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Abstract—In this paper, we describe an address-event vision
system designed to detect accidental falls in elderly home care
applications. The system raises an alarm when a fall hazard is
detected. We use an asynchronous temporal contrast vision sensor
which features sub-millisecond temporal resolution. The sensor
reports a fall at ten times higher temporal resolution than a
frame-based camera and shows 84% higher bandwidth efficiency
as it transmits fall events. A lightweight algorithm computes an
instantaneous motion vector and reports fall events. We are able
to distinguish fall events from normal human behavior, such as
walking, crouching down, and sitting down. Our system is robust
to the monitored person’s spatial position in a room and presence
of pets.

Index Terms—Address-event, AER, assisted living, CMOS
image sensor, elderly home care, fall detection, motion detection,
temporal-difference, vision sensor.

I. INTRODUCTION

UMAN society is experiencing tremendous demographic
H changes in aging since the turn of the 20th century. The
current life expectancy in the US is 77.85 years, and is ex-
tending as medical care is improved. According to a report of
U.S. Census Bureau, there will be a 210% increase in the pop-
ulation with age of 65 and over within the next 50 years [1].
The substantial increase in the ageing population will cause so-
ciety to face two challenges: increase of ageing people will re-
quire more investment in elderly care services; the decrease of
working population will cause shortage of skilled caregivers of
elders. In the future, this imbalance between the number of el-
derly people and that of the caregivers will be exacerbated when
life expectancies increase. Intelligent elderly care systems de-
liver one solution to reduce the workload of elderly caregivers
without compromising the quality of services.

In the past, various solutions were proposed based on
emerging technologies. Video monitoring is a commonly-used
solution in nursing institutions. But considerable human re-
source is required in order to monitor activities. Patients’
privacy is also compromised when they are monitored. Another
common solution is to have patients raise alarms when they
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are in trouble by pushing a button on a wearable or pendant
device [2]. This solution depends on the patient’s capability
and willingness to raise alarm. For example, a fall may result in
unconsciousness. A dementia patient may not be able or willing
to push the button when necessary [3]. Both scenarios would
limit this “push-the-button” solution in applications. Other
solutions include wearable devices, such as motion detector,
accelerometers, etc [4]-[9]. They are with patients all the time,
continuously collecting and streaming out physical parame-
ters. An alarm is raised when predefined conditions of these
signatures are satisfied. The effectiveness of wearable sensors,
however, is also restricted by the willingness of patients to wear
them.

Fall is a major health hazard for the elders when they live
independently [10]. Approximately 30% of 65-year-old people
fall each year. This number becomes higher in medical service
institutions. Although less than one fall in ten results in an in-
jury, a fifth of fall incidents require medical attention. Another
recent publication indicates that 50% of patients in nursery in-
stitutions fall each year, while 40% of them fall more than once
[11]. How to effectively assess, respond, and assist elderly pa-
tients in trouble becomes an important research topic in medical
elderly care services [12].

Elderly care systems aim to effectively evaluate and respond
to the behavior of elderly people when they live alone. These
systems have the following requirements.

1) The sensor systems should be non-intrusive to patient life.
The impact of elderly care systems on patients’ lives is ex-
pected to be reduced to the minimum. From the system’s
perspective, elderly care systems are expected to be small
enough to be placed in appropriate locations. An ideal el-
derly care system operates with zero maintenance.

2) The sensor systems should preserve patient privacy. Most
people under care expect that their privacy is respected. No
private information should be released until an emergency
is detected. Many elders are against using commer-
cial-off-the-shelf (COTS) cameras or microphones in their
home, because they feel they are monitored and their pri-
vacy is compromised. In elderly care sensor nodes, most
information analysis and decision-making should occur
within the detection nodes. This eliminates the necessity
to transmit information outside the detector and protects
patient privacy.

Fig. 1 illustrates the fall detector setup. The detectors take
multiple side-views of the scene in order to detect accidental
activities and raise alarms. The vision systems are mounted on
the wall at a height of 0.8 m, which is approximately the same
height of a light switch. Our approach is innovative for two
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Fig. 1. Address-event fall detectors are used for assisted living applications.
The detectors are mounted on the wall at a height of 0.8 m, which is approxi-
mately the same height of a light switch.

reasons: First, an asynchronous temporal contrast vision sensor
reports pixel changes with a latency on the order of millisec-
onds. Second, a lightweight computation algorithm plus a fast
readout allow us to compute an instantaneous motion vector and
report fall events. This cannot be done with a frame-based tem-
poral-difference image sensor because the frame rate is con-
stant, and redundant information in images saturate the trans-
mission bandwidth. Notice that in this paper we will refer to a
motion detection system performed with temporal differences
image sensors only.

This paper is divided into seven sections. In Section II, we de-
scribe the design overview for elderly home-care systems. Sec-
tion III describes the temporal contrast (motion-detection) vi-
sion sensor and the test platform used in the fall detection work.
In Section IV, we evaluate the asynchronous temporal contrast
vision sensor in tracking fast movement. In Section V and Sec-
tion VI, a lightweight moving-average algorithm to compute
centroid events is presented. This algorithm is then evaluated
as a fall detector. Section VII describes the design concerns in
a fall detector system. Section VIII concludes the paper.

II. AN ATC VISION SENSOR

The core technology used in our research is an asynchronous
temporal contrast (ATC) vision sensor. A temporal contrast vi-
sion sensor extracts changing pixels (motion events) from the
background [13] and reports temporal contrast, which is equiv-
alent to image reflectance change when lighting is constant. A
temporal contrast vision sensor can extract motion information
because, in normal lighting conditions, the intensity of a signif-
icant number of pixels changes as a subject moves in the scene
[14]-[16]. In the ATC vision sensor used here, every pixel re-
ports a change in illumination above a certain threshold with an
asynchronous event, i.e., pixels are not scanned with a regular
frame rate but every pixel is self-timed. In case of an event, the
corresponding pixel address is transmitted. After the event is ac-
knowledged by an external receiver, the pixel resets itself.

A key feature of ATC is the temporal contrast response which
means that the sensor reports scene reflectance changes (caused
e.g. by moving objects), discarding local absolute illumination.
A major advantage of this ATC image sensor is that it pushes
information to the receiver once a predefined condition is sat-
isfied. This feature is important in high-speed vision systems

Fig. 2. The 64X 64 address-event temporal constrast vision sensor used in the
fall detector system [17], [18].

@) (b)

Fig. 3. Temporal contrast image from the (b) ATC image sensor and )a) one
intensity frame. The subject is swaying left to right. The ATC imaging system
is placed in front of the subject with a distance of 3 meters and a height of 0.8 m.

because a pixel sends information of interest immediately, in-
stead of waiting for its polling sequence. A pixel generates a
higher rate of events when it experiences larger changes in light
intensity.

Fig. 2 shows the ATC image sensor system [17]-[20] used
in the fall detection experiment. The temporal contrast vision
sensor contains a 64x 64 array of pixels and responds to rela-
tive changes in light intensity. The imaging system streams a
series of time-stamped address-events from the vision chip, and
sends them to a PC via a USB interface. The data is reported in
the address-event format with 12 bits (6 for X address, 6 for Y
address in a 64 x 64 image sensor.) The silhouette of a moving
subject can be reconstructed on a PC (The address-event vision
reconstruction software is available from http://www.jaer.wiki.
sourceforge.net/). The vision system uses a Rainbow S8 mm
1:1.3 lens, and the lens format is 2/3”. Fig. 3 shows an image
from the ATC image sensor and its targeted scene. The imaging
system is placed in front of the subject with a distance of 3 m
and a height of 0.8 m. The image sensor features a high dynamic
range of 120 dB. The sensor consumes 30 mW of powerat 3.3V,
which is comparable to most low-power COTS image chips on
the market [21]-[23]. The power consumption is approximately
120 mW for the USB device in Fig. 2. Notice that the camera
is used as a line-powered fixed device in home and laboratory
installations. We suppose that the system will be professionally
installed by caregivers.
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III. COMPARISON BETWEEN ATC AND FRAME-BASED
TEMPORAL DIFFERENCE VISION SENSORS

In this section we compare an ATC image sensor with a
frame-based system (a COTS web-camera) and characterize
them by tracking an object in free fall. We demonstrate that the
ATC image sensor performs better in high-speed tracking for
two reasons: Firstly, the ATC image sensor has higher temporal
resolution and delivers timely information on motion events.
Secondly, the ATC image sensor ranks data based on impor-
tance and selectively sends informative data on motion only.
This reduces information size and communication bandwidth.
A COTS camera samples images at low rates (30 fps), resulting
in at most a few temporal difference frames of information
for each fall event. This little data is not enough to compute
accurate velocity and acceleration measurement to distinguish
a fall and is a major impediment to the use of COTS camera for
this application. The image data is also blurred by the camera
speed.

In order to use a COTS camera to detect motion, some image
data manipulation is necessary. For comparative purpose, we
wrote a real-time temporal difference image emulator using an
COTS camera [24]-[26]. The software can be downloaded from
http://www.eng.yale.edu/elab/FallDetect.html. Image frames
from the COTS camera are down-sampled to 64 x64 pixels,
and pairwise subtracted to mimic a temporal difference imager.
Using the same frame twice in two subsequent differences
is not necessary, since the event resolution is not increased,
but the overall number of events increases, at the expense
of more computation after readout. For this manipulation
8,192-bit subtractions and thresholdings are performed by a PC
(64 x 64 = 4096 byte subtractions and an identical number of
thresholding operations). The threshold of the COTS was set
to match the one from the ATC (10 for an 8 bit pixel output).
The temporal difference frames are then converted into an
address-event stream, in order to compare them to the ATC
output. This is performed by reporting only the address of the
pixels that have changed by a threshold. This comparison is fair
because address-event is the most efficient way to report sparse
matrices of events.

Fig. 4 shows the measured responses as the ATC vision sensor
tracks a box in free fall. The sensor communicates motion events
at 1330 event/s when it is monitoring the object’s fall. The event
rate reduces to 221 event/s in the quiet period when no motion is
present in the scene. These noise events are due to source/drain
junction leakage in pixel transistors, and are sparse, uncorre-
lated in space and time. The noise events are represented by cir-
cles in Fig. 4. The noise events can be filtered out by the fact
that they are spatio-temporally uncorrelated [27] but we chose
not to do so to keep the computational model closely matched to
cheap embedded architectures. In this experiment 1590 events
have been collected during the 1.1s fall, 94% of which describe
the fall, the rest are noise.

Fig. 5 shows the measured address-event outputs from the
frame-based image emulator as it tracks a box’s fall. The event
rate is 150 event/s in average and ten times less than the ATC
vision sensor. Every frame contains a lot of redundant informa-
tion due to the unchanged background. Fig. 5 reports only 232
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Fig. 4. (a) Measured responses while the ATC vision sensor tracks an ob-
ject thrown in the air and then falling. The object is 3 m away and the camera
is installed at 0.8 m. (b) Noise events (represented by cycles) and fall events
(represented by dot) distribution when the ATC vision sensor tracks the object
free-falls.

events during the 1s fall, with no added noise. Notice also the
spread of events in the Y axis for each frame: it is up to 15 pixels
out of a total of 64 resulting in a 23% spread for COTS. On the
other hand, it is only 3 pixels in the reconstructed ATC frame for
a spread of 4.6% (see Fig. 4(b); more precisely the fall events
between 3 and 3.2 s). This data shows that the ATC system can
perform at least 5 times more precise vertical velocity calcula-
tions than a COTS sensor. Notice that we can generate an ATC
frame for comparison purposes by collecting events for 30 ms
and then generating an histogram frame.

ATC vision sensors have two main advantages when com-
pared to frame-based image sensors: first, the ATC vision sensor
has a higher temporal resolution in high-speed tracking applica-
tions. In the experiment the ATC vision sensor shows a 10 times
higher event rate as it tracks the free fall. The uniform frame
rate of the COTS camera imposes an upper limit on the tem-
poral difference sampling rate. Second, the ATC vision sensor
has a higher bandwidth efficiency because it selectively sends
information. Given this experimental setting, with an image res-
olution of 64 x 64, the ATC vision sensor saves over 84% band-
width for transmission of the image data. ([12 — bit address X
1590 events in 1 s] = 19080 bits in the ATC vision sensor versus
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Fig.5. Address-event responses from a frame-based temporal difference image
emulator as it is tracking a free-falling object. The camera has a resolution of
64 x 64 and runs at 30 frame/s. The imaged object is 3 m away and the camera
is installed at 0.8 m. The uniform frame rate of the camera imposes a limit on
the temporal difference sampling rate, which is 150 event/s on average.

[1 bit/pixel x 64 x 64 x 30 frame/s] = 122,080 bits in the
frame-based image emulator). In order to output a temporal dif-
ference image, extra bit-operations are performed by an external
processor.

IV. DETECTING FALLS USING ADDRESS-EVENT
VISION SENSOR

In this section, we use a temporal average of the motion events
from the ATC vision sensor, here referred as centroid event, to
track fall hazards and evaluate its dynamics. We describe a light-
weight averaging algorithm and demonstrate that the centroid
event can instantaneously capture signatures of fall hazards and
differentiate them from other human behavior.

A. Centroid Event Computation

In machine-vision research, many successful algorithms have
been proposed to profile human behavior. However, these al-
gorithms are difficult to be implemented on sensor nodes with
limited computing power. Centroids are an effective way to es-
timate object motion in space. Centroids can be computed as
temporal averages of a series of events. A single centroid event
address, (¢, ¥y.), during a fixed period can be calculated using
(1). Where N is the number of events in a given window, and
(z;,y;) are the event addresses. The spatial average is performed
over a time window of 30 ms or a minimum N = 10.

N N
D iz Ti Dim1 Yi

N =N ey

Te = Ye =

Centroids are computed as moving averages of a series of
events [28], [29]. This can be done with high temporal resolution
and low hardware cost. One possible hardware implementation
is using a FIFO buffer, which stores the events that occur in
a fixed time period. As a new event comes in, a computation
cycle starts with removing the expired events and appending
the incoming event in the buffer. All events in the buffer are
averaged using (1) to get a centroid event at this time.
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Fig. 6. Vertical address (Y) of events when the camera is monitoring a fall. The
fall occurs in 0.9 s, and 5043 events are transmitted.

B. Evaluation of a Fall

Fall detection is of particularly importance when a person
lives alone. This is one of the most critical scenarios in as-
sisted-living environment and requires immediate attention.
When more than one person are in the same room, one of them
can call medical assistance if a fall hazard occurs.

The data rate of the ATC vision sensor, i.e. event rate, is cor-
related with motion speed, size and light contrast in the scene.
When the scene (lighting condition) is set, the event rate is
useful for characterizing the motion in the scene. For example,
a faster motion causes more events to be generated during a
time period. Due to the different event rates, the number of
events to be averaged varies depending on the motion in the
scene. Fig. 6 shows event responses directly measured from the
ATC imager when it tracks a person’s fall. Before the fall, the
subject swings side-to-side in a normal walking manner. This
side-to-side motion can be compared to the data collected during
the fall. Each side-to-side movement generates approximately
460 event/s, while the fall causes 5600 event/s. The burst of
events is due to the fast motion in the scene. For comparison,
when the same fall is monitored by a frame-based temporal dif-
ference emulator, 1500 events are communicated in one second.
This data is computed using a COTS camera placed at a distance
of 3 m and running at 30 frame/s. This comparison shows that
the ATC image sensor reports 3.7 times higher temporal resolu-
tion than a frame-based imager when tracking the fall.

Fig. 7 shows centroid event responses when the imager mon-
itors a person’s fall and crouch-down. A crouch-down scenario
is considered because it is a motion similar to a fall but it hap-
pens on a longer time scale. In the experiment, a short walking
motion with side-to-side oscillations happens before the fall
and the crouch-down. In Fig. 7(a), a fall causes the vertical ad-
dress to decrease from 30 to 5 in 0.9 s. An instantaneous event
rate of 5600 event/s indicates significant changes in the scene.
Fig. (7b) shows changes in the centroid when the imager ob-
serves a person crouching down, and then getting up. In this
case, the centroid vertical coordinates reports a slower vertical
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Fig. 7. Vertical address of the centroid events (Y. ) (a) when a person falls, and (b) when a person crouches down. In (a), when the person falls, the centroid
vertical address decreases by 25 pixels in 0.9 s. The event rate is approximately 5600 event/s. In (b), when the person crouches down, the centroid vertical address
decreases by 20 pixels in 2 s. The event rate is approximately 310 event/s. The fall causes faster decrease in the vertical address than the crouch-down.

velocity and a slower event rate. The Y address decreases from
30to 15 in 2 s at an event rate of 310 event/s.

In order to numerically evaluate the dynamics in the ATC
imager’s event outputs, a centroid vertical velocity is computed
in (2), where At =¢; —t; < T and T is a fixed time period.

v, = A _ Wei = Yei) )

YA ti —t;

It is important to provide a measurement of the centroid that is
invariant to the distance between camera and the imaged subject.
In order to be invariant to distance, the vertical velocity (V) is
divided by the height of the subject in pixels, ¥4, as shown in
(3). The height is the difference between the maximum and min-
imum standard deviations of the vertical address during a fixed
30 ms time period. The unit of a normalized vertical velocity is
second ™,

Ax
v Vs A Wi—yi)/va 3
y,norm — = = (3)
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Fig. 8 is the most important experimental results of this re-
search. It shows centroid vertical velocities in four scenarios:
1) a person crouches down; 2) a box free-falls; 3) a person falls
forward; and 4) a person falls backward. The velocities are nor-
malized for distance using (3). The centroids in Fig. 8 show
both positive and negative velocities because of the difference
between the moving-average and the physical centroids when
tracking a fast moving subject. The ATC vision sensor stochasti-
cally fires events [30]. The good estimation of physical centroid
requires time to collect events. We set the averaging windows
small in order to keep a high temporal resolution in tracking.
This causes the events’ average to oscillate around the physical
centroid when the vision sensor monitors a fast motion. For ex-
ample, in a human fall case, the first average of events, which

mostly describe the lower part of the person, is followed by
the second average of events, which mainly describe the upper
body. Even though the vertical address of the physical centroid
decreases, the estimated centroid, i.e. average, could still show
a positive velocity.

Notice that, in Fig. 8, a fall shows a peak velocity of —3 s~
in the vertical address decrease. The peak velocity is close to
that of the free-falling box. When the vision sensor monitors a
person crouching down, the centroid vertical velocity reaches a
peak of —1 s~1 avalue that is three times smaller than the fall’s
velocity. By estimating the peak vertical velocity, a fall is dif-
ferentiated from other human behavior. More importantly, the
fall shows more than three times peak-to-peak vertical velocity
of the side-to-side swing before the fall, which is comparable to
the response to normal walking.

1

V. RESULTS AND DISCUSSION

We evaluated various scenarios using laboratory trials. The
ATC vision sensor monitored a group of three people individ-
ually at a distance of 3 m. The view was from the side and the
vision sensor was mounted at a height of 0.8 m, which is approx-
imately the same height of a light switch on the wall. Each actor
performed a predefined task list, including fall and other normal
human behavior. The fall scenarios we tested in this work in-
cluded a variety of fall types, such as fall forward, fall backward,
and fall sideways. We also monitored other scenarios besides the
falls, which frequently happen in home-assisted living applica-
tions. These tasks include a person walking, crouching down,
sitting down and a cat walking. Pets are considered in this work
because they are common company to the elders.

Experimental results are illustrated in Fig. 9. They show the
comparison of the initial centroid vertical address and peak cen-
troid vertical velocity. The space in Fig. 9 is divided into four
areas. The centroids in Area II are those of human behavior,
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Fig. 8. Centroid vertical velocities (V} norm ) in address-event streams demonstrate the difference among four scenarios: (a) a person crouches down; (b) a box
free-falls; (c) a person falls backward; and (d) a person falls forward. The velocities are normalized for distance between the imaged subject and the image sensor.

The red lines in the figures outline the boundary of the peak vertical velocities.
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Fig. 9. Centroid address-event evaluation matrix of five common home-
assisted living scenarios. The centroid vertical velocities are normalized for
distance.

including crouching-down, walking, and getting-up. They have
higher coordinates than the pet centroids in Area I, which are
closer to ground. The centroids in Area III are reported as fall
hazards. They have higher peak vertical velocities than other
human behavior.

The centroids of people are around the middle of the camera
view when people move. The centroids fluctuate between 30
and 40. This coincides with the expected height of human body.
The pet’s centroid moves at a lower coordinate, generally closer
to ground. Both the fall and crouch-down demonstrate negative
vertical velocities, which are due to the decrease in vertical ad-
dress. The fall’s centroid decreases at a much higher speed of
—3 s~1. The fast decrease in the centroid vertical address dis-
tinguishes a fall from other normal human behavior.

Table I shows the statistics of the event rate when the vision
system observes human behavior. When the system monitors
a fall, the burst event rate is twice that of a person walking.
This is because that the light intensity in more pixels changes
in a unit time period when the system monitors a faster motion.
‘When there is no motion in the scene, the event rate is as slow as
300 event/s with a larger variance of 30.5 event/s. This is due to
the noise events associated with source/drain junction leakage
in pixels’ reset transistors.

In order to design high-accuracy fall detectors, there are a
number of issues that need to be considered related to system
design and implementation. When monitored subjects are too
close to a fall detector, they can block the camera’s view, and
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TABLE 1
STATISTICS OF THE EVENT RATE IN DIFFERENT EXPERIMENTAL SCENARIOS

Behavior Average Event | Variance
Rate (event/s) (event/s)
Walk 2100 11.3
Crouch Down 3500 15.2
Fall Down 5120 10.2
Sit Down 3150 15.2
No Motion 300 30.5
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Fig. 10. Relation between (1) the event rate and the distance from the camera
and (2) the percentage of active pixels and the distance. When the monitored
person is 1 meter away from the detector, 80% of the active pixels in the sensor
send events. In this situation, the detector cannot make accurate estimation of
the motion centroid.

make it impossible for the detector to make accurate motion
estimations. In order to resolve this problem, two fall detector
systems can be installed on the opposite corners of a monitored
room. When the subject is too close to one of the detectors, the
other detector can accurately perform the fall detection.

Fig. 10 shows the relation between the distance from the
camera and the event rate. It also reports the percentage of ac-
tive pixels as a function of subject distance. Both the event rate
and the percentage increase as the monitored person gets closer
to the detector. When the person is 1 m away from the detector,
80% of the pixels in the sensor send events. In this situation, the
detector cannot make accurate estimations of the motion cen-
troid because it cannot compute the position of the centroid and
the dimension of the moving target.

Multiple fall detectors can be deployed with reasonable
budget. The detector we used in this work is a self-contained
system. The vision system includes a customized vision sensor,
a microcontroller with regulators. Due to its low computation
complexity, a low-power and low-cost 16-bit microcontroller
[31] is commercially available for the centroid computation
and thresholding. The power budget of the detector is approxi-
mately 31 mW, including 30 mW for the image sensor [19] and
1 mW for the 16-bit microcontroller. This is an attractive solu-
tion when compared to complex computer-vision techniques,
which require significant computation resource to run these
algorithms.

Pets are common company to the elders when they live alone.
In most cases, pets are not helpful to the elders when they are in
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Fig. 11. Flow of a fall detection and reporting operations.

trouble. It is one of our concerns to distinguish between pet and
human in motion. A pet’s motion centroid is usually at a lower
coordinate than a human. In the experiment, when both subjects
are 2 m away from the camera, the vertical address of human
centroid fluctuates around 30 to 40, while a pet is approximately
at 10.

Fig. 11 illustrates a fall detecting flowchart. A negative
threshold of vertical velocity is predefined. As long as the event
centroid change passes the threshold, a potential fall alarm is
raised. The detector causes a “potential fall detected” message
and starts a timer, for example, for 30 s. The detector will
continues to track motion in the scene until the timer expires.
In many cases, the fall event is not traumatic to the elder,
and he can get up and walk away as normal. In this case, the
centroid moves up with a positive vertical speed. This is similar
to the getting-up scenario shown in Fig. 8(a). This is similar
to other scenarios, like an object falling in the field of view or
a pet jumping around. As the person walks around normally,
the motion centroid moves around the middle of the camera
view. The person can also cancel the potential alarm. This also
addresses sudden changes in lighting condition, as reflective
objects or light switched off. There are two other possible
scenarios: the person is striving to get up but fails; a pet moves
around the injured elder. Both cases cause the motion centroid
to move close to ground. The detector system continue to hold
the potential alarm message until the timer expires. When this
happens, the potential alarm is confirmed and communicated to
assistance providers.

VI. CONCLUSION

In this paper, we evaluate an address-event temporal con-
trast fall detector. We propose using this detector to detect falls,
a major health hazard in elderly home-care applications. This
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approach innovates in two ways: First, an asynchronous tem-
poral contrast vision sensor features high temporal resolution
and reports pixel changes with a latency on the order of mil-
liseconds. Second, a lightweight moving-average algorithm al-
lows the detector to compute instantaneous motion vectors and
report fall hazards immediately with low computational effort.
A Matlab code for the fall detector system can be downloaded
at http://www.eng.yale.edu/elab/FallDetect.html.

The fall detector presented in this paper can detect falls in a
home assisted living environment, and possesses the following
advantages:

1) The motion detector is small in size (like a web-camera)
and it is thus non-intrusive. The installation of these nodes
in elderly people’s apartment will cause minimal change
in their living patterns. Deployment is easy because the de-
vice can be affixed to a wall near a power socket. Wireless
deployment is not necessary, since the necessity to change
batteries would be a burden on the patient or caregiver.

2) The motion detector protects the patient’s privacy. An ad-
dress-event imager takes no image snapshot, and filters out
detailed visual appearance of the patients. All images are
processed locally. No data is communicated until an emer-
gency is detected.
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