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Quantification of a spike-based winner-take-all VLSI network

Abstract

We describe a formalism for quantifying the performance of spike-based winner-take-all (WTA) VLSI
chips. The WTA function non-linearly amplifies the output responses of pixels/neurons dependent on
the input magnitudes in a decision or selection task. In this work, we show a theoretical description of
this winner-take-all computation which takes into consideration the input statistics, neuron response
variance, and output rates. This analysis is tested on a spiking VLSI neuronal network  fabricated in a
4-metal, 2-poly 0.35\,$\mu$m CMOS process. The measured results of the winner-take-all performance
from this chip correspond to the theoretical prediction. This formalism can be applied to any
implementation of spike-based  neurons.
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Quantification of a Spike-Based
Winner-Take-All VLSI Network

Matthias Oster, Yingxue Wang, Member, IEEE, Rodney Douglas, and Shih-Chii Liu, Senior Member, IEEE

Abstract—We describe a formalism for quantifying the per-
formance of spike-based winner-take-all (WTA) VLSI chips.
The WTA function nonlinearly amplifies the output responses of
pixels/neurons dependent on the input magnitudes in a decision or
selection task. In this paper, we show a theoretical description of
this WTA computation which takes into consideration the input
statistics, neuron response variance, and output rates. This anal-
ysis is tested on a spiking VLSI neuronal network fabricated in a
4-metal, 2-poly 0.35–�m CMOS process. The measured results of
the WTA performance from this chip correspond to the theoretical
prediction. This formalism can be applied to any implementation
of spike-based neurons.

Index Terms—Analog integrated circuits, event-based systems,
neuromorphic engineering, winner-take-all circuits.

I. INTRODUCTION

T HE winner-take-all (WTA) function is a commonly used
nonlinear function that can be used in any computation

that requires a decision. It is a key component in prototypical
very-large-scale-integration (VLSI) systems for stereo compu-
tation, auditory processing, location of salient objects in space,
and also for identification of objects [1]–[9]. The WTA circuits
were first implemented using analog VLSI circuits [10]–[14]
and are recently also implemented using hybrid analog-digital
circuits [15]–[18]. The WTA function is intrinsic to many
computational models in neuroscience [19], for example, in
modeling attention and recognition processes in the cortex
[20]–[22]. It is thought to be a basic function of the cortical
microcircuit [23].

The recent construction of various asynchronous event-based
multichip VLSI systems where components consist of
large-scale networks of spiking neurons and spike-based
sensors usually include the WTA operation in their compu-
tation [9], [24]–[26]. It is desirable to have an underlying
theoretical basis for setting up the connectivity and neuron
parameters based on the input statistics so that a network will
have the most optimal performance as a WTA. The theoretical
constraints of the parameter space for a spiking WTA system
have so far only been studied for analog inputs [27].
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In this paper, we describe a methodology for setting up the
network parameters of a spiking network using spiking inputs
dependent on the input statistics [28]. In addition, we also quan-
tify the effect of the intrinsic mismatch across the pixels in a
fabricated chip in determining the performance of the WTA net-
work. We introduce a new measure, the increase factor, which
quantifies the percentage by which the input rate to a neuron
should increase, for this neuron to be the winning neuron in a
population. This measure indirectly accounts for the pixel cir-
cuit variances which lead to variances in the neuron responses.
We show different ways of estimating the mean increase factor
of a population of neurons on a single chip without resorting to
the time-consuming method of measuring the increase factor for
every neuron.

We compare our theoretical predictions to experimental mea-
surements performed on a multineuron chip that was fabricated
as part of an asynchronous multichip, multilayered, spike-based
vision system (CAVIAR) that classifies spatiotemporal trajecto-
ries in the scene [9], [29]. The chip receives preprocessed fea-
ture map inputs and its role is to identify the locations of the
features in each map and to identify the best matching feature in
the scene. To perform this function, the chip does a WTA opera-
tion in two different dimensions; the pixel space and the feature
space [30]. In this paper, we focus only on the WTA analysis.

The chip measurements of the WTA performance are close
to the theoretical predictions based on the measured chip vari-
ances. The proposed theoretical paradigm is not specific to our
chip and can be used for quantifying the performance of any
spike-based multineuron network in the WTA operation.

II. WTA CONNECTIVITY

We assume a network of integrate-and-fire neurons that re-
ceives excitatory or inhibitory spiking input through synaptic
connections. To implement a WTA operation, these neurons
compete through inhibition. In biological networks, excitation
and inhibition are specific to the neuron type. Excitatory neu-
rons make only excitatory connections to other neurons and in-
hibitory neurons make only inhibitory connections. Inhibition
between the array neurons is always mediated by populations
of inhibitory interneurons [Fig. 1(a)]. The inhibitory neurons are
driven by the excitatory neurons, and in return they inhibit the
excitatory neurons.

To adjust the amount of inhibition between the neurons (and
thereby the strength of the competition), both types of connec-
tions could be modified: the excitatory connections from array
neurons to interneurons and the inhibitory connections from in-
terneurons to array neurons. In our analysis, we assume the for-
ward connections between the excitatory and the inhibitory neu-
rons to be strong, so that each spike of an excitatory neuron

1549-8328/$25.00 © 2008 IEEE
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Fig. 1. Simplification of connectivity: (a) with a global inhibitory neuron;
(b) with direct inhibitory connections between neurons.

triggers a spike in the global inhibitory neurons. The amount
of inhibition between the array neurons is adjusted by tuning
the connections from the global inhibitory neurons to the array
neurons. This configuration allows the fastest spreading of in-
hibition through the network and is consistent with findings
in biology that the inhibitory interneurons tend to fire at high
frequencies.

With this configuration, we can simplify the network by re-
placing the global inhibitory interneurons with full inhibitory
connectivity between the array neurons [Fig. 1(b)]. This simpli-
fication is only used during the analysis; the configuration with
the global interneurons is simpler for the implemented form.

III. NETWORK CONNECTIVITY CONSTRAINTS

FOR A HARD WTA

One important question is how we would program the
synapse and neuron parameters so that the network operates as
a WTA network. While the quantitative analysis of the param-
eter space in regards to analog neurons have been described
before, the extension of such analysis to spiking neurons re-
ceiving spiking inputs have only recently been described [17],
[28], [31]. The constraints on the synaptic connectivity matrix
that allow the network to detect the most optimal winner is de-
pendent on the statistics of the input spikes and we summarize
the constraints only for regular input frequencies below.

The membrane potentials , , satisfy the equation
of a nonleaky integrate-and-fire neuron model with excitatory
and nonconductance-based synapses

(1)

The membrane resting potential is set to 0. Each neuron receives
external excitatory input and inhibitory connections from all
other neurons. All inputs to a neuron are spikes and its output
is also transmitted as spikes to other neurons. We neglect the
dynamics of the synaptic currents and the delay in the transmis-
sion of the spikes. Each input spike causes a fixed discontinuous
jump in the membrane potential ( for the excitatory synapse
and for the inhibitory synapse). Each neuron spikes when

and is reset to . Immediately afterward, it
receives a self-excitation of weight . All potentials satisfy

, that is, an inhibitory spike cannot drive the mem-
brane potential below ground. All neurons , ,

Fig. 2. Membrane potential of the winning neuron k (a) and another neuron in
the array (b). Black bars show the times of input spikes. Traces show the changes
in the membrane membrane potential caused by the various synaptic weights.
Black dots show the times of output spikes of neuron k.

receive excitatory input spike trains of constant frequency .
Neuron receives the highest input frequency ( ).

As soon as neuron spikes once, it has won the computation.
Depending on the initial conditions, other neurons can at most
have a few transient spikes before the first spike of neuron .
For this hard WTA mode, the network has to fulfill the following
constraints (see Fig. 2):

(a) Neuron (the winning neuron) spikes after receiving
input spikes that cause its membrane potential to

exceed threshold. After every spike, the neuron is reset
to

(2)

(b) As soon as neuron spikes once, no other neuron
can spike because it receives an inhibitory spike from

neuron . Another neuron can receive up to spikes even
if its input spike frequency is lower than that of neuron

because the neuron is reset to after a spike, as
illustrated in Fig. 2. The resulting membrane voltage has
to be smaller than before

(3)

(c) If a neuron other than neuron spikes in the beginning,
there will be some time in the future when neuron spikes
and becomes the winning neuron. From then on, the con-
ditions (a) and (b) hold, so a neuron can at most
have a few transient spikes.
Let us assume that neurons and spike with almost
the same frequency (but ). For the inter-spike
intervals this means . Since the spike
trains are not synchronized, an input spike to neuron has
a changing phase offset from an input spike of neuron .
At every output spike of neuron , this phase decreases by

until . When this
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happens, neuron receives input spikes before
neuron spikes again and crosses threshold

(4)

We can choose and to fulfill the inequali-
ties (2)–(3). is adjusted to achieve the desired .

Case (c) happens only under certain initial conditions, for ex-
ample when or when neuron initially received a
spike train of higher frequency than neuron . A leaky inte-
grate-and-fire model will ensure that all membrane potentials
are discharged ( ) at the onset of a stimulus. The network
will then select the winning neuron after receiving a predeter-
mined number of input spikes and this winner will have the first
output spike.

Due to the fact that the analysis takes into consideration only
spike times, the mechanism of competition is independent of the
number of neurons in a network. The network can be scaled to
any size, as long as the inhibitory neuron can still completely
inhibit the array neurons with one output spike. Other models
that exploit firing rate thresholds are normally dependent on the
number of neurons in the network.

The performance of the network decreases also in the case
of inputs of Poisson statistics instead of inputs of regular rates
[28].

In the case of perfect network homogeneity, the network can
detect the winner optimally. In Section V, we discuss how vari-
ation in the synaptic parameters influences the performance of
the network.

IV. CHIP ARCHITECTURE

The WTA network is implemented on a transceiver VLSI
array of 32 32 spiking integrate-and-fire neurons that was fab-
ricated in a 4-metal, 2-poly, 0.35- m CMOS process. The chip
can be configured into four populations of 256 neurons (shown
in Fig. 3) or a single population of 1024 neurons. This chip is the
first component in the CAVIAR multichip vision system to make
a decision on the incoming spike inputs [9]. The inputs and out-
puts of the neurons are communicated using an asynchronous
event-based transmission protocol called address-event repre-
sentation (AER) [24], [32]–[38]. On-chip neurons and synapses
are labeled by unique addresses. The AER encoder and decoder
blocks encode the spike addresses from the active neurons and
decode the input spikes to the neurons, respectively. Two addi-
tional signals, /CREQ and /CACK, along with the address bus
are used to communicate when the address lines are valid be-
tween a sender chip/module and a receiver chip/module.

We have extended the functionality of the AER bus by using
the AER address space to carry the bits for 2 on-chip global
digital-to-analog converters (DACs). The DACs allow us to pro-
gram a local weight for each synapse before the synapse is stim-
ulated. The turnaround time for sending an AER address varies
from 500 ns to 1 compared to the time constant of 1 ms of
the neurons thus allowing us to send two AER events for each
synaptic stimulation.

We describe the key circuit blocks on the chip excluding the
AER encoders and decoders.

Fig. 3. Architecture of the four populations on the chip configured for compe-
tition within a feature map and across feature maps. Each population of neuron
consists of 254 excitatory neurons and two inhibitory neurons. In the WTA anal-
ysis described here, the four populations are combined as one population of 1024
neurons. The excitatory neurons receive external AER inputs through four input
synapses which are either excitatory, depressing, or inhibitory. In addition, each
excitatory neuron has two sets of local synapses which form the connections to
and from the global inhibitory neuron and a self-excitatory local synapse. These
synapses can be activated without using the AER infrastructure. These neurons
drive a global inhibitory neuron (solid black circle) which in return inhibits all
excitatory neurons. The additional inhibitory neuron colored gray (feature in-
hibitory neuron) is excited by the first global inhibitory neuron of all popula-
tions and in return, it inhibits all excitatory neurons in its own population. This
configuration was used in the CAVIAR system to determine the best matching
feature in the scene [30]. The DAC block generates a local weight for the stim-
ulated synapse. The spiking activity of the neurons are monitored through the
addresses on the AER bus while an on-chip scanner allow us to monitor the
membrane potentials of the neurons externally.

A. Programmable Local Synaptic Weights

The DAC block consists of two global current-mode 5-bit
DAC. These converters are used to set the weights of individual
synapses. This circuit is based on the current-splitter technique
[Fig. 4(b)] and uses the masterbias circuit [Fig. 4(a)] which gen-
erates bias currents on chip [39], [40]. The DAC output current
is generated by the circuit in Fig. 5(a). This circuit is designed
to work over five decades of current from 10 pA to 1 .

The bits to the current splitter in [Fig. 4(b)] are set through
the AER input address space. The DAC AER address is sent
first and decoded by the DAC before the AER address of the
targeted synapse is sent next (Fig. 6). We set the relative time
between the DAC AER address and the AER synapse address to
be about 5 . This time is sufficient for the DAC to settle before
the synapse is stimulated with the efficacy that is set by the DAC
output. The DAC can be used to both compensate and program
the weights of the synapses locally [41], [42] and globally [43].

B. Neuron and Synapses

The DAC output goes to one of two types of synapses: exci-
tatory and inhibitory. The circuit for the excitatory synapse is
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Fig. 4. Circuits for (a) the master reference current generator which is connected to (b) the current splitter. Depending on the value of the bits, the appropriate
current is generated for the DAC current output circuit shown in Fig. 5(a). The symbols for these circuits are shown on the right.

Fig. 5. DAC current output, synapse, and soma circuit. (a) The output of the
DAC circuit that generates the local synaptic weight for the targeted synapse.
(b) The synapse circuit where its weight is set by Vw. Transistors are 12 � by
12 �. (c) Soma circuit where V is the reset potential. Transistors MP1
and MP2 provide positive feedback current when a spike is generated, that is,
vspikeb goes low and vspike goes high.

shown in Fig. 5(b). In addition, there are two different forms of
the excitatory synapse: depressing or nondepressing. These cir-
cuits have previously been described in [44], [45] and [34], [46].

On this chip, we implemented an aVLSI integrate-and-fire
neuron model which follows the dynamics in (1) [Fig. 5(c)]. In
contrast with the theory, our neuron circuit has a linear leak.

Fig. 6. Timing diagram for AER signals to stimulate a synapse using a 4-phase
handshaking. When the DATA is valid, the sender activates the a request signal,
/CREQ to the chip. The chip responds by activating the corresponding acknowl-
edge signal /CACK, and the the DAC address defining the synaptic weight is
latched internally and decoded. The sender inactivates /CREQ when /CACK is
active and removes the data from the bus. It waits for /CACK to be inactivated
before placing the synapse address on the bus.

Since this constant leak current does not depend on the mem-
brane voltage, we can neglect it for the analysis of regular input
rates.

The controllable parameters in the neuron circuit include the
threshold voltage, refractory period, reset potential, spike pulse
width, and leak current. We have modified the neuron circuit so
we can satisfy the theoretical constraints laid out in Section III.
This circuit is based on the original form described in [46] but
includes a reset potential. It is derived from other implementa-
tions [18], [45]–[47]. Alternative neuron implementations are
described in [48]–[50].

The size of each neuron pixel with its AER and local
synapses, along with the AER communicating circuits is
86 by 140 .

C. Connectivity Setup

To implement the WTA operation, we activate the local
connections between the excitatory neurons and the global in-
hibitory neuron. The synaptic connectivity for this configuration

Authorized licensed use limited to: MAIN LIBRARY UNIVERSITY OF ZURICH. Downloaded on March 10, 2009 at 12:04 from IEEE Xplore.  Restrictions apply.
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Fig. 7. Local connectivity between excitatory neurons and global inhibitory
neuron. In (a), each excitatory neuron (open circle) has an inhibitory connection
(small black circles) from the inhibitory neuron and makes an excitatory connec-
tion (triangle) to the inhibitory neuron. The schematic in (b) shows the transistor
circuit (MN1, MN2, MP3, MP4) for one excitatory synapse. The output tran-
sistor of the synapse, MP4, along with the output transistors of the same type
of synapse of other neurons (MP5, MP6 represent output synapses of two other
neurons) charge the membrane potential of the inhibitory neuron.

is shown in Fig. 7. The winner is selected after a predetermined
number of input spikes according to the constraints of the
connectivity parameters needed for the WTA function [31].
Each excitatory input spike charges the membrane of the post-
synaptic neuron until one neuron in the array reaches threshold
after the predetermined number of input spikes and is reset.
This neuron then drives the inhibitory neuron which in return
inhibits all other neurons. Self-excitation of the winning neuron
(by making the reset potential higher than the resting potential)
facilitates the selection of this neuron as the next winner.
The winning neuron and the global inhibitory neuron in each
population code the input activity, that is, their output rates are
proportional to the input rates.

V. VLSI CHIP WTA PERFORMANCE

The soma and synaptic circuits express a certain amount of
heterogeneity because of inherent nonidealities in the fabrica-
tion process. This means that the firing rates of neurons on a
fabricated chip, even when stimulated with the same input rate,
will vary because of transistor mismatch [51]. While the amount
of mismatch can be decreased, for example, through increased
sizing of the transistors, the larger transistors will also increase
the pixel size. This heterogeneity changes the WTA network op-
eration because different neurons will require different factors
of increase in their firing rates over the remaining neurons to be-
come the winner. In a previous generation of this chip, we used

Fig. 8. Mismatch of DACs and synaptic weight of the neuron. For each mea-
sured DAC value, the relative synaptic efficacy is shown, that is the effect of one
input spike on the membrane potential in percent of the threshold voltage of the
neuron. For example, a relative synaptic efficacy of 5% means that a neuron
reaches threshold in 20 spikes. We combined both 5-bit DACs into one 10-bit
converter and sorted the DAC values by the mean synaptic efficacy to obtain a
continuous value range. Every DAC value was measured for all neurons at once
for a stimulation time of 90 s using a regular spiking input with frequency of
80 Hz. The graph shows the mean of all neurons with one standard deviation
(dotted lines). We showed in [28] that the coefficient of variation for this type
of synapse is constant, i.e., the standard deviation scales with the mean of the
synaptic weight, as can be seen for DAC values up to about 720. For high relative
synaptic weights, e.g., over 10%, the neurons synchronize on the input spikes,
since a neuron can only reach threshold with an integer number of spikes. In this
range the standard deviation of the synaptic weight, therefore, decreases again.

the spike burst encoding method [17] to decrease the variation
from about 20% in the uncalibrated case to an average of 10%.
On the present chip, the variance in the uncalibrated case is only
10% primarily due to increased sizing of the transistors.

The on-chip DACs allow us to implement different coefficient
of variations ( s) into the synaptic weights so we can explore
the dependence of the WTA performance on the variance of the
parameters. In this case, we used the two 5-bit DACs as a single
10-bit DAC and set the reference currents of both converters so
that their ranges overlap. In this way, we can sort the DAC values
to obtain a continuous range (see Figs. 8 and 9).

To measure the performance of the WTA network we define
the increase factor . If all neurons of the network receive the
same input rate, the increase factor defines the percentage
by which the input rate to one neuron has to be increased for
this neuron to be the winner. As we discussed in Section III, the
network can theoretically detect the highest input frequency in
two spikes. In most applications, the firing rates are not neces-
sarily regular or show some variation due to the preceding com-
putation. In this case, more spikes should be integrated before
the neurons reach threshold. The performance on chip is limited
by the variation in the network parameters, which we quantify
using . We first present measurements of the increase factor
for all neurons, and then discuss how the mean increase factor
can be estimated from the measured firing rate distribution from
all neurons on the chip and from its variance.

With variation in the network parameters and the input spike
rates, the performance of the WTA network will actually depend
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Fig. 9. Example histogram where the synaptic efficacies for all neurons are
set to 5%, so every neuron reaches threshold with 20 spikes. For 99% of the
neurons, a DAC value can be chosen so that the synaptic efficacy is within 0.1%
of the desired value. The maximum difference is 1.1%. Our method of choosing
the DAC values is equivalent to selecting the DAC values for the neurons for
which the relative synaptic efficacies are on a horizontal line in Fig. 8.

on the precise distribution of input firing rates to the chip. Since
this input distribution varies for every application (for example,
in the CAVIAR network described later the input can be approx-
imated by a Gaussian peak of activity traveling across the chip),
one input pattern has to be defined for characterization. The in-
crease factor assumes that all neurons receive the same input
spike rate, and that only the firing rate to the winner is increased.
This is the worst-case input distribution, since in an application
not all neurons will receive the same maximum firing rate. The
mean increase factor as we present it here gives, therefore, a
worst-case boundary for the performance of the chip, and in ap-
plications with natural input distributions the performance can
be assumed to be significantly better. In [28], we analyze how
the case of spike trains with regular frequency can be general-
ized to spike trains of Poisson statistics.

Since measuring the increase factor for every neuron is time-
consuming, the latter methods provide a quick estimation of the
WTA performance. A comparison between the measured in-
crease factors and the expected mean value allows us also to
incorporate effects from mismatch different than the synaptic
weights as discussed before.

A. WTA Measurements

We first demonstrate the WTA operation using the analysis
described in Section III. The network behavior is illustrated
using a spike raster plot in Fig. 10. At time , the neurons
receive inputs with the same regular firing frequency of 100 Hz
except for one neuron which receives a higher input frequency
of 120 Hz. The connectivity was configured in this experiment
so that the neuron reaches threshold in five to six input spikes,
after which the network selects the neuron with the strongest
input as the winner. In the experiments, we have set the synaptic
time constants to be short so that the currents coming in for each
presynaptic spike act almost as impulse currents. This setting
also reduces the impact of the variations in the time constants.

Fig. 10. Example raster plot of the spike trains to and from the neurons.
(a) Input: starting from 0 ms, the neurons are stimulated with spike trains of
a regular frequency of 100 Hz, but randomized phase. Neuron number 42
receives an input spike train with an increased frequency of 120 Hz. (b) Output
without WTA connectivity: after an adjustable number of input spikes, the
neurons start to fire with a regular output frequency. The output frequencies of
the neurons are slightly different due to mismatch in the synaptic efficacies.
Neuron 42 has the highest output frequency since it receives the strongest
input. (c) Output with WTA connectivity: only neuron 42 with the strongest
input fires, all other neurons are suppressed. The example plot was taken with
a previous version of the chip with 64 neurons per array. The activity of the
inhibitory neurons is not shown here. Figure is reproduced from [31, Fig. 4].

B. Measurement of Increase Factors

A group of 254 excitatory neurons were stimulated with an
input rate of 80 Hz using their excitatory synapse whose weight
is set by the global DACs. We used spike trains of regular fre-
quency, but shuffled the phases to avoid synchronization effects.
The synaptic weights were adjusted so that the mean output
firing rate of all neurons was about 4 Hz, that means the neu-
rons reach threshold with 20 spikes.

For each neuron we increased its input frequency until the
neuron was selected as the winner. We describe a neuron as the
winner if at least 90% of the output spikes of the network comes
from this neuron. Each measurement was taken for a stimulation
period of 60 s.

The measured increase factors are shown in Fig. 11 and in a
cumulative graph in Fig. 12 (circles). In these data, the excita-
tory synapses of all neurons were set to a DAC value of 700.
The mean measured increase factor is about 38.7%.

C. Estimation From Firing Rate Distribution

If all neurons receive the same input spike frequency, the
neuron with the highest synaptic weight will have the highest
output firing rate and will win the competition. To select
a different neuron as the winner, the input rate to this neuron
has to be increased until its output firing rate exceeds that of
the winner. We, therefore, estimate the increase factor for each
neuron as the normalized difference of its output rate from the
maximum output firing rate of the array . To select neuron

as winner, its input rate has to be increased by at least

(5)
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Fig. 11. Discrimination capability of the WTA network. The increase factor is
the percentage by which the input firing rate to a neuron has to be increased for
this neuron to be selected as the winner, assuming that the remaining neurons
receive the same input rate. A neuron is considered the winner when more than
90% of the output spikes of the network originate from that neuron. Data was
obtained from a group of neurons on the chip, where all excitatory synapses of
all neurons were set to a DAC value of 700. Stimulation with regular input trains
with frequency of 80 Hz, measurement time was 60 s.

Fig. 12. Performance of chip WTA computation. We show the measured in-
crease factors (circles), the increase factors estimated from the firing rate dis-
tribution of the chip (crosses) and from the variation of firing rates assuming a
normal distribution (dashed line) as described in Sections V-C and -D, respec-
tively. Shown is the cumulative graph of increase factors, with the percentage
of the population (y axis) where the neurons will be the winner as a function of
the increase factor (x axis). The difference to the maximum firing rate (crosses)
shows the minimum boundary increase factor on which additional effects are
added, so the curve of the measured increase factors (circles) is shifted to the
right. Both curves fit quite well to the assumption of a normal distribution of
synaptic weights (dashed line). The staircase shape of the measured increase
factors is caused by the measurement method, since we gradually increased the
input frequency to the test neuron until it was selected as the winner.

We measured the distribution of output firing rates using the
same setting values as described in Section V-B (see Fig. 13).
The measured increase factors in Section IV-B are on average
14% higher than the ones calculated here from the maximum

Fig. 13. Distribution of output firing rates. Data from one group of neurons on
the chip. Each neuron was driven by the input through its excitatory synapse
whose weight was set to a DAC value of 700. Stimulation with inputs of regular
frequency of 80 Hz, measurement time 60 s.

firing rate of the output rate distribution. There are several rea-
sons for this. First, the neurons have to overcome the max-
imum firing rate which means the increase factor has to
be higher than the calculated one. Second, the measurement of
output firing rates only to determine the WTA operation does
not consider mismatch from other circuits, for example, in the
connections to and from the inhibitory neuron, the mismatch in
the refractory period of the neurons, and the length of inhibition.

D. Estimation From Variation

The maximum firing rate can also be estimated from the vari-
ation of the measured firing rate distribution. Let describe
the distribution of firing rates of the neuron population (or equiv-
alently, the distribution of synaptic efficacies). We draw sam-
ples from this distribution. For one sample, the expected mean
is obtained by integrating the rate times the probability of this
rate: . We are not looking for the mean, but for the
maximum. For one sample to be the maximum, all other
samples have to be smaller than its value . The probability
for this is

(6)

Taken together we get

(7)

Multiplying by considers that each of the drawn samples can
become the maximum.

We evaluate the expected maximum with the assumption of
normal distributed firing rates for , see Fig. 14. Replacing

in (5) with the mean output firing rate results in the expected
mean increase factor based on the variation of the firing rates.
We show the increase factors for a normal distribution in Fig. 12
(dashed line). The expected mean increase factor is about 26%.
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Fig. 14. Expected maximum value versus population size N . We assume the
firing rates r to be Gaussian distributed. Shown is the difference of the maximum
firing rate r and the mean firing rate � of the population, normed to the
standard deviation of the distribution. For example, for N = 254, the expected
maximum firing rate is hr i = � + 2:824�.

Estimating the mean increase factor directly from the varia-
tion of the firing rate distribution has the advantage that no time-
consuming measurements are necessary on a particular chip.
The coefficient of variation can be assumed to be equal for all
samples of a chip run. The performance of the WTA can then be
estimated from the characterization of one reference sample.

We conclude that the VLSI spiking WTA network performs
according to the discussed constraints. The comparison we show
here provides a good test case for quantifying effects from dif-
ferent mismatch sources. Since only the timing information of
the spike trains is used, the results can be extended to a wide
range of input frequencies other than the 80 Hz used in the pre-
sented measurements.

VI. DISCUSSION

Demonstrations of multichip asynchronous spike-based sys-
tems in performing brain-like tasks like orientation selectivity,
saliency detection, and pattern classification show the promise
of asynchronous brain-like computing technology [7], [9], [25],
[52]. The WTA function is usually a key component in these
systems or an intrinsic operation in the multineuron modules.

To program such systems for optimal performance in a task, a
formal description of each module’s performance based on the
input statistics, network parameters, and the output statistics is
necessary. We described the technical constraints on the connec-
tivity of a spiking neuronal network in order to achieve the most
optimal performance based on regular spiking input statistics in
this paper. The results for Poisson statistics are described else-
where [28]. Our theoretical analysis of the network parameter
setting does not assume a regular sampling system and does not
consider spike rates. It is centered on spike numbers and spike
times thus making this analysis extendable for any size network.

These technical constraints guided us in setting the network
parameters of this chip in the CAVIAR system, a multichip

spike-based vision system that classifies spatiotemporal trajec-
tories [9], [42], [53], [54].

To assemble such novel spike-based systems for optimal
performance of a particular task, specifications that describe
the performance of the individual modules are necessary. Here,
we define a new measure for measuring the WTA performance
which takes into account the variance of the responses of the
neurons due to circuit mismatch. We show two different ways
of estimating the mean increase factor and compare the mea-
sured increase factors against the estimated mean values. The
estimated increase factors provide a quick way of measuring
the WTA performance of all chips of a particular design and
from a particular fabrication run without having to resort to the
time-consuming step of testing all neurons on all chips.

Our analysis considered the worst case input to the network,
in which all neurons of the network receive a high regular input
firing rate. In real-world applications, the input is not neces-
sarily present to all neurons at the same time; for example, the
inputs to the CAVIAR WTA module turned out to be a spatially
moving Gaussian blob [29]. In this case, the network will show
better performance, that is, it will select the winner with higher
probability since fewer neurons receive input. Our methodology
for setting the network connectivity and our proposed quantifi-
cation of the WTA performance using theoretical increase fac-
tors, can be applied towards the performance estimation of any
spike-based WTA implementation.

VII. CONCLUSION

We describe a methodology for quantifying the WTA perfor-
mance of a spike-based aVLSI network and the theoretical con-
straints for the network parameters so that we obtain the most
optimal performance from the network in terms of the input sta-
tistics and the output rates. We introduce a new measure, the in-
crease factor, which quantifies the measured WTA performance
and which takes into account the variances in the neurons re-
sponses. The measured performance of a chip is close to the
theoretical prediction from the measured of the firing rate
distribution derived from measuring one chip sample. This anal-
ysis can be extended to any spike-based multineuron chip used
in a WTA computation.
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