predicted from the way a parameter change shapes
the single neurons’ response function. In general, it is desi-
rable that the coexistence of both fixed points can be found
in a whole interval of potentiated synaptic values. The proce-
dure for finding such interval involves the response function
and is best visualized with the help of bifurcation diagrams
(e.g., Amit and Brunel 1997b; Brunel 2000b; Del Giudice et
al. 2003). These diagrams depict the fixed points of the net-
work as a function of the strength of the synaptic couplings,
as illustrated in Fig. 10b. When the synaptic couplings are
not potentiated enough, only the spontaneous activity state
can be stable (the region to the left of J ′). When synaptic
strength is potentiated, thought of as the signature of some
learning process, a second stable fixed point can be found at
higher firing rate, for example, the point marked ‘PA’. For yet
stronger synapses (the region to the right of J ′′), the sponta-
neous activity state loses its stability and only the higher rate
persistent activity is stable. Bistability can occur for any value
of the potentiated synaptic strength in the interval [J ′, J ′′]:
the larger this interval, the more robust the phenomenon.

Stimulus-selective persistent activity has been put forward
as a potential neural correlate of working memory of sensory
stimuli in prefrontal, infero-temporal and posterior parietal
cortex (Amit and Brunel 1997b). More specifically, it is a
model for delay activity, the neural activity observed between
two relevant events in the absence of external stimulation
(e.g., Fuster and Jervey 1981; Miyashita 1988; Miyashita and
Chang 1988; Funahashi et al. 1989; Koch and Fuster 1989;
Wilson et al. 1993; Yakovlev et al. 1998; for a review see
Fuster 1995). There is some experimental support to the
idea that the stimulus-selective activity observed in infero-

temporal cortex in 2-8 seconds delays during a delayed-
matching-to-sample task is the result of the collective
attractor behavior of large populations of neurons (Amit et al.
1997; Yakovlev et al. 1998). The use of the response func-
tion to locate these attractors can be applied to networks with
an arbitrary number of sub-populations (Amit and Brunel
1997b; Mascaro and Amit 1999; Brunel 2000a), also when
the sub-populations share neurons coding for the same sub-
group of stimuli (La Camera 1999; Curti et al. 2004), and
can be generalized to include firing rate adaptation with the
procedure of Sect. 3.6.2.

4.4 Network response to time-varying inputs

So far (and in the remainder of this manuscript) we have been
concerned with stationary properties of the response of cor-
tical neurons (Sect. 3). The network dynamics can be studied
in the framework of mean field theory also when the input
statistics are not stationary. Some of these extensions are
reviewed in Giugliano et al. (2008); here we mention briefly
a few applications of the stationary response function to the
characterization of the transient behavior of the network and
its response to time-varying inputs.

For delta-correlated synaptic currents, the network
response to time varying inputs can be studied analytically
under specific simplifying assumptions and it is in gene-
ral rather complicated. The response time of the network
in general depends on the full distribution of the depolariza-
tions (V − Vrest) of all the neurons. For example, networks
with spontaneous activity react much faster than networks
that are completely silent, as many neurons are close to the
threshold for emitting a spike and they can contribute to
increasing rapidly the population firing rate (Amit and Brunel
1997a,b; Fusi and Mattia 1999; van Rossum et al. 2002; Sil-
berberg et al. 2004). When the distribution of depolarizations
is important, the mean field approach requires the solution
of a full Fokker–Planck equation describing the time deve-
lopment of the population density (Knight 1972a; Fusi and
Mattia 1999; Brunel and Hakim 1999; Nykamp and Tran-
china 2000; Mattia and Del Giudice 2002). In some cases,
however, the transient dynamics can be simplified to the point
that it mostly depends on the slope of the stationary response
function �(m I , sI ) (Mattia and Del Giudice 2002).

For more realistic synaptic currents, the study of transients
can be further simplified. If the network dynamics are faster
than the integration time constants of the synaptic currents,
it is often safe to assume that the network is constantly at
the equilibrium point of the Fokker–Planck equation (Renart
et al. 2003; La Camera et al. 2004a). This means that for
every synaptic input, we can replace the instantaneous firing
rate with the firing rate given by the stationary response func-
tion. For realistic conditions, the reaction time of networks of
IF neurons (a few milliseconds) is shorter or comparable to
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the integration time constants of AMPA- and GABAA-, and
much shorter than the dynamics of NMDA- and GABAB-
receptor-mediated current (from tens to hundreds of mil-
liseconds). This approximation is usually good for signals
that vary on time-scales of tens of milliseconds and this
approach is similar to the one described for adaptation in
Sect. 3.6. A similar approximation can be used in the pre-
sence of short-term (Tsodyks and Markram 1997; Tsodyks
et al. 1998; Mongillo et al. 2008) or long-term synaptic plas-
ticity (Del Giudice et al. 2003; Amit and Mongillo 2003). For
faster inputs a different approach is required and is reviewed
in Giugliano et al. (2008).

These and other examples show that the stationary
response function, which by definition is supposed to cha-
racterize only stationary network states, can also be used to
infer some of the dynamic behaviors of networks.

4.5 Decision making in cortical circuits

In the case of ambiguous or barely perceivable sensory sti-
muli, we are sometimes required to make a decision about
the identity of the stimulus and generate a particular percept.
Such a process is similar to the selection of an action in res-
ponse to the occurrence of one or more events and it is also
part of the cognitive processes related to decision making.
In recent models, each possible decision has been associated
with a particular attractor of the neural dynamics, represen-
ting, e.g., perceptual decisions (Wang 2002; Wong and Wang
2006), decisions about actions in response to visual stimuli
(Fusi et al. 2007), and rule-based decisions such as those
occurring in cognitive tasks like the Wisconsin Card Sorting
Test (Rolls and Deco 2001). The same approach can be used
in general models of working memory in which every mental
state is an attractor of the neural dynamics and it represents a
particular disposition to behavior (Rigotti et al. 2008). Rele-
vant events or sensory stimuli trigger a competition between
the neural populations corresponding to different percepts
or actions. The competition results from the recurrent self-
excitation of each decision population and the mutual sup-
pression due to inhibitory neurons. The stable fixed points
of the dynamics correspond to particular decisions that are
mutually exclusive. As in the case of stimulus-selective delay
activity, the set of equilibrium points corresponding to the
attractors can be studied with a mean field approach and are
related to the properties of the single-neurons’ response func-
tions.

Other potential applications of the concept of response
function are related to the role played by gain modulation
(Salinas and Thier 2000; Salinas and Sejnowski 2001; Chance
et al. 2002; Larkum et al. 2004), balanced synaptic inputs
(Burkitt 2001; Burkitt et al. 2003; Abbott and Chance 2005),
and neuromodulators (Brunel and Wang 2001; Thurley et al.
2008) in the dynamics of cortical circuits.

5 The response function of cortical neurons

The applications of the mean field approach and the concept
of response function reviewed in the previous section depend
on several assumptions; in particular, on the assumption that
the neurons can be described as IF neurons, or at least that
their response can be accurately predicted by the response
function of IF neurons. This warrants investigation of whe-
ther or not this fundamental assumption is correct. Is the res-
ponse of cortical neurons to in vivo-like input current well
described by the response function of IF neurons? If yes,
which type of cortical neurons? Which type of IF neuron?
And how accurate the predictions of the theory are? Recently,
quantitative answers have been given to all of these questions
in rat cortical neurons of the pyramidal and fast-spiking (FS)
type in layer 2/3 (L2/3) and layer 5 (L5) of somatosensory
cortex (SSC), in rat pyramidal neurons of L2/3 of medial
prefrontal cortex (mPFC), and in neurons from dissociated
cultures of rat neocortex. In this section, we review briefly
the main results, starting from the essential facts regarding
the experimental and fitting procedures. The reader is refer-
red to the original papers for a more comprehensive account
(Rauch et al. 2003; Giugliano et al. 2004; La Camera et al.
2006; Arsiero et al. 2007).

5.1 Experimental and fitting procedures

An in vivo-like current modelled after Eq. 1 was injected
into the soma of the neurons in the current clamp configu-
ration, and the membrane potential was recorded from the
same electrode. Recordings were performed at ∼ 35◦C in all
studies apart from the case of cultured neurons (Giugliano
et al. 2004), where they were performed at room tempera-
ture. The correlation length of the current, τI in Eq. 1, was
between 1 and 10 ms (mostly 1 ms). Each stimulation used a
new realization of the random noise, ξt in Eq. 1. The para-
meters m I and sI were chosen randomly for each recording,
from a pre-defined pool of values which had been previously
shown to drive the target neurons within their physiological
range. Given that τI was constant for each cell, the current
was characterized by the pair {m I , sI }. The duration of each
recording was of the order of seconds, from a minimum of
4 to a maximum of 60 s, to ensure that the response would
settle into its quasi-stationary regime. Most recordings used
durations of the order of 10 s. The theoretical adapted statio-
nary response function (Eq. 13 with � given by Eq. 7) was
fitted to the experimental quasi-stationary firing rates via a

least-square minimization of χ2 = ∑
i

(
f th
i − f exp

i
� fi

)2

. Here,

f th
i and f exp

i are the theoretical and experimental firing rates,
� fi is approximately half a confidence interval of 68% deri-
ved from Wilson ‘score’ equation (Brown et al. 2001; see
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La Camera et al. 2006 for details), and the sum runs over all
data points. Minimization was achieved by tuning the neu-
ron parameters in Eq. 7 and the adaptation parameter α of
Eq. 13 with a Montecarlo procedure. Since θ, Vr and C are
not independent parameters (in Eq. 7 they appear always in
the form Cθ and CVr ), θ was set arbitrarily to 20 mV in
all studies. Finally, notice that due to the use of finite (albeit
small) τI for the current Eq. 1, the corrected version of the
response function given in Brunel and Sergi (1998); Four-
caud and Brunel (2002) should be used in place of Eq. 7 (see
also Sect. 3.4). However, this correction predicts a phenome-
non, the crossing of f –I curves with different σ s for large
input current, which was not observed in the experiments
(Rauch et al. 2003; Giugliano et al. 2004; La Camera et al.
2006; Arsiero et al. 2007). For this reason, and given that
τI was extremely small (= 1 ms) in most cases, Eq. 7 was
preferred in fitting the theory to the data.

5.2 Fast-spiking neurons

The experimental response functions of rat FS interneurons
in L2/3 and L5 of SSC of the rat are shown in Fig. 11 (sym-
bols). The response functions in the two layers were only
slightly different. Up to all frequencies which are sustainable
by the neuron, the response function was very well descri-
bed by the adapted response function of the LIF neuron, i.e.,
Eq. 13 with � given by Eq. 7 (lines in Fig. 11) (La Camera
et al. 2006). A discrepancy was observed between the effec-
tive parameters of the neurons (i.e., the best-fit parameter
values of the capacitance and membrane time constant) and
the same parameter values estimated more directly through a
classical impulsive- and step-protocol procedure. This means
that, for the IF neuron to reproduce the response of real neu-
rons, effective parameters must be used (see Table 2). Such
parameters compensate for the lack of biophysical detail and

Fig. 11 Response functions of
FS neurons. Best-fits of the
adapted LIF response function,
Eq. 13 with � given by Eq. 7, to
the experimental response of
four FS interneurons from L5
(a) and two interneurons from
L2/3 (b) of rat SSC. Symbols are
experimental quasi-stationary
firing rates, full lines are the
model fits to the data. The
output firing rates are plotted as
in Fig. 4, with sI that ranged
from 10 to 200 pA (see Fig. 3 of
La Camera et al. 2006 for
details). The best fit parameters
are reported in the left top
corner of each plot (the average
best fit parameters across fitted
cells are reported in Table 2).
P is the probability that a χ2

variable with the same number
of degrees of freedom is larger
than the best-fit one. A fit was
accepted if P > 0.01. d is the
absolute discrepancy, i.e., the
average (across all points)
absolute difference between the
measured and the theoretical
frequencies of the best-fit
curves. Used and modified
with permission from
La Camera et al. (2006).
Copyright© 2006 by the
American Physiological Society
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Table 2 Best-fit parameters of the adaptive LIF neuron to the experimental response functions of neurons from several areas of rat neocortex

FS, L5 FS, L2/3 PYR, L5 PYR, L5 (mPFC) cultured

α (pA s) 0.8 ± 0.5 1.0 ± 0.9 10.8 ± 6.3 3.9 ± 2.5 6.4 ± 4.5

τr (ms) 1.4 ± 2.1 3.3 ± 2.6 9.4 ± 6.5 12.5 ± 4.2 23.0 ± 22.6

Vr (mV) 8.8 ± 9.4 5.3 ± 11.3 9.9 ± 10.2 1.3 ± 4.3 10.6 ± 14.1

τ (ms) 7.5 ± 1.5 8.3 ± 3.6 26.3 ± 13.2 30.1 ± 11.3 30.1 ± 21.4

C (pF) 80 ± 13 140 ± 48 530 ± 290 285.1 ± 111.2 86.5 ± 56.6

ω (ms/pA) – – – 14.3 ± 19.7 –

Parameters values are reported as mean ± SD. Parameters are as defined in Sect. 3.3: τ : membrane time constant: C , membrane capacitance, Vr :
reset voltage after spike emission, τr : absolute refractory period. α is the adaptation parameter defined in Eq. 13, and ω is the divergence factor
defined in Sect. 5.3.2. The threshold for spike emission, θ , was set arbitrarily to 20 mV in all cases (see Sect. 5.1 for details). A positive ω for
the mPFC neurons means that the response at large input current differed for different amounts of input fluctuations, see the text for details. The
ω-dependent model was not used in the other cases (–)

other simplifications made in IF neurons (e.g., real neurons
are not point neurons nor are electro-tonically compact).

5.3 Pyramidal neurons

5.3.1 Pyramidal neurons from the somatosensory cortex
of rats

The response function of pyramidal neurons from L5 of rat
SSC was well described by the response functions of the LIF
neuron (see, for example, Rauch et al. 2003). A second type
of IF neuron, the linear IF neuron with a floor (Abbott and
van Vreeswijk 1993; Fusi and Mattia 1999), also gave a good
description (Rauch et al. 2003). This model neuron, however,
described less well the response function of cultured neurons
(Giugliano et al. 2004), and were not suited to to describe
the response of FS neurons (La Camera et al. 2006). The
effective parameters of the LIF neuron were different from,
and not correlated with, the directly estimated parameters
of the real neurons in acute slices, but were rather close to
the directly estimated parameters in cultured neurons. This
could be explained by the compactness and smaller size of the
cultured neurons, making the point-approximation implicit
in the model work better (this argument, however, does not
seem to hold for FS neurons). Pyramidal neurons of the SSC
were not very sensitive to the effect of input fluctuations,
especially if compared to FS neurons and pyramidal neurons
of the mPFC. A more complete comparison is given in a later
section.

5.3.2 Pyramidal neurons from the medial prefrontal cortex
of rats

Many pyramidal neurons in L5 of the rat mPFC (Fig. 12,
symbols) displayed a sensitivity to input fluctuations far grea-
ter than predicted by the theory developed in Sect. 3 (cf.
Eq. 7; Fig. 7) resulting in a saturating and ’divergent’ res-
ponse function (Arsiero et al. 2007). These neurons retain a

large dependence on input fluctuations well above threshold
and, in fact, close to saturation, where an additional increase
of the average input will not cause any increase of the out-
put firing rate. The resulting shape of the response function
is still convex near threshold, but divergent in the high out-
put rate range (Fig. 12). The phenomenon is possibly due to
after-hyperpolarization currents (Higgs et al. 2006) as well
as to the slow inactivation of sodium channels (Arsiero et al.
2007). In support of this hypothesis, the response function of
a Hodgkin–Huxley model endowed with slow inactivation of
sodium channels exhibits the same properties (Arsiero et al.
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Fig. 12 Response functions of rat medial prefrontal cortex. Response
function and IF model reduction of four mPFC L5 pyramidal neurons.
Fitting procedure and plots as in Fig. 11. The model response function is
defined by the self-consistent solution of f = �(m I − α f, sI , τr (sI )),
where � is the response function of the LIF neuron, Eq. 7, and τr (sI ) =
τr +ω/sI is a fluctuation-dependent refractory period. The ω-dependent
model was used to account for the divergence of the response curves
at large input current for different amplitudes of the input fluctuations
(from right to left, sI = 50, 150 and 300 pA). Reproduced and modified
with permission from Arsiero et al. (2007). Copyright © 2007 by the
Society for Neuroscience
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2007). The LIF neuron endowed with a refractory period that
readjusts its value depending on the variance of the input is
a minimal spiking model able to capture this phenomenon.
In this heuristic model the absolute refractory time results
from the sum of two contributions: a constant term, τr , and
a term ω/sI , decreasing with sI : τr (sI ) = τr + ω/sI . The
effective refractory period is thus smaller for larger fluctua-
tions, increasing the firing rate in response to the same mean
input, as shown in Fig. 13. The adapted response function
for this model fits well the experimental functions measured
in mPFC (Fig. 12) and allows for several predictions to be
made about the behavior of networks of mPFC neurons
(Arsiero et al. 2007).

5.4 Comparison among the response functions
of pyramidal and FS neurons

Figure 14 shows the comparison between the response func-
tions of pyramidal and FS neurons. In each class, the res-
ponse function was obtained by using the average best-fit
parameters across cells reported in Table 2, and three values
of sI were used in each case to show the dependence on the
input fluctuations. The ranges of both the average and the
variance of the current cover the actual physiological ranges
found in the experiments. The maximal output firing rates in
figure are the maximal firing rates sustainable by the neurons
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Fig. 13 Role of parameter ω in the high output rate regime of neocor-
tical neurons. Pictorial response functions plotted as in Fig. 4 for three
different values of sI (in each plot) and ω (in different plots). Top right
ω’s best-fit values in pyramidal neurons from L5 of mPFC of the rat
(see Fig. 12 for a few examples). The larger ω, the more divergent the
response curves at large input current for different amplitudes of the
input fluctuations. Reproduced and modified with permission from
Arsiero et al. (2007). Copyright © 2007 by the Society for Neuros-
cience
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Fig. 14 Response functions of pyramidal and FS neurons. Comparison
between the quasi-stationary response functions of FS neurons of L5
and L2/3 of SSC (La Camera et al. 2006), pyramidal (PYR) neurons
from SSC (Rauch et al. 2003) and mPFC (Arsiero et al. 2007), and
dissociated cultures of rat neocortex (Giugliano et al. 2004). The steady
state responses were obtained using the average best-fit parameters of
Table 2 with sI = 0, 0.1, and 0.2 nA, and are plotted as in Fig. 4. Used
and modified with permission from (La Camera et al. 2006). Copyright
© 2006 by the American Physiological Society

during the experiments. Thus, Fig. 14 provides at a glance
a comparison of the ‘average’ response function of neurons
from different preparations, together with their physiological
range of operation in response to in vivo-like input current.

It can be noted that the maximal firing rate sustainable by
FS neurons is much larger than in pyramidal neurons (∼200
vs. ∼50 spikes/s). Moreover, FS neurons have a much larger
response to fluctuations at rheobase, and a smaller effective
C , τ and τr (Table 2). Overall, these results imply that FS
neurons respond faster and to a much higher extent to input
changes than pyramidal neurons.

5.5 Variability of the inter-spike intervals

The coefficient of variability (CV), defined as the ratio bet-
ween the standard deviation and the average of the ISIs, was
used to assess the spike train variability (Stein 1965; Reich
et al. 1997; Gabbiani and Koch 1998; Shadlen and Newsome
1998; Kostal et al. 2007). Strictly speaking, this measure
can be meaningfully applied only to stationary or quasi-
stationary spike trains (see Sect. 2.2), which is the case we
consider in this article. Two typical cases for FS interneurons
are shown in Fig. 15 for one L5 (left) and one L2/3 (right)
interneuron, together with the prediction of the LIF model
neuron whose parameters were tuned to fit the firing rates
only (full lines). The variability of FS neurons are contrasted
in the same figure with the typical variability of pyramidal
neurons from SSC and mPFC (dashed lines). The compa-
rison shown in the figure confirms the larger sensitivity to
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Fig. 15 Coefficient of variability (CV) of pyramidal and FS neurons.
Comparison of CV of FS (full lines and symbols) and pyramidal (PYR)
neurons (dashed lines) from SSC (left) and mPFC (right) of the rat.
Symbols (FS) and dashed lines (PYR) are experimental data for a repre-
sentative neuron in each class; full lines are the best fits of the CV
of the LIF model neuron to the data from FS neurons (symbols). CV
values are plotted as a function of the neuron’s output rate at constant
magnitude of the input fluctuations, sI , with (from bottom to top):
sI (FS, L5) = 20, 50, 100 and 150 pA; sI (FS, L2/3) = 10, 50, 100 and
150 pA; sI (SSC, PYR) = 50, 150 and 300 pA; sI (mPFC, PYR) = 50,
150 and 300 pA. Different fluctuations’ ranges were used in different
preparations due to different physiological properties of the neurons
(note the different scales for the horizontal axis). In the fitting proce-
dure, the neuron parameters were tuned to match both CV and firing
rate for all data points, i.e., for all {m I , sI } pairs used for each fitted
cell. For both fitted FS cells shown here, the adaptive LIF neuron with
τα = 500 ms was used. Inset: segment of the voltage trace for the point
indicated by the arrow (calibration bars 100 ms, 20 mV). The CV of
this point is enhanced by the “stuttering” behavior of the spike train
and can not be captured by the model. Used and modified with permis-
sion from (La Camera et al. 2006). Copyright © 2006 by the American
Physiological Society

fluctuations in FS neurons, compared to pyramidal neurons,
implied by the shape of the response functions shown in
Fig. 14. Although the variability of mPFC pyramidal neu-
rons is higher than in SSC, and contrary to the effect on the
firing rate (Sect. 5.3.2), the sensitivity of the CV to the input
fluctuations is comparable in SSC and mPFC (dashed lines
in both panels).

6 Discussion

The complexity and heterogeneity of cortical circuits (Gupta
et al. 2000; Elston 2002; DeFelipe et al. 2002; Douglas and
Martin 2004; Ohki and Reid 2007) calls for guiding prin-
ciples that allow us to simplify the models of the building
blocks of the brain (for example, neurons and synapses), and
to understand the collective behavior of a large number of
interacting cells. Given the difficulty of the task, the use of
simple, but appropriate, spiking models is necessary. Effec-
tive minimal models of neurons should be able to generate
trains of spikes that can be compared with those observed
in the brain. The IF model, pioneered by Lapicque (1907,
2007) and rediscovered by Stein (1965) (see, e.g., Abbott

1999; Brunel and van Rossum 2007), is widely used to ana-
lyze the behavior of a large number of interacting neurons,
but it has often been considered too simple to describe the
rich dynamics of real neurons.

Results obtained in the last decade, however, have shown
that the IF neuron is better than expected and quite success-
ful at describing many of the known dynamical properties
that are relevant for the collective behavior of networks of
neurons. The spike response of neurons of different corti-
cal areas can be reproduced quantitatively by IF models at
the level of the first and second moment of the statistics of
ISIs, as reviewed in this article, and at the level of the timing
of individual spikes (Jolivet et al. 2006), with a remarkable
degree of accuracy.

There are at least two reasons for this success. The first
one is that simplified neuron models are effective models, in
the sense that they are not meant to reproduce the rich expe-
rimental phenomenology of the neuronal dynamics, but are
designed to capture only the single neuron properties that are
relevant for a particular collective behavior. From this pers-
pective, the guidance provided by the mean field approach
has played an important role. The second reason is that effec-
tive neuron models are entirely determined by a very small
number of independent parameters. With the current expe-
rimental techniques, it is prohibitive to measure directly all
the parameters that are needed for a detailed conductance-
based model of the Hodgkin–Huxley type. Thus, one needs to
make assumptions about the parameters that are not measured
directly. These assumptions are usually based on other expe-
rimental results in which the average values across several
neurons are measured. Given the high level of heterogeneity
of neurons, averaging often fails to describe what happens
in a particular cell (Golowasch et al. 2002), whereas simpli-
fied models in which all parameters can be measured directly
are more successful. Simplified models with a small number
of parameters are also instrumental to study the heteroge-
neity of the functional properties of the cells. Models with
a large number of parameters are often under-determined,
i.e., they reproduce the accessible experimental data equally
well with different sets of parameters. In this case, a study
of the variability across neurons would be complicated by
the presence of a variance component due to the ambiguity
in the parameter estimation. Instead, the effective reduction
of cortical firing patterns in terms of IF neurons (Sect. 5;
Table 2) is rather sensitive to small differences in the fitted
cells, and additional differences can be revealed by compa-
ring the model reductions to different types of IF neurons
(Rauch et al. 2003; Giugliano et al. 2004; La Camera et al.
2006; Arsiero et al. 2007).

There are also limitations in the use of highly simplified
neuron models. More detailed models can give indications
about how the neuronal properties are affected by neuromo-
dulators and by modifications in ionic concentrations that
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are not easily accessible in experiments performed in vitro
(Meunier and Segev 2002).

Detailed models can also suggest how the dendritic struc-
ture, the ion dynamics, and the nonlinearities due, for
example, to backpropagating action potentials can affect the
statistics of the total synaptic current (see, e.g., London and
Segev 2001). Somatic current injection is admittedly a very
artificial way of stimulating a neuron; however, the expe-
rimental conditions and stimulation protocols used to study
some of the nonlinear properties of dendritic integration, and
other phenomena that might not be captured by simplified
models, suffer from similar limitations. Unfortunately, there
is no standard model of cortical neuron.

Detailed models reproduce specific phenomena and give
useful indications about the underlying mechanisms, but they
rarely produce predictions of new phenomena, similarly to
what happens for highly simplified models. Recent discove-
ries of new phenomena like adaptation of fast spiking neu-
rons on long time-scales (Reutimann et al. 2004; Descalzo
et al. 2005; La Camera et al. 2006) and the ability of pre-
frontal neurons to act as integrators (Winograd et al. 2008)
were obtained in experiments and were not predicted by the
state-of-the-art detailed neuron models.
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