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Abstract—We describe and demonstrate a neuromorphic, ana-
log VLSI chip (termed F-LANN) hosting 128 integrate-and-
fire (IF) neurons with spike-frequency adaptation, and 16,384
plastic bistable synapses implementing a self-regulated form of
Hebbian, spike-driven, stochastic plasticity. The chip is designed
to offer a high degree of reconfigurability: each synapse may
be individually configured at any time to be either excitatory or
inhibitory and to receive either recurrent input from an on-chip
neuron or AER-based input from an off-chip neuron. The initial
state of each synapse can be set as potentiated or depressed, and
the state of each synapse can be read and stored on a computer.

I. INTRODUCTION

The pioneering work of C. Mead [1] introduced the term
“neuromorphic” for a family of hybrid analog/digital, low-
power VLSI devices designed to mimic the capabilities of
biological perception and information processing. We pro-
pose a neuromorphic device that emulates biological neurons
and synapses to attain “learning” ability by incorporating
“Hebbian-like” mechanisms of synaptic plasticity. Whether
“Hebbian” learning is based on average firing rates or on
individual spikes (“spike-time-dependent plasticity” or STDP)
is a matter of continuing debate and a choice that strongly
influences alternative designs of neuromorphic synapse cir-
cuits. The synaptic dynamics described here are spike-driven
and implements a rate-based Hebbian learning, though it is
compatible with some aspects of STDP.

It has been argued [2], [3] that plausible synaptic devices
may assume only a limited number of stable “states” and
cannot change by arbitrary small amounts. In such conditions
any deterministic learning rule (e.g., a “Hebbian” rule) has
been shown to yield highly unfavorable scaling laws for
memory capacity [2], [3]. The intuitive reason is that newly
encoded memories rapidly erase earlier memories (“palimpsest
property”). Perhaps surprisingly, far more favorable scaling
laws may be attained with a stochastic learning rule, in which
the Hebbian prescription renders synapses merely eligible for
a state change but the probability of an actual change remains
low [2], [3]. Instead of envisaging independent sources of
“noise” at each individual synapse, the necessary “noise”
may be provided by the irregularity of the pre- and post-
synaptic spike trains (as long as the network remains in an
asynchronous activity regime). In short, the theoretical analysis

of learning with biologically plausible synapses appears to pro-
vide a compelling computational argument for implementing
neurons as spiking elements.

Associative learning in networks of spiking IF neurons with
stochastic synapses has been studied both in simulation [3],
[4], [5] and in neuromorphic realizations [6], [7]. However,
these first efforts were limited to artificially simplistic stimulus
sets (e.g., strictly non-overlapping neural representations). To
extend associative learning to more realistic stimulus sets, a
further modification of the synaptic rule has been proposed,
informally known as “stop-learning” [8]. In this modification,
synaptic changes are additionally conditioned on average post-
synaptic activity being neither too high nor too low: synapses
targeting too-active neurons are not further strengthened and
synapses targeting too-inactive neurons are not further weak-
ened. This additional condition becomes crucial when partially
overlapping patterns of activity are to be distinguished, as it
prevents excessive potentiation of synapses in the overlapping
parts, which might otherwise spoil the network’s ability to
distinguish these patterns. The suitability of this learning
strategy was demonstrated in a Perceptron-like network for lin-
early separable patterns [9]. Extensions of the “stop-learning”
strategy to spiking networks with recurrent connectivity are
currently being pursued by several groups. We implemented a
preliminary version of the ‘stop-learning’ synapse in a previ-
ous chip [10]; the present network implementation, besides
improving on several synaptic design issues, will offer a
wider range of collective dynamics through a more flexibly
reconfigurable architecture. Synaptic designs inspired by the
same “stop-learning” principles were proposed in [10], [11],
[12], and are still an active topic of investigation.

The focus of this paper is on the reconfigurability and
initialization of the 16,384 synapses as well as on the ability
to read, at hardware level, the synaptic state without disrupting
the internal network activity.

Section 2 provides an overview of the chip architecture
and Section 3 describes synapse circuits. Section 4 illustrates
results concerning the ability to configure individual synapses.

II. CHIP ARCHITECTURE AND MAIN FEATURES

We describe a chip implementing a reconfigurable net-
work of 128 IF neurons with spike-frequency adaptation and
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16,384 (128×128) bistable, stochastic synapses implementing
a Hebbian rule with “stop-learning” (see Fig.1). The chip, de-
signed in standard CMOS AMS 0.35 µm technology, occupies
68.9 µm2 of Silicon. The synaptic matrix is configurable in
such a way as to support either all-to-all recurrent connectivity,
exclusively external AER (Address Event Representation) con-
nectivity, or any combination of both. In addition, the initial
efficacy and the excitatory or inhibitory nature of the synapses
may be set individually for each synapse. The synaptic matrix
is arranged in four identical 64×64 sub-matrices. As every
signal entering a sub-matrix is properly buffered, these sub-
matrices could in the future serve as building blocks for
considerably larger chips. The chip is compliant with the
AER asynchronous communication protocol widely used in
the neuromorphic engineering community. Specifically, AER-
based communication is handled through the PCI-AER board
[13], [14] which allows four chips to be connected together
(e.g. to implement a recurrent network of 512 neurons with a
uniform 25% connectivity).
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Fig. 1. F-LANN chip architecture

The neuron circuit was introduced in [15] and implements
a low power IF neuron with a constant leakage term studied
theoretically in [16]. An additional dynamic variable associ-
ated with the neuron reflects its recent average activity and is
termed ICa(t), following [8] to remind its analogy with the
intracellular calcium concentration. The dendritic tree of each
neuron is composed of 128 synapses. Each synapse accepts
as input, spikes from either internal or external neurons. In
the latter case the spikes come in the form of AER events
which are addressed to the correct synapses by an XY decoder.
Excitatory synapses are plastic, while inhibitory synapses have
fixed weights.

Even if in principle recurrent connectivity can be achieved
via the AER infrastructure, the ability to reconfigure synapses
as either recurrent or AER-based allows adequate flexibility
to optimally balance AER bandwidth requirements and com-
plexity of design. A second XY-decoder allows synapses to

be independently addressed and configured. In addition, the
internal state of selected synapses can be set and read with
dedicated circuits, independently of the AER.

The functioning of the AER has been streamlined for multi-
chip systems. The AER bus is released as soon as a transparent
latch array stores the AER event, without waiting for an
acknowledgment from the target synapse. In this way a new
transaction on the AER bus can start before the receiver
chip has completely processed the previous AER event. In
a multi-chip system, where spikes are delivered to different
receiver chips, this mechanism increases the AER bandwidth.
On the other side, if there is only one receiver chip, the AER
input circuits accept a new transaction only after fixed delay,
set long enough to ensure that the decoding of the previous
event has been completed. On the output side of the chip,
neurons reset immediately after a spike, without waiting for
the Acknowledgment signal from the AER output bus. The
memory of the emission of a spike is retained in a D-type
flip-flop, one for each neuron, until the AER system transmits
it. If the same neuron emits a second spike before the previous
one has been served, than the second spike is lost. The flip-
flop array decouples the internal activity from the AER one.
It introduces the risk of loosing events, but ensures that AER
delays do not disrupt the internal network dynamics.

III. SYNAPSE AND CALCIUM CIRCUIT
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Fig. 2. Synapse circuit main blocks

Fig.2 and Fig.3 (left panel) illustrate the synaptic circuit
and the comparator system needed to implement the model
described in [8] and briefly motivated in the introduction.
Following the arrival of a pre-synaptic spike, X jumps up-
ward or downward, depending on the following conditions:
X(t) → X(t) + a if V (t) > θp and ITH1 < ICa < ITH3;
X(t) → X(t) − b if V (t) ≤ θp and ITH1 < ICa < ITH2

where a and b are the tunable amplitudes of the jumps. In the
absence of pre-synaptic spikes, if X(t) > θX (X(t) < θX )
X relaxes towards the upper (lower) barrier and the efficacy
of the bistable synapse is set to a ‘potentiated’ (‘depressed’)
state. The synaptic efficacy changes only when X(t) crosses
θX .

679



The bistability circuit (see Fig.2) is a wide output-range
transconductance amplifier with positive feedback: it attracts
X(t) towards the upper or lower stable value depending on
the comparison with the threshold θX , which also determines,
through the clipping-block (a two-stage open-loop compara-
tor), the efficacy value (J_ – ‘depressed’ or J_ + DJ –
‘potentiated’). The VUP and VDN signals, coming from the
calcium-block, exclusively enable the branches of the Hebbian
circuit, and inject or subtract a current regulated by vu and
vd. The dendritic-branch is triggered by the pre-synaptic
spike and generates the up/down jump in the post-synaptic
V (t) according to the configuration bit Conf which sets the
synapse as excitatory or inhibitory.
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Fig. 3. Left: comparator system diagram. Right: “diff-pair integrator” log-
domain calcium circuit.

The “stop-learning” mechanism relies on the “calcium”
variable of the post-synaptic neuron. This variable, represented
by the current ICa(t), is generated by a diff-pair integrator
(DPI) implementing a log-domain filter (see Fig.3, right panel).
The output of this module, described in [17] and [18], is a
current which increases suddenly upon the arrival of impinging
spikes and exponentially decays between two spikes. For
constant average firing of the neuron, the average ICa current
level is proportional to the firing rate. The p-MOSFET on the
right side is part of the current comparators system reported
in the left panel of Fig.3. The value of ICa integrates the
post-synaptic spiking activity in the recent past. Together with
suitable thresholds, it determines which synaptic changes will
be allowed to occur. For example, it can prevent an upward
jump of X(t) when the post-synaptic neuron is already very
active, thus lowering the probability of synaptic potentiation.

The synapse accepts AER events (the AND of XAER and
YAER signals in Fig.2) or recurrent spikes nSpikerec, depend-
ing on the configuration bit Sel. The event triggers the pulse
extender circuit which generates a pulse Spike with a tunable
length. In typical conditions an AER event lasts around 200ns
while the recurrent spike only 10-20ns. The circuit has the
function to equalize the AER and recurrent pulses length by
extending them to a few microseconds. This “long” interval
of time allows, together with parameters vu and vd a fine
tuning of the amount of charge injected or subtracted from the
synaptic capacitor Csyn, giving rise to the jumps in X . The
same interval of time determines the duration of the induced
synaptic current on the post-synaptic neuron.

The module shown in Fig.3 compares ICa to three thresh-
olds ITH1, ITH2, and ITH3 (internal to the current comparator
block) to generate the two signals VUP and VDN shared among

all synapses belonging to the same dendritic tree. The com-
parison is performed by three current-mode winner-take-all
circuits [19], [20]. In parallel, the instantaneous voltage value
of the post-synaptic neuron potential V (t) is compared to a
threshold θp (see Fig.3). Depending on the outcome of these
comparisons, the current-comparator produces either an output
current enabling an upward jump for X(t), a current enabling
a downward jump, or no output current at all. Two corre-
sponding voltages VUP and VDN are produced by current-
conveyors and broadcasted along the neuron’s dendritic tree.
This system of comparators implements the inequalities above
for the dynamics of X(t).

Fig.4 illustrates the effect of the calcium circuit on X(t).
Thresholds were set to have ITH3 > ITH1 = ITH2. The
synapse is initially set depressed and then a constant current
is injected into the post-synaptic neuron. The neuron activity
begins and the calcium variable ICa undergoes upward jumps
moving to a new asymptotic average value. The trace labeled
I corresponding to ( ICa

I0
)K where K and I0 are two constant

values, is derived from the measured VCa and computed as
I = eVdd−VCa . When ICa is smaller than ITH1 = ITH2,
transitions of X are disallowed. In the intermediate regime
between ITH1 = ITH2 and ITH3, up transitions are allowed.
When ICa is larger than ITH3, transitions of X are once again
disallowed. Note that X relaxes towards its lower bound when
X < θX and towards its upper bound when X > θX .
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Fig. 4. Illustrative example of the ‘stop-learning’ mechanism (see text).
Top to bottom: the post-synaptic neuron potential, the current I , the internal
synaptic variable X, and the pre-synaptic neuron potential. The thresholds
ITH1, ITH2 and ITH3 are indicated by the dashed horizontal lines, together
with the threshold θX .

IV. SYNAPSE CONFIGURATION

Compared to the previous synapse designed for the C-
LANN chip [10], the synaptic circuit in Fig.2 embodies new
and improved blocks: the new version of the pulse extender,
the improved SISE (synapse initialization and setting element)
and the initialization circuit. This allows a higher degree of
configurability and provides the ability to initialize and read
the synaptic state via dedicated hardware. The SISE block,
designed with AMS digital standard cells, consists of two
flip-flops, used to store the configuration bits, and of a three-
state buffer, necessary to read the synaptic state. A digital
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Fig. 5. Left panel: Effect of re-configuration, a potentiated synapse is set to
the depressed state. Top to bottom: post-synaptic neuron potential, X signal,
pre-synaptic neuron potential, nWR signal. Right panel: a recurrent synapse
is set to be AER. Top to bottom: post-synaptic neuron potential, pre-synaptic
AER spike, pre-synaptic neuron potential, nWR signal.

control bus carries 4 bits (b0, b1, b2, nWR) to the SISE
selected by the row-column lines Xconf , Yconf . The activation
of the nWR bit induces both the loading of b0 and b1 in the
respective FF (Flip-Flop) and the initialization of the internal
synaptic variable X . Bit b0 loaded in the first FF produces the
Sel signal which configures the synapse as either recurrent
or AER, through the MUX visible in the pulse extender
element in Fig.2. The pulse extender element regulates the
duration of the spike; it is controlled by the voltage Pls and
triggered by the incoming spike, either AER or recurrent.
Bit b1 loaded in the second FF produces the Conf signal
which sets the synapse as excitatory or inhibitory through the
dendritic branch. Bit b2, input to the initialization circuit, is
a global signal over the entire synaptic array: it dictates the
potentiated or depressed state of the selected synapse when
nWR is enabled. The selection of a synapse through the
Xconf and Yconf lines enables the corresponding three-state
buffer: a bit coding for the synaptic state is made available
on one of the chip output pins. The digital lines involved
in this signal path have been designed with particular care
to reduce cross-talk effects on the slow analog lines. This
allows the continuous scanning of the synaptic matrix, and
hence the real time monitoring of the synaptic evolution,
without disrupting the network dynamics. Such a feature
greatly simplifies the experimenters’ work during high-level
testing. Decoders are used to access the synapses to configure
them as excitatory or inhibitory, and recursive or AER. Other
decoders are also used when addressing the synapses in case of
AER spiking activity. 7-to-128 bit decoders were implemented
to address the 128×128 synaptic matrix, using standard cells
from austriamicrosystems (AMS) and automatic place-and-
route tools supplied by CADENCE. These cells should lower
noise and reduce ground bounce and voltage drops.

The synapses configurability is illustrated in Fig.5. Left
panel shows the post-synaptic effects of a potentiated synapse
being set as depressed (larger to smaller jumps induced in the
post-synaptic potential). The right panel shows the effect of
changing the synapse from recurrent to AER (post-synaptic
jumps are first locked to the recurrently transmitted spikes,
then become locked to the AER spikes). The excitatory or

inhibitory nature of each synaptic contact can also be set; this
feature, not shown in the figure, was already implemented in
our previous chip [10].

V. CONCLUSIONS

We report here an analog VLSI building block (F-LANN)
for multi-chip neuromorphic networks with a flexible architec-
ture. Neurons and synapses feature adaptive and self-regulating
properties designed for the associative learning of complex
and partly correlated patterns. F-LANN, with 128 neurons
and 16,384 synapses, is thought as a building block for larger
networks composed of various chips linked via AER-based
communication infrastructure. For this reason, the F-LANN
implements an AER-compliant chip design in which each
neuron can be configured to host an AER segment on its den-
dritic tree, which stands ready to accept spikes from external
sources. To achieve maximal flexibility in setting a connection
architecture, each synapse can be individually configured to be
either recurrent or AER-based, either excitatory or inhibitory,
and of either high or low initial efficacy. In addition, synapses
may be read and set without impeding spike traffic on the AER
bus. In summary, the F-LANN represents a critical step toward
flexible multi-chip systems that perform associative learning of
natural stimulus sets with biologically plausible components.
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