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a b s t r a c t

The ability to detect and sort overlapping spike waveforms in extracellular recordings is key to studies of
neural coding at high spatial and temporal resolution. Most spike-sorting algorithms are based on initial
spike detection (e.g. by a voltage threshold) and subsequent waveform classification. Much effort has been
devoted to the clustering step, despite the fact that conservative spike detection is notoriously difficult in
low signal-to-noise conditions and often entails many spike misses.

Hidden Markov models (HMMs) can serve as generative models for continuous extracellular data
records. These models naturally combine the spike detection and classification steps into a single computa-
tional procedure. They unify the advantages of independent component analysis (ICA) and overlap-search
algorithms because they blindly perform source separation even in cases where several neurons are
Code
Population
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recorded on a single electrode. We apply HMMs to artificially generated data and to extracellular signals
recorded with glass electrodes. We show that in comparison with state-of-art spike-sorting algorithms,
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leep HMM-based spike sorting
fewer spike misses.

. Introduction

Owing to its high spatio-temporal resolution, extracellular
ecording of neural activity is the electrophysiological technique
f choice in intact animals. Typically, extracellular electrodes pick
p electrical currents associated with action potentials from sev-
ral cells, giving rise to the spike-sorting problem, i.e., the problem
f detecting and classifying spike waveforms. Among the noise
ources that hamper spike sorting is electrical noise (for example
adiative pickup and ground-loop noise) (Bankman et al., 1993),
lectrode drift (Bar-Hillel et al., 2006), intrinsic spike waveform
ariability (for example due to movement of the animal or spike
ursts), and background signals from other nearby neurons. Also,
hen two neurons have similar morphologies and distances to the

lectrode, their spike waveforms will look very similar, and so spike
orting is likely to be affected by confusions.

Many spike-sorting techniques have been introduced (Lewicki,
998; Brown et al., 2004). Sorting results can vary significantly
epending on the technique used and the human operator (Harris
t al., 2000; Wood et al., 2004). In most existing algorithms, candi-

ate spike waveforms are first detected by a simple thresholding
peration and are then classified using sophisticated data clus-
ering or classification techniques (Fee et al., 1996; Rinberg et
l., 1999; Shoham et al., 2003; Delescluse and Pouzat, 2006). The
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bits a comparable number of false positive spike classifications but many
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roblem with spike detection is that to simplify waveform classi-
cation, high thresholds are chosen, leading to many spike misses.
here have been efforts to improve the spike-detection step for
ow signal-to-noise recordings (Kim and Kim, 2003a; Nenadic and
urdick, 2005), yet essentially no algorithm can do without some

orm of spike detection.
In brain areas such as hippocampus where average firing rates

f cells are low, the spike trains of more than three neurons
an be extracted from single-electrode recordings (Gray et al.,
995). When recording with tetrodes, this number increases up
o 5–20 neurons (Wilson and McNaughton, 1993). However, in
rain areas with high cell density and firing rates, spike overlaps
an be prohibitive for most (classical) spike-sorting techniques.

ith high average firing rates and highly synchronized activity,
pike waveforms from different neurons frequently overlap, lead-
ng to waveform superpositions that look quite different from their
onstituents, illustrated in Fig. 1. Very few algorithms have been
esigned to handle spike overlaps, mainly because overlaps are
ssumed to be rare events (which may be justified in many cases), or
ecause they are difficult to deal with. Classification of spike over-

aps cannot be performed by simple clustering algorithms, because
verlapping spikes should not be considered as prototypes of a new
lass, but as joint occurrences of two existing prototypes.
Partially overlapping spikes can be sorted using clustering
echniques based on highly localized features such as wavelet
oefficients (Hulata et al., 2002). Most overlap-permissive algo-
ithms suffer from the intractability of exhaustive searching. This
ntractability is overcome by limiting the number of spikes used to

http://www.sciencedirect.com/science/journal/01650270
mailto:rich@ini.phys.ethz.ch
dx.doi.org/10.1016/j.jneumeth.2008.06.011
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Fig. 2. Generative model of a spike. (A) The extracellular signal is modeled as a ran-
dom (hidden) variable with a ring structure. The hidden state labeled 1 is the silent
state in which the neuron is inactive. With probability p per sample time, the hid-
den variable leaves the silent state and jumps into the first state of a spike waveform
(state 2). Thereafter, the variable steps through states 3 to K with probability one.
(B) When the variable is in state i, the extracellular voltage is modeled by a Gaussian
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ig. 1. The spike overlap problem. The spike waveforms of two neurons (1 and 2)
ppear on the same electrode. The rightmost waveform labeled ‘1 + 2’ represents a
pike overlap that is misclassified by many clustering algorithms.

xplain an overlap (Atiya, 1992; Lewicki, 1994), or by searching for
verlapping spikes only in those cases, where a fit by single spikes
ails (Rinberg et al., 2003; Zhang et al., 2004; Wang et al., 2006).
owever, as most overlap algorithms restrict the overlap search to

mall data windows identified by a spike-detection step, these algo-
ithms tend to also suffer from biases introduced by the detection
tep. Note that independent component analysis (ICA) is in princi-
le able to unmix spike waveforms without a prior detection step
Brown et al., 2001); however, there is no guarantee that the inde-
endent components correspond to different neurons. Therefore,
he unmixed data has yet to be sorted (Takahashi et al., 2003a, b),

aking ICA a useful pre-processing but not a self-contained spike-
orting solution. Furthermore, ICA is severely limited, as with a
etrode or multitrode of n electrodes, at most n neurons can be
eparated, but not more.

We apply probabilistic hidden Markov models (HMMs) to the
pike-sorting problem. Such models have been applied to just the
lassification problem before (Sahani et al., 1998), but not as genera-
ive models to continuous data streams. There are two independent
lgorithms to our spike-sorting method, none of which relies on a
pike detection step. In the first algorithm, the spike templates of
he various cells, their firing probabilities, and the Gaussian noise
arameters are learned. Reminiscent of blind source separation
lgorithms, spike templates can be learned even in the extreme
ase when all spikes overlap and neurons never fire in isolation.
n the second algorithm, learned spike templates are superposed
o produce an optimal fit to the raw data, thus yielding spike-time
nformation. The fitting algorithm is in a sense independent of the
earning algorithm; it can be applied as a post-processing step to
ny existing spike-sorting algorithm and provides the benefits of
ew spike misses and good sorting performance on data with spike
verlaps. We illustrate our algorithm on extracellular signals from
leeping songbirds and assess its performance on artificial data
aken from (Quiroga et al., 2004).

. Results

Our spike-sorting technique is based on hidden variables that
ach represent the phase of an action potential cycle of a cell. For
idactic purposes, first we introduce a one-variable HMM for single
ell recordings. Then we address the multi-neuron case by general-
zing our model to many variables and introduce the two algorithms
sed for learning and curve fitting. Finally, we explore a simple
ethod for trading off false positive spike classifications against

alse negatives (misses).
.1. Single neuron model—circular hidden variable

The data samples of the extracellular voltage signal are denoted
y Ot (t = 1, . . . , T), where T is the total number of available
amples. Our model associates sample Ot with no spike (silent

•

andom variable (colored and black bell-shaped curves) with mean�i . (C) An exam-
le data fit. Top: The raw data O (black line) is fit by the model output (blue line),
he dashed blue lines delimit ±2�. The bottom plot shows the most likely hidden
equence S∗ associated with the fit on top, it revolves once around the ring.

tate) when the hidden (random) variable S equals one at that
ime, St = 1. The next data sample Ot+1 is associated with a spike
nset, if the hidden variable jumps into state 2, St+1 = 2. The state
pace of S has a ring structure: once a spike is initiated, S must step
hrough all K − 1 spike states before jumping back into the silent
tate. State transitions are governed by a single parameter, which
s the probability p of stepping out of the silent state and into the
pike-onset state 2 (Fig. 2A):

(St+1 = 2|St = 1) = p. (1)

Conservation of probabilities implies that P(St+1 = 1|St = 1) =
− p and the ring structure implies that P(St+1 = m|St = m− 1) = 1

or 2< m ≤ K . As a function of K, the model can implement a refrac-
ory period. For example, for a sampling rate of 30 kHz, a refractory
eriod of 1 ms can be enforced in rings withK = 30 different hidden
tates.

We assume there exists a source of Gaussian white noise that
ffects observed samples (Fig. 2B). The mean � of the Gaussian
ensity associated with sample Ot depends on the state St of the
idden variable. We define the state-conditional sample probability
istribution as

(Ot |St = k) = 1√
2��

exp
[
− 1

2�2
(Ot −�k)2

]
, (2)

here the Gaussian means�1, . . . ,�K form the spike template and
2 is the fixed noise variance.

To work with the hidden Markov model just defined we face the
ollowing two problems.
The first problem is the parameter estimation problem, also
known as the learning problem. From given dataO = (O1, . . . , OT )
we must find the unknown spike-onset probability p, the
unknown spike template � = (�1, . . . ,�K ), and the unknown
noise variance �2.
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The second problem is the reconstruction problem. From given
data O and given model parameters � = (p,�,�2), we must
determine the most likely hidden sequence S∗ = (S∗

1, . . . , S
∗
T ), i.e.

find all spike-onset times.

A well known solution to the learning problem is the
aum–Welch algorithm (Baum et al., 1970). In this algorithm, start-

ng from initial guesses, parameters estimates are iterated in such
way that the likelihood of the observed data monotonically

ncreases until it reaches a local maximum. Each iteration is based
n the computation of forward and backward probabilities, requir-
ng the storage of 2TKnumbers.

The reconstruction problem can be solved using dynamic pro-
ramming (also known as the Viterbi algorithm (Forney, 1973)).
his algorithm finds the set of spike times that maximizes the
oint probability P(O, S|�) of samples and hidden states given

odel parameters. Briefly, this algorithm comprises a forward
ass in which for each sample Ot , the state likelihoods of the
idden variable are evaluated (remembering for each state and
ach time step the most likely state visited one step earlier).
fter completion of the forward pass, the most likely final state

s selected and the most likely preceding hidden states are
etermined iteratively by backtracking. The forward pass of this
lgorithm requires a total of TK2 multiplications and the memo-
ization of KT previously visited hidden states. The learning and
econstruction algorithms are presented in more detail in Section
.3.

We illustrate the learning and reconstruction algorithms on
xtracellular data from a single neuron recorded with a glass elec-
rode in a sleeping songbird (for the protocols and procedures of
ead-fixed, sleeping bird preparation, see (Hahnloser et al., 2006)).
odel parameters were learned from an extracellular trace con-

aining several spikes. After three iterations of the Baum–Welch
lgorithm, the Gaussian means (the spike template) corresponded
ell to the spike waveform of the recorded cell, Fig. 2B. The spike-

nset probability p converged to the fraction of data samples
ssociated with a spike onset (in general, with firing rates smaller
han 100 Hz and a sample rate of 30 kHz, p is typically smaller than
/300). The learned noise variance was very small, reflecting the
igh signal-to-noise ratio of the recording. After reconstructing the
ata, spike-time information could be simply read out from the
ptimal hidden sequence S∗ (the most likely hidden sequence vis-
ted state 2 right at the spike onset in Fig. 2C). Mathematically,
he reconstruction algorithm is equivalent to computing a least-
quares fit to the data, subject to a spiking cost of − log p. This
quivalence stems from the fact that maximizing the log-likelihood
f data and hidden sequences log P(O, S|�) is equivalent to finding
he sequence S∗ that minimizes

∗ = arg min
S

[
1
�2

∑
t

|Ot −�St |2 + C(S)

]
, (3)

hich is the squared distance between the data and the model
t (in units of variance), plus a cost C(S) that depends only on
he hidden sequence, but not the data. This cost is such that each
pike contributes a value of − log p+ K log(1 − p) to the total cost.
ecause spike probabilities are small (p� 1), we can neglect the
econd term and find that the cost per spike in the sense of a

east-squares fit is roughly given by − log p. With firing rates in
he range 1–100 Hz, the cost per spike is in the range − log p =
–10. We will see that this cost typically is small compared to
he cost imposed by bad fits. Next we turn to more realistic sit-
ations in which many cells are recorded on one or several nearby
lectrodes.
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.2. Full model

.2.1. Many electrodes
There are two important generalizations of the simple model in

ection 2.1. First, when dealing with tetrode recordings, we may
ant to search for spike signals on all electrodes simultaneously.
ccordingly, the t th data sample is now represented as a sample
ectorOt =

(
O1
t O2

t . . . ODt
)

of dimensionD× 1, where D is the
umber of electrodes. Each element of an observation sequence
= {O1, . . . , OT } is then modeled by a multi-dimensional Gaussian

istribution of constant covariance C. The probability distribution
f sample vectorOt conditional on the hidden state St is defined by:

(Ot |St = k) = 1√
(2�)D|C|

exp
[
−1

2
(Ot −�

k
)TC−1(Ot −�

k
)
]
, (4)

here �
k

=
(
�1
k
�2
k
. . . �D

k

)
is of dimension D× 1, and �d

k
epresents the mean voltage of the d th electrode when the hidden
ariable is in state k. The expression |C| stands for the determinant
f C and superscript T denotes the transpose of a matrix.

.2.2. Many neurons
When we wish to sort the spikes from many simultaneously

ecorded neurons, we introduce a hidden (random) variable Sn for
ach neuron n, leading to what is formally known as a factorial
MM (Ghahramani and Jordan, 1997). Assuming N neurons, the

tates of the hidden variables can be summarized by the vector

t =
(
S1
t . . . SNt

)
, where Snt is a number between 1 and K, repre-

enting the state of the n-th hidden variable associated with data
ample t. The transition probability from state St−1 to St follows
rom the assumption that spike onset probabilities are independent
mong neurons:

(St |St−1) =
N∏
n=1

P(Snt |Snt−1). (5)

For the n-th neuron, the probability of stepping from the silent
tate into the spike state is given by the parameter pn = P(Snt+1 =
|Snt = 1) (cf. Eq. (1)).

The key assumption in our factorial HMM is that the contri-
utions of individual neurons to the extracellular voltage sum up

inearly. That is, we replace the mean �
k

of our Gaussian model in
q. (4) by the sum

(k1, k2, . . . , kN) =
N∑
n=1

�n
kn
, (6)

here �n
kn

is the vector of means (dimension D× 1) that applies

hen the n-th hidden variable is in state kn.
In summary, in the many-electrodes and many-neurons case,

e have to learn the N spike probabilities p =
(
p1 p2 . . . pN

)
,

e have to learn the D× D covariance matrix C of the corre-
ated noise model, and we have to learn the N spike templates
�̄1 �̄2 . . . �̄N

)
, where �̄n = (�n

1
,�n

2
, . . . ,�n

K
) is the template

f the n-th neuron of dimensionD× K . The reconstruction problem
s the problem of finding the most likely sequence of hidden state
ectors S∗ = (S∗

1, S
∗
2, . . . , S

∗
T ).

There is one practical problem of using our algorithm to sort
he spikes of many neurons (more than 2), which is the associated

omputational cost. This issue is discussed in the following.

.2.3. The curse of dimensionality
The amount of computer memory as well as the computational

ost required to run the learning and reconstruction algorithms
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rows exponentially with the number of neurons N. For exam-
le, for a recording of 1 s duration, to sort the spikes of three
eurons calls for 20 GB of memory (assuming a sampling rate of
0 kHz, K = 40, and double precision arithmetic). To sort N = 4
eurons would require 800 GB of memory, a storage capacity no
C is able to accommodate in random access memory (RAM)
oday.

Concerning parameter learning, there are two ways how to
ypass this inherent intractability. First, we can avoid using the
aum–Welch algorithm for learning the model parameters. For
xample, any traditional spike-sorting algorithm can be used to
nd spike templates �̄n for the different neurons; and, spike prob-
bilitiespn can be estimated from typical firing rates of cells. Finally,
he covariance matrix of the Gaussian model can be estimated by
omputing the covariance matrix of a patch of data containing no or
nly few spikes. A second solution to the intractability of the learn-
ng algorithm is to run the Baum–Welch algorithm on a restricted
tate space, where spike overlaps are forbidden (this works well if
verlaps are not too frequent).

For reconstruction, there is no good alternative to the Viterbi
lgorithm. Again, the computational cost of reconstruction can be
educed by imposing restrictions on the allowable hidden state
pace. For example, if we allow not more than R neurons to
imultaneously spike, we reduce the memory load from KN × T to

bout

(
N
R

)
KR × T , where

(
N
R

)
represents the binomial factor

N choose R”. For example for N = 3, we can reduce the mem-
ry requirement from 20 GB to 1.5 GB when we allow for single
verlaps only (R = 2). Such restriction of the overlap space has also
een applied in (Atiya, 1992; Lewicki, 1994). The error introduced
y ignoring overlaps of more than two templates is often negligi-
le.

Note that one additional method to reduce the computational
oad of both parameter learning and data reconstruction is by a
ariational approximation method presented in (Ghahramani and
ordan, 1997). An evaluation of this method for spike sorting goes
eyond the scope of this work.

.3. Descriptions of the Baum–Welch and Viterbi algorithms

We present a detailed description of the two algorithms used
or learning and reconstruction. The methods are based on two
lassical algorithms: the Baum–Welch algorithm for learning the
ptimal model parameters given the data (Baum et al., 1970), and
he Viterbi algorithm for computing the most likely states of hid-
en variables given the data and the model parameters (Forney,
973). We provide the formulas for these algorithms in the con-
ext of spike sorting, but omit their mathematical derivation. For
n introduction to HMMs see (Rabiner, 1989).

.3.1. Glossary of variables

number of neurons (i.e. hidden variables)
number of states per neuron
dimensionality of observations (number of channels per
tetrode)
number of observations (data samples)

t observation variables at time t (dimension D× 1)

t hidden variables at time t (dimension KN × 1)

the set of model parameters (�̄1, . . . �̄N, p1, . . . , pN, C)

¯ n n-th spike template (dimension D× K)
¯ 1,...,N concatenation of spike templates (dimension D× NK)
n spike-onset probability of neuron n

covariance of Gaussian noise model (dimension D× D)

r
t
w

ce Methods 174 (2008) 126–134 129

t forward probabilities at time t (dimension KN × 1)

t
backward probabilities at time t (dimension KN × 1)

t
posterior probabilities at time t (dimension KN × 1)

i e-i,j = ıij(dimensionKN × 1).The Kronecker delta is

definedas ıij = 1 i = j
0 i �= j ,

n
t marginal posterior probabilities of hidden variable n at

time t (dimension K × 1)
1,...,N
t concatenation of the marginal posterior probabilities

(dimension NK × 1)

.3.2. The Baum–Welch algorithm
To find optimal model parameters � = (�̄1, . . .

¯ N, p1, . . . , pN, C) we want to maximize the log-likelihood of the
ata
∑

t log P(Ot |�), which is hard. The idea of the Baum–Welch
lgorithm is to iteratively maximize the simpler function B(�r,�).
hat is, from the current estimated parameters �r , the improved
arameters�r+1 are determined from

r+1 = arg max
�
B(�r,�)

= arg max
�

∑
t

∑
St

P(St |Ot,�r) log P(Ot, St |�), (7)

here, the maximization in Eq. (7) is based on the expectation step
nd the maximization step.

The expectation step: To compute the posterior probability dis-
ribution P(St |Ot,�r) in Eq. (7), i.e., the distribution of hidden
ariables St given the observation Ot (and model parameters �r),
e use the forward–backward algorithm. In this algorithm, for

ach time t we define forward and backward variables ˛t and ˇ
t
.

he dimension of these variables is KN × 1, corresponding to an
rderly arrangement of the KN different state combinations of hid-
en variables St . The ith component ˛t,i of the forward variable ˛t
orresponds to the joint probability of the observation sequence
O1, . . . , Ot) and that the hidden variables St are in the ith state
ombination, given the model parameters �r . Similarly, the ith
omponentˇ

t,i
of the backward variableˇ

t
corresponds to the joint

robability of the future observation sequence (Ot+1, . . . , OT ) and
hat hidden variables St are in the ith state combination and, given
he same model parameters.

After suitable initialization, we iteratively calculate the forward
robabilities ˛ and backward probabilities ˇ as follows:

Forward probability ˛:

˛1 = ı1,

˛t+1 = P(Ot+1|St+1,�
r)
∑
St

P(St+1|St)˛t

Rescaling:˛t+1
rescaled = ˛t+1

|˛t+1|1
.

(8)

Backward probability ˇ:

ˇ
1

= ı1,

ˇ
t−1

=
∑
St

P(Ot |St,�r)P(St |St−1)ˇ
t

Rescaling:ˇ
t−1

rescaled =
ˇ
t−1

|ˇ
t−1

|1
.

(9)
Here, | · |1 denotes the L1-norm (|x|1 =
∑

i|xi|); the rescaling is
equired to prevent numerical underflow. By our model assump-
ion, P(Ot |St,�r) = ND(�,C) is a multivariate Gaussian density
ith covariance C and mean � = �(k1, . . . , kN) (cf. Eq. (6)).
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We write the transition probability P(St+1|St) as a (K × K)N tran-
ition probability matrix:

(St+1|St) =

⎡
⎢⎢⎢⎢⎢⎣

1 − p1 0 0 . . . 0 1
p1 0 0 . . . 0 0
0 1 0 . . . 0 0
0 0 1 . . . 0 0
...

...
...

. . .
...

0 0 0 . . . 1 0

⎤
⎥⎥⎥⎥⎥⎦⊗ · · · ⊗

⎡
⎢⎢⎢⎢⎢⎣

1 − pN 0 0 . . . 0 1
pN 0 0 . . . 0 0
0 1 0 . . . 0 0
0 0 1 . . . 0 0
...

...
...

. . .
...

0 0 0 . . . 1 0

⎤
⎥⎥⎥⎥⎥⎦ (10)

The posterior probability P(St |Ot,�r) in Eq. (7) is defined by
lementwise multiplication of ˛t and ˇ

t
, and rescaling:

Posterior probability �:

t
= P(St |Ot,�r) =

˛tˇt
|˛tˇt |1

. (11)

ote on the restricted state space: When we restrict the state space,
.e. when we allow not more than R neurons to simultaneously
pike (constrained spike overlaps, see Section 2.2.3), we have to
ake some adaptations. For example, if R = 2, then the number of

ossible hidden states is reduced from KN to 1 + N(K − 1) + N(N −
)(K − 1)2/2 (corresponding to zero, one or two active neurons).
he dimensions of ˛ and ˇ are also reduced, and transitions to
nd from forbidden states disappear from the transition matrix.
ith this dimensionality reduction, the computation of posterior

robabilities is faster and requires less memory.
The maximization step: Given the posterior probabilities �

t
, we

aximize the auxiliary function B(�r, ) in Eq. (7) by differentia-
ion. We thus find for the updated templates:

Update of �̄1,...,N:

¯ 1,...,N
r+1 =

(
T∑
t=1

Otς
1,...,N
t

T

)(
T∑
t=1

ς1,...,N
t (ς1,...,N

t )
T

)†

, (12)

here �̄1,...,N
r+1 is the concatenation of the matrices �̄n (of dimension

× NK) and † denotes the Moore-Penrose pseudo-inverse. ς1,...,N
t

s the concatenated vector of the marginal posterior probabilities
n
t , defined elementwise by:

n
t,k = P(Snt = k|Ot,�r) =

∑
j,with
Snt = k

�t,j. (13)

Similarly, the spike-onset probabilities pn for the neurons n =
, . . . , N are found by maximizing the auxiliary function B(�r,�)
ubject to the constraint that probabilities must sum to one, leading
o:

Update of pn:

T∑
t=2

ςnt,2

n
r+1 =

T∑
t=2

ςnt−1,1

, (14)

he last parameter to be updated is the covariance matrix:

f
g
w
s
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Update of C:

r+1 = 1
T

T∑
t=1

OtO
T
t − 1

T

T∑
t=1

N∑
n=1

�nςnt O
T
t . (15)

qs. (12), (14), and (15) constitute the parameter updates.

.3.3. The Viterbi algorithm
The Viterbi algorithm is a trellis algorithm to find the single most

robable state sequence S∗ = (S∗
1, . . . , S

∗
T ) for a given observation

equence O = (O1, . . . , OT ),

∗ = argmax
S

P(S,O|�). (16)

e define the best-sequence probability to state combination i at
ime t by

t,i = max
S-t ,...,S-t−1

P(O- 1, . . . , O- t , S-t , . . . , S-t−1, S-t = e-i|�). (17a)

tarting with V1 = e1, we find the best-sequence probabilities at
ater times by induction:

Vt+1,j = max
i

[Vt,iP(S-t+1 = e-j|S-t = e-i)] P(O- t+1|S-t+1 = e-j),{
1 ≤ i ≤ KN
2 ≤ t ≤ T. (17b)

To prevent underflow in this calculation, there are two possibil-
ties; we can do all the calculations in the log-domain or include a
escaling step:

rescaled
t,i = Vt,i

|Vt |1
. (18)

We keep track of the argument that maximizes Eq. (17b) with
he backtracking matrix B = (Bt,j):

t+1,j = argmax
i

[Vt,iP(S-t+1 = e-j|S-t = e-i)],
{

1 ≤ j ≤ KN
2 ≤ t ≤ T. (19)

The best sequence S∗ is now found by tracing back:

-
∗
T = e-k where k = argmaxi [VT,i] and (20a)

-
∗
T = e-Bt+1,k

, where k is such that S-
∗
t+1 = e-k, 1 ≤ t ≤ T − 1. (20b)

Sample code that implements the learning and reconstruc-
ion algorithms can be downloaded from http://www.ini.uzh.
h/ rich/software/index.html. For didactic purposes, the code sorts
he spikes from just a single neuron and is written in Matlab (Math-
orks Inc.).

.4. Practical considerations and fully automated spike sorting

Our algorithm is straightforward to use except that in practice
ome skills are needed for initial parameter selection (including
he number of neurons N). For completeness, we present a fully
utomated scheme that allows for spike sorting without any user
nterference.

Initialization: We found that fastest parameter convergence in
he Baum–Welch algorithm was achieved by choosing as initial
pike templates manually selected example spikes (the parame-
ers typically converged in two iterations). However, to allow for

ully automated operation of our algorithm we worked mainly with
eneric initial templates consisting of zeros and 1.5 periods of a sine
ave between states 6 and 15 (K = 30, 24 kHz sampling rate). Low

ampling rates can introduce a non-negligible amount of jitter to
pike waveforms (Blanche and Swindale, 2006). For noisy files we

http://www.ini.uzh.ch/~rich/software/index.html
http://www.ini.uzh.ch/~rich/software/index.html
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Fig. 3. Illustration of the fully automated algorithm: we start with raw data and eight
random initial templates. After eight iterations of the Baum–Welch algorithm, tem-
plates are condensed according to mutual similarities and re-learned. After conden-
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mproved results when we up-sampled the data to 48 kHz using
ubic splines (necessitating a doubling of K). The amplitude of the
ine wave was randomly chosen from a uniform distribution in the
nterval [0,5*std(data)]. Remaining initial parameters were N = 8,
= cov(data) and pi = 10−3 for all neurons.
Learning: Usually not all initial templates converged to an actual

pike waveform, but some to noisy signals or to single outliers. We
ook care of these cases in the following manner. We ran 8 itera-

ions of the Baum–Welch algorithm (with a

(
N
1

)
-state-space, see

ection 2.2.3) on 4 s of data (T = 96000, 24 kHz sampling rate, band-
ass filtered between 100 Hz and 6 kHz). Templates that converged
o outlier events were removed after each iteration by inspecting
he learned parameters p1, . . . , p8: if for some i the probability pi

orresponded to a firing rate of 0.5 Hz or less, we re-initialized the
emplate i by randomly picking a template j with larger parameter
j and multiplying this template by 0.99. When the signal-to-noise
atio of the recording is very low, all templates tend to converge to
atches of noise. In these cases we re-initialized spike probabilities
o pi = 10−10 after each learning iteration; this procedure prevents
he templates from converging to noise.

Template condensation: After eight iterations, the spike tem-
lates were condensed as follows. To test whether, for example,
emplates one and two were identical, we up-sampled templates
using cubic spline with 10 times finer mesh), aligned them by

aximum cross-correlation, and down-sampled them to result in
erfectly aligned candidate templates �̄1′

and �̄2′
. If two candi-

ate templates corresponded to the same neuron, their differences

k = �1′
k

−�2′
k

should be a sequence of Gaussian distributed ran-
om variables with mean zero and covariance matrix C1 + C2

to be determined). Accordingly, 	 =
∑K

k=1(Xk)
T(C1 + C2)−1(Xk)

hould be a random variable obeying a chi-square distribution
ith KD degrees of freedom. We thus combined two candi-
ate templates depending on the outcome of the chi-square test
tatistic 	 < 
2

˛(KD) with confidence level ˛. To estimate the
ovariance C1 + C2 we realized that candidate templates are never
ruly independent of each other, because the learning algorithm
ries to maximally distribute spike-shape variability between any
wo templates. We therefore used as our estimate of covari-
nce the following lower-bounded heuristic expression: Ci = C ·
ax((4)/(piT), (1)/(12)). When the candidate templates were iden-

ical on the 1 ‰-level, we combined them by calculating the
eighted mean �̄new = (p1�̄1′ + p2�̄2′

)/(p1 + p2). This procedure
as repeated, until no templates were identical on the 1 ‰-level.
hen two or more templates were combined, additional learning

terations were performed, because combined templates usually
ere not completely stable solutions and could still change after

e-learning.
Final template selection: If no templates could be combined in a

ondensation step, we stopped the learning procedure and elimi-
ated templates that presumably correspond to noise events. These
re templates with energy smaller than twice the expected energy
f a noise patch of K samples length and with unreasonably high
piking probability p (i.e. firing rates larger than 100 Hz). Removing
hese templates at the end gave better results than removing them
t an earlier stage of the learning procedure. To increase the speed
f the reconstruction algorithm, it is possible to reduce the number
by removing redundant states at the beginning and the end of a

emplate. The automated procedure is illustrated in Fig. 3.
.5. The tradeoff between false positive and false negative spikes

We applied the automated sorting algorithm to single glass-
ipette recordings from three neurons. For reconstruction we

t
1
i
i
p

ation and relearning, noise templates are removed (black cross). The remaining final
three) spike templates are fed into the Viterbi algorithm, and the optimal recon-
truction (red line) is computed (minimal residual signal). The rasters depict the
orted spikes of the three neurons (with colors matching the final template colors).

educed the state space to at most two simultaneously active
eurons (R = 2, N = 3). Occasional spike overlaps were correctly

dentified, as assessed from the small residual signal (Fig. 4). One of
he three neurons (Neuron 1) produced very small spikes. We have
imultaneously recorded from that neuron with a second glass elec-
rode. On this separate electrode, signals were very well isolated
nd could be used to identify sorting errors. We found that approx-
mately 30% of the detected spikes in Neuron 1 were false positives,

ith an example shown in the right part of Fig. 4. Interestingly, this
arge number of false positive spikes in Neuron 1 was not caused
y small spike amplitudes (the signal-to-noise ratio was 4.3), but
y the shift similarity between spike Template 3 and Templates 3
nd 1, illustrated in Fig. 5. Thus, false positive spikes may not only
ose a problem when spike waveforms are small, but also when the
emporal derivative of a waveform looks like another waveform on
he same electrode.

We tested whether false positive spikes can be remedied by
ecreasing spike-onset probabilities pi. The idea is that the cost-
er-spike determines how much better a fit must be using a certain
umber of spike templates in order to be preferred over another fit
sing fewer templates. Interestingly, the reduction in log-likelihood
hat results from a missed spike in Neuron 1 (i.e., to fit the spike
aveform with a sequence of silent states) is on the order of 100, a

ost that largely outweighs the cost per spike of − log p1 = 7. Thus,
ypical values of spike onset probabilities entail the risk of overfit-
ing the data. We found that substantially decreasing p1 from 10−3
o 10−20 reduced the percentage of false positive spikes in Neuron
from 30% down to 1.7%, whereas the number of missed spikes

ncreased only weakly from 1.1% to 3.3%. Hence, by manipulat-
ng spike-onset probabilities pi, we can effectively trade off false
ositive against false negative spikes.
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Fig. 4. Sorting the spikes of three neurons on a single glass electrode (3–5 M�). (A)
Excerpt of raw data. (B) From the raw data (black line, top) three spike trains are
extracted (Neurons 1–3, shown in color below), leading to a small residual signal
(black line, below). Spike overlaps are indicated by the dashed ellipses. We recorded
from Neuron 2 with a separate electrode (raw trace in the bottom), revealing that
the overlap on the right contains a false positive spike of Neuron 1. (C) Aligned raw
signals of all isolate spikes. (D) Aligned raw signals of all overlapping spikes. (E) The
histogram of residual signals (black) is well fit by a Gaussian curve of variance �2 (�2

was derived in the learning algorithm). The units are arbitrary. For reconstruction,

a

(
3
2

)
hidden state space was used (see Section 2.2.3).

Fig. 5. Shift similarity of spike waveforms in Fig. 4: The spike template of Neuron
3 (left) can be similar to shifted copies of itself (middle) added to the template of
N
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Fig. 6. Fractional classification errors for missed (m), falsely introduced (i), confused spik
total number of spikes (t), where f+ = (i+ cf )/t and f− = (m+ cf )/t. For (A) we used the
For (B), we used the simulated data set d2(0.20) (cf. Section 2.6).
euron 1 (bottom right). The colors blue to orange indicate different time shifts. For
arge shifts, the residual signal (orange curve on the right) strongly resembles the
pike template of Neuron 1 below.

How to determine pi in practice is non-trivial, because the
nswer depends on whether false positives or false negatives are
orse. As a compromise, one may want to minimize the total num-
er of misclassified spikes. When we did this, we counted confused
pikes (spikes assigned to the wrong neuron) twice: once as false
ositive and once as false negative. For the glass-pipette recordings,
he global minimum of total classification error (the sum of false
ositives and negatives) was very flat and was located at around
i 	 10−20 (Fig. 6A). We found that to implement a sparse prior
ndependent of the data, a reasonable choice of pi was to set the
ost of spiking to three times the log-likelihood ratio of K noisy
amples and K noiseless samples, leading to

i = 2−3KD/2. (21)

For the glass-pipette recordings, this choice implied pi = 10−18,
hich was close to the minimum at pi 	 10−20. We evaluated this

hoice of pi also on a different data set, presented in the next
ection.

.6. Comparison with other techniques

We evaluated our algorithm on artificial data sets made available
y R. Quiroga at www.vis.caltech.edu/ rodri and we compared the
orting performance to that of WaveClus (Quiroga et al., 2004), a
tate-of-art technique based on voltage-thresholded spike detec-

ion and super-paramagnetic clustering of spike features. The
rtificial data comprises four sets of simulated extracellular signals.
or each set a unique triple of spike waveforms was mixed with
oise of four or eight different variances and written to data files
f 60 s each. On these data, WaveClus outperforms conventional

es (cf ), and the sum of false negatives and false positives (f−) + (f+) relative to the
same glass-electrode data as in Fig. 4. The pi heuristic was derived from Eq. (21).

http://www.vis.caltech.edu/~rodri
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Table 1
Comparison between WaveClus and HMM for spike-onset probabilities determined based on a heuristic derived in Section 2.5

Data set (noise level) t HMM WaveClus

c m cf i f− (%) f+ (%) c m cf i f− (%) f+ (%)

e1(0.05) 3514 3510 4 0 2 0.1 0.1 2929 585 0 0 16.6 0.0
(0.10) 3522 3521 1 0 0 0.0 0.0 3065 457 0 0 13.0 0.0
(0.15) 3477 3476 1 0 0 0.0 0.0 2849 628 0 1 18.1 0.0
(0.20) 3474 3463 10 1 0 0.3 0.0 2271 1213 0 8 34.6 0.2
(0.25) 3298 3230 68 0 1 2.1 0.0 1458 1839 1 8 55.8 0.3
(0.30) 3475 3265 210 0 8 6.0 0.2 879 2595 1 6 74.7 0.2
(0.35) 3534 3135 398 1 30 11.3 0.9 520 3003 11 10 85.3 0.6
(0.40) 3386 3092 294 0 390 8.7 10.9 270 3115 1 9 92.0 0.3

e2(0.05) 3410 3409 1 0 0 0.0 0.0 2873 537 0 0 15.7 0.0
(0.10) 3520 3518 2 0 0 0.1 0.0 3006 514 0 0 14.6 0.0
(0.15) 3411 3400 8 3 0 0.3 0.1 2510 898 3 0 26.4 0.1
(0.20) 3526 3508 5 13 5 0.5 0.5 1622 1895 9 0 54.0 0.3

d1(0.05) 3383 3377 5 1 1 0.2 0.1 2931 452 0 0 13.4 0.0
(0.10) 3448 3443 0 5 1 0.1 0.2 2982 465 1 0 13.5 0.0
(0.15) 3482 3464 2 6 0 0.5 0.2 2725 737 10 0 21.7 0.3
(0.20) 3414 3411 1 2 0 0.1 0.1 1188 2200 6 0 65.2 0.2

d2(0.05) 3364 3361 3 0 0 0.1 0.0 2852 512 0 0 15.2 0.0
(0.10) 3462 3457 5 0 0 0.1 0.0 3012 447 3 0 13.0 0.1
(0.15) 3440 3433 4 3 1 0.2 0.1 1821 1610 9 0 47.1 0.3
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or each data file, the number of correctly classified (c), missed (m), confused (cf ),
he total number of spikes (t) is calculated as f− = (m+ cf )/t, and the percentage o

ethods based on principal components analysis or clustering
echniques such as K-means.

Waveclus and many other spike-sorting algorithms make use of
he wavelet transform for spike detection (Kim and Kim, 2003a, b;
enadic and Burdick, 2005) and feature extraction (Zouridakis and
am, 1997; Hulata et al., 2002; Quiroga et al., 2004). To be compa-
able to these algorithms, we formed a second data channel with
oefficients of a continuous wavelet transform of the raw data. The
rst channel contained the original raw trace and the second chan-
el the coefficients of the continuous Daubechies “db2” wavelet
ransform (for a detailed discussion of wavelet transforms of neu-
al data, we refer to the literature). For both our algorithm and for

aveClus, we upsampled the data from 24 kHz to 48 kHz with a
ubic spline (because it is known that low sampling rates can intro-
uce a non-negligible amount of jitter to spike waveforms (Blanche
nd Swindale, 2006)). We choseK = 60, which according to Eq. (21)
ed to pi = 10−54; for the data sets e1 we chose K = 80 to cover the
ntire spike waveform (leading to pi = 10−72). The dependence of
alse positives and false negatives on p is illustrated for a particular
le in Fig. 6B.

With the automated procedure described in Section 2.4, our
lgorithm robustly found the correct number of neurons in all cases,
xcept for two files (e1(0.35) and e1(0.40)), for which the correct
umber was found in about 90% percent of cases (depending on
andom initial conditions). Note that WaveClus did not always find
he correct number of neurons either. In these cases, we manually
orrected the number to three (this was the case for files e1(0.30) –
clusters found, e1(0.35) – 2 clusters, e1(0.40) – 2 clusters, d1(0.10)
5 clusters, and d2(0.20) – 2 clusters).

Waveclus and the HMM sorter produced similar numbers of
alse positives. However, the number of false negatives in the case of
he HMM was typically between one and two orders of magnitudes
maller. Detailed numbers are reported in Table 1.

The small number of false negatives cannot merely be explained
y overlapping spikes (which sum up to less than 15% and are

gnored by WaveClus).

We also tested our algorithm on a data set in which spike ampli-
udes are variable, which can happen for example when electrodes
rift in the brain. Spike sorting can be made robust in this case by
ividing the raw data into small segments that are each sorted with

i
i
(
m
e

1.7 1111 2268 114 0 68.2 3.3

lsely introduced (i) spikes is reported. The percentage of false negatives relative to
positives as f+ = (cf + i)/t.

unique set of spike templates (Bar-Hillel et al., 2006). We adapted
his approach to our algorithm by re-learning model parameters
etween reconstructions of adjacent data segments. We tested this
rocedure on a simulated file where the amplitude of one spike
ontinuously decreases to 30% of its original value throughout the
le. This file was part of the data set made available by (Quiroga et
l., 2004). We sorted this file of 60 s duration by cutting it into 2-s
ieces and repeatedly re-learning the parameters using one itera-
ion of the Baum–Welch algorithm and the previous parameters as
nitial conditions. For re-learning, pi = 10−54 was fixed, cf. Eq. (21),
n order to ensure that the template of the spike with the decreas-
ng amplitude did not converge to patches of noise. Relearned spike
emplates always corresponded to the same neuron as in the previ-
us segment. For reconstruction, we set pi = 10−54. We found that
ore than 90% of all errors occurred in the last third of the file,
here the spike amplitude fell below 3�. The resulting percent-

ges of false negatives f− and false positives f+ were f− = 6.5%
nd f+ = 1.5%, comparable to WaveClus: f− = 24.4% and f+ 2.7%.

. Summary and discussion

We have proposed a new solution to the spike-sorting problem
n terms of a full generative model of extracellular data. Our solution
onsists of a learning algorithm for finding model parameters and a
econstruction algorithm for producing a fit to raw data. Both algo-
ithms allow for spike overlaps to occur. In the past, given the speed
nd memory limitations of personal computers, such generative
lgorithms have been impractical.

In our algorithm there is no initial spike-detection step; param-
ter learning is not restricted to pre-selected data patches. Instead,
arameters are estimated by summing over data samples weighted
y their posterior probability, Eq. (12). Thanks to this summing
roperty, parameter estimation is free of spike selection and is
ot affected by overlapping spikes. For simplicity, we did not
nclude pre-processing steps into our algorithm such as whiten-
ng the raw data (in order to get rid of noise autocorrelation,
Bankman et al., 1993)) or independent component analysis (for

ulti-electrode recordings, (Brown et al., 2001)). However, we
xpect that some performance improvement could be achieved
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sing such techniques. For example, whitening the data from auto-
orrelated noise could increase spike-sorting performance because
ne of our model assumptions is presence of Gaussian white noise.
urthermore, independent component analysis could lead to more
istinct spike waveforms on the de-mixed data channels, which
ight also improve sorting performance.
Overlap-permissive spike-sorting algorithms are at risk of

etecting false positive spikes. In our algorithm, we found that
econstructions using learned spike-onset probabilities pi intro-
uced many false positive spikes either because of shift similarity
r because of low signal-to-noise ratios. We have shown that false
ositive spikes can be effectively suppressed by decreasing pi, i.e.
y increasing the cost of spiking. Notice that our cost-of-spiking
erm − log pi is derived from first-order principles (maximum like-
ihood estimation) and is comparable to the heuristic punishment
erm� in the spike-sorting algorithm of (Segev et al., 2004). In other
pike-sorting algorithms, false positives are avoided by increasing
he number of spike templates only when a goodness-of-fit test fails
Zhang et al., 2004). In clustering-based algorithms, the number of
alse positive classifications is intrinsically minimized because out-
iers tend to remain unclassified (Quiroga et al., 2004), or because
hey are not separable when spike times are too close (Hulata et
l., 2002). In summary, many methods for avoiding false positives
xist and it may not matter which method is used as long as the
roblem is given adequate consideration.

Recently there has been growing interest in the structure of
igher-order spike correlations (Schneidman et al., 2006; Weber
nd Hahnloser, 2007). Because correlation analyses are based on
opulation recordings and so may necessitate advanced spike-
orting methods, it is important that no spurious correlations
rise from spike-sorting errors, such as correlations between real
pikes and false positive spikes. Overlap-permissive algorithms
uch as ours are at risk of producing spurious peaks in cross-
orrelation functions near zero time lag. Though this risk may
epresent a drawback of elaborate spike-sorting algorithms, our
reliminary analysis indicates that correlations arising from false
ositive spikes are extremely tight (their width is on the order of
few tens of microseconds) and so can be easily distinguished

rom true peaks in cross-correlation functions (which typically are
t least 1 ms wide). In fact, one may turn this possible drawback
nto an advantage and use the ultra precision of spurious cor-
elations as a criterion for detecting false positive spikes, to be
xplored.

Last but not least, one of the key features of our algorithm is that
any fewer spikes are missed (false negatives) than in many other

lgorithms. Our algorithm is thus very useful in cases in which spike
isses are highly undesirable. In practice, missed spikes may pose a

roblem during spike bursts or during synchronous spiking events.
e ascribe the low false-negative detection rate of our algorithm

o absence of an explicit spike-detection step, which is one of the
ain advantages of full generative models of extracellular records.
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