The Reusable Symbol Problem

A position paper for NeSy’08

Matthew Cook
ETH Ziirich

Abstract. Examining the major differences between how traditional
programs compute and our current understanding of how brains com-
pute, I see only one key gap in our ability to carry out logical reason-
ing within neural networks using standard methods. I refer to this
gap as the reusable symbol problem: How can neural systems use
multiply-instantiatable symbols to represent arbitrary objects? This
problem is fundamental and cannot be readily decomposed into sim-
pler problems. Solving this problem would solve many individual
problems such as the problem of representing relations between ob-
jects represented as neural activation patterns, the problem of im-
plementing grammars in neural networks, and the well-known bind-
ing problem [3] for neural models. In this paper I discuss the use of
reusable symbols and I give a concrete simple canonical example of
the reusable symbol problem.

Introduction

It is perfectly possible to train a neural network with logical data.
However, the learned logical system typically has a fixed structure,
on the order of the size of the neural network, and rules must be
learned at each position in the structure where they are to be used.
The network is unable to re-apply abstract logical rules at multiple
locations in the structure.

Some systems expressly designed for logical reasoning have been
enhanced with probabilistic capabilities, giving them many of the
benefits of neural systems (e.g. [2]), but at the top level they remain
rigidly structured, missing neural advantages at the highest level.

Solving the reusable symbol problem defined here would solve
several of the integration challenge problems of [1]. For example,
logical statements (including ones with quantifiers) can be processed
just as in formal logic, using axioms and axiom schemas as the
“larger patterns” (discussed below) into which reusable symbols are
placed, with the sequence of statements in a proof creating a coherent
structure much like the tiling in the problem discussed below. This
approach is not such a new idea (note the title and date of [4]), but
so far it has not been successful, simply because the reusable symbol
problem has not yet been solved.

In this paper, first I will examine in detail what symbols are and
how they are useful, then I will briefly dispel the illusion that pointers
are the key to the power of traditional computation (as compared with
neural network approaches), and finally I will give a clear instance
of the reusable symbol problem.

Symbols: a mechanism for encapsulation and reuse

The symbolic processing that arises in neural networks occurs among
a fixed set of symbols with fixed relationships to each other. The fixed

set of symbols is not so worrisome, as people also tend to be content
with existing symbols when manipulating information. But the fixed
relationships are a more of a problem. The reason we are happy to
use the symbols A and B over and over again is because we can
easily remap the relationships between them. If we are told that two
A’s must always be followed by a B, we can immediately understand
and apply this new constraint on old symbols. Perhaps surprisingly,
this is even easier to understand than using dedicated symbols for
this constraint, e.g. two ¢<’s must always be followed by a %’.

This sort of symbol reuse matches with our experience of pro-
gramming, but contrasts sharply with the kind of symbolic process-
ing that appears in neural networks (even in modern network archi-
tectures such as graphical model based designs). In these networks,
we typically do not have any notion of reuse of symbols.

We are so used to symbolic reasoning that it is worth reminding
ourselves what kinds of computational primitives are implicit when
one uses symbols. The most basic fact about a symbol is that it rep-
resents something. That is, there are two objects: the symbol, and
the object it represents. The symbol could be a letter representing a
mathematical variable, or a street sign representing a particular rule
of the road, or a name representing a variable in some computer code,
or a word representing an idea, or any of many other possibilities.
The symbol itself is typically relatively small, while the represented
object can be quite complicated. The symbol “stands for” the rep-
resented object, meaning that wherever the symbol appears, we un-
derstand that the represented object is essentially there (although this
substitution may be hard to imagine in cases such as a variable name
in code, or a particular bitmap representing a letter of the alphabet,
or other cases where the represented object does not have any other
practical form in which it could appear). This link from symbol to
represented object is one-way: the represented object is not tied to the
symbol, and could equally well be represented by any other available
symbol.

Importantly, a symbol can appear an arbitrary number of times.
Once we know how to recognize the symbol and what the symbol
stands for, we are ready to use the symbol. Using the symbol means
that the symbol can appear in some larger pattern which provides
a context for this instantiation of the represented object. This larger
pattern may be visual, or may be textual, or grammatical, or it may
simply be a fixed relationship between a fixed number of objects.
For example, the larger pattern could be “___ comes between ___ and
_ 7, and this larger pattern might get filled with the symbols A, B,
and C, with A representing noon, B representing morning, and C rep-
resenting evening. The symbol carries the meaning of the represented
object into the larger pattern, meaning that the represented object has
some kind of structure, and the larger pattern indicates some kind of




structure between the elements of the pattern, and the symbol rep-
resents the presence of the represented object’s structure within the
structure of the larger pattern. Typically there exist constraints on the
represented object imposed either by the larger pattern itself or by the
larger pattern in conjunction with other represented objects that also
symbolically appear in the larger pattern. For example, in the above
example, if A represents noon and B represents morning, then C is
fairly strongly constrained to also represent a time, perhaps a time in
the afternoon or evening.

In language or imagery we are used to reasoning along lines like
“this can go here, that can go there,” meaning that certain symbols
can fit into the larger pattern in certain places, subject to the con-
straint that the represented object should fit well into the larger pat-
tern. Even when putting the pieces together of anything conceptual or
abstract, we appear to operate in terms of building up coherent larger
patterns of represented objects. In this construction process, why do
I say we are placing symbols? Why not skip the symbols and simply
place subpatterns into larger patterns? One reason is that if we reuse
an object, then in the result we know that the two instances are ex-
actly the same object, without having to inspect the subpatterns (ob-
ject instances) to see if all their details match. Another reason is that
pattern parts have their own structure of subparts, each part of which
again has its own structure of subparts, and so on, and it seems un-
reasonable to assume that this unbounded detail is copied into each
instance of pattern use, or even fully present in a single use. Symbols
break this cycle of substructure, allowing there to be parts whose de-
tails can be recalled only if needed. Symbols also obviate the need to
copy larger structures, limiting copying to duplication of symbols.

Symbols encapsulate their represented object, allowing multiple
uses of the object in larger patterns. This fundamental operation is
generally lacking in neural network models of information process-

ing.

Pointers and copying

One of the immediately noticeable differences between neural net-
works and computer programs is that programming languages have
pointers. For example, every data structure is found using a pointer.
Indeed, much of the symbolic manipulation carried out by computers
is done by using pointers as symbols for the objects they point to. As
with symbols, it is worth reminding ourselves how it is that pointers
are useful.

In computer memory a pointer is typically not replaced by what
it points to. Rather, the use of a pointer is to allow the CPU to find
(copy into the ALU) parts of the pointed-to object. Once an object
part has been copied to the ALU, data processing operations can be
performed, perhaps calculating another pointer. Finally, if part of an
object needs to change, that part is copied back into memory.

In the electronic hardware, data is represented by bits, which are in
turn represented by voltage levels, which are capable of existing on
(and importantly, traveling along) any set of wires. Indeed, we often
think of information processing in terms of data moving around.

Pointers are simply what allow this copying to occur. The pointers
themselves do not provide any great functionality — after all, neural
networks don’t have trouble finding information even without flexi-
ble pointers. Rather, it is the movability and copyability of the chosen
data format that lies behind our current approach to electronic com-
puting. (And it is our symbolic approach to reasoning that led us to
choose such a data format in the first place, having the properties
needed by symbols: copyability, and usability as the “address” of ad-
dressable memory, which is a one-way associative memory, just what

is needed for symbols.)

After decades of neuroscience electrophysiology experiments,
there is no evidence that the brain uses such copying operations (al-
though it cannot be ruled out with certainty, and there is not universal
agreement). Instead, in the brain, to the extent that we understand the
signals we find, they appear to have meaning based on their location
(which neuron), rather than based on a spatial or temporal pattern
which would have the same meaning even if coming from a com-
pletely different set of cells. This makes it unclear how symbolic
reasoning is performed in the brain.

The open problem

Here I propose a concrete canonical instance of the reusable sym-
bol problem. Solving this instance would clearly illuminate how this
problem could be solved in general.

The goal is to design a neural-style architecture (I will leave this
undefined) which permits activations corresponding to solutions of a
Wang tiling problem [4]. Wang tiles are square tiles (not to be rotated
or flipped) with a color on each edge. A tiling must use tiles from the
finite set of available reusable tiles to cover a grid. Two tiles may
be used at adjacent locations in the tiling only if they have the same
color on the edge where they meet.

The overall architecture of the neural network should consist of
two parts: a workspace, and a set of allowed tiles. Each of these may
be of a fixed size in a given network, although it should be clear how
to expand the network to allow a larger workspace or a larger set
of allowed tiles. The workspace should consist of some form of a
grid of positions where tiles may go. The set of allowed tiles should
be implemented in such a way so that if one wants to change the
definition of a tile, then this change can be made in one place, within
the “set of allowed tiles” portion of the architecture.

This problem is easily solved by a Markov random field if ev-
ery location in the workspace knows about the set of possible tiles
and their color constraints. The problem with this solution is that ev-
ery location in the workspace must be independently trained to learn
which tiles can go next to which other tiles. In other words, it violates
the constraint that a tile definition should only appear in one place.

The challenge is to solve the problem using reusable symbols
(whose implementation I also leave undefined). The workspace
should be fillable with symbols which represent tiles from the set
of allowed tiles, but this should only be stable when done in ways
that satisfy the matching edge color constraints.

If this problem could be solved in a neurally plausible way, es-
pecially in a way that allows the set of allowed tiles to be learnable
from example tilings, then this would represent a significant advance
in our understanding of how neural systems can perform symbolic
processing.

REFERENCES

[1] Sebastian Bader, Pascal Hitzler, and Steffen Holldobler, ‘The integration
of connectionism and first-order knowledge representation and reasoning
as a challenge for artificial intelligence’, Journal of Information, 9(1),
(2006).

[2] Kathryn Laskey and da Costa Paulo, ‘Of starships and klingons:
Bayesian logic for the 23rd century’, in Proceedings of the 21th Annual
Conference on Uncertainty in Artificial Intelligence (UAI-05), pp. 346—
353. AUAI Press, (2005).

[3] Christoph von der Malsburg, “The correlation theory of brain function’,
Technical Report 81-2, Max Planck Institute for Biophysical Chemistry,
(1981).

[4] Hao Wang, ‘Proving theorems by pattern recognition II’, Bell System
Technical Journal, 40, 1-42, (1961).



