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Abstract— In the fields of neuroscience, psychology and
robotics, an important question is how to establish a unified
system that will autonomously acquire both its input state
space and optimal goal-oriented action policies in unknown
environments. An important requirement for a such a system is to
understand how multiple sources of sensory information can be
integrated to support autonomous behavior. So far, Distributed
Adaptive Control (DAC), a self-contained neuronal system, used
only egocentric cues to achieve goal-directed behavior in a
foraging task. However, implicitly acquired navigation strategies
are not well exploited. In this paper, we evaluate the hypothesis
that learned ego-centrically defined behavioral strategies can be
improved by the integration of allocentric spatial information.
Using an extension of the DAC architecture in the context of
random foraging, we show that this integration can be rather
seen as an instance of Bayesian inference as opposed to selective
attention. We provide an extensive analysis of the architecture
and compare its performance in the broader context using a
known robotics algorithm. Our results further support the belief
that a Bayesian framework can provide for a unified view on the
organization of goal-oriented behavior.

I. INTRODUCTION

An important requirement for the development of fully
autonomous robots is a self-contained system supporting per-
ception, cognition and behavior. Important aspects of such a
system are both unsupervised learning of the input state space
from multiple information sources and optimal policies of in-
tegration in goal-oriented behavior in unknown environments.
For modeling of reasoning under uncertainty in robotics, we
often encounter methods for multi-sensor fusion based on
approximations of Bayesian inference [1] such as Dynamic
Bayesian Networks (DBN) for goal-oriented action sequence
selection [2, 3]. These models have been shown to work
well for navigation within small-scale environments but they
usually make very strong assumptions, i.e., having a predefined
state space or globally defined frames of reference. Hence,
although shown to be robust to the inherent uncertainty of their
sensory inputs and/or the partially available information about
the environment, they use global reference frames to define
an action (e.g. go north, east, west, south) and to compensate
for errors in state estimation such as those resulting from the
integration of odometry information. This raises the question
how we can achieve optimality in a self-contained architecture
that does not require a priori global information. In this paper,
we will present a robot based neural model, called Distributed

Adaptive Control (DAC) [4, 5, 6, 7] and its extentsion, that
shows that the perceptual and behavioral requirements of
decision making can be met in the context of a Bayesian
framework.

Support for the idea that the brain performs Bayesian
integration comes from work on human decision making where
it is shown that optimal predictions in everyday cognitive tasks
and on the actions of an intentional agent, based on observing
its behavior, can be explained in a Bayesian context [8, 9].
These and related observations have given rise to the field
of neuroeconomics where the neuronal mechanism underlying
optimal decision making are seen in the context of Bayesian
and related methods [10]. A meaningful Bayesian prediction
requires the existence of adequate prior knowledge and, in
this sense, represents an hypothesis on the situation to which
a subject is exposed. This suggests that the brain, as a result
of having acquired correct priors either by phylogenetic or
ontogenetic means, can produce meaningful predictions based
on the statistics of the world, even in cases where the amount
of sampled stimuli is small. Although Bayesian theory is very
general and widely applicable to many problems in decision
making, it provides only a very abstract description of the
observed phenomena. For instance, the most elaborate and
behaviorally validated models of human speech perception are
defined as abstract functional models expressed in fuzzy logic
[11, 12]. Hence, the neuronal mechanisms that could underlie
Bayesian optimal decision making are still unknown.

The optimality of the behavior is not restricted solely to the
human brain, it also has been assessed by behavioral experi-
ments on animals [13]. For instance, rats placed in a radial arm
maze, where different arms contain a varying amount of food
pellets, develop an optimal foraging strategy in terms of travel
time, probability of food occurrence and amount of food that
adapts to changes in environment [14]. It has been shown that
the adopted strategies are strongly influenced by the expected
gain and its magnitude [15] and that these strategies maintain
an optimal balance between exploration and exploitation [16].
Complementing the results of the behavioral studies, in the
study of the neuronal substrate underlying spatial navigation,
it is well accepted that the hippocampus plays a crucial
role in the generation of contextual information [17]. The
hippocampus contains neurons that show a response that is
modulated by the location of the animal in its arena: i.e place
fields. These place fields can be understood as a combination
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of view-dependent Gaussian shaped receptive fields [17, 18]
and they are thought to provide an organism with information
on its instantaneous allocentric spatial location.

It is currently not clear how this spatial information can
be integrated with other sources of information in order
to generate structured goal-oriented behavior. We study this
question in the context of a virtual mobile robot that performs
a random foraging task in an open arena. In particular,
we compare integration scenarios based on either attentional
selection or on probabilistic integration. We show that the
Bayesian integration scheme display superior performance in
the foraging task. Subsequently, we show that the extension of
the DAC architecture based on augmented recall of behavioral
sequences by a “spatial attention” signal or integration sug-
gests local mechanisms that could facilitate the transformation
of egocentrically defined actions into allocentric behavior.

II. BAYESIAN INFERENCE WITHIN THE DAC FRAMEWORK

DAC evolved from a robot based neuronal model of classi-
cal and operant conditioning to a system that generates goal-
oriented adaptive behavior that is derived from three tightly
coupled layers of control: reactive, adaptive and contextual
([5]). The architecture of the contextual layer has analogs of
the central components of a Bayesian analysis of the foraging
task: goals, actions, hypotheses, observations, experience, prior
probabilities and score function. By phrasing the foraging tasks
performed with the DAC architecture in Bayesian terms it
has been shown that the DAC architecture executes exactly
those actions that are optimal in a Bayesian sense [6]. The
following sections introduce the basic concepts of DAC and
our extension of its contextual layer that support the integration
of multiple information sources.
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Fig. 1. DAC contextual layer: sequence learning process.

Reactive layer. The reactive layer comprises prewired
reflexive relationships between simple sensory events and
actions. In our experiments, these simple sensory events are
defined as proximal cues, i.e., collision detection (punishment)
and the intensity of a local target, i.e., light (reward) or a
distance to the visual cue. If none of the cues are present,

the reactive control layer generates exploratory behavior, i.e.,
translation.

Adaptive layer. At the level of adaptive control, distal
input (colored patches) is used to form representations of
cues that co-occur with the proximal cues (target/collision
sensory input) that arise from the robot’s actions. These
representations are called prototypes. Over time, these learned
prototypes progressively replace the purely reactive triggering
of discrete actions. The local learning mechanism at this
level dynamically adjusts a measure of discrepancy between
expected and actual distal events. When the discrepancy falls
below a transition threshold, the contextual control layer is
enabled. This transition mechanism ensures that the prototypes
used in the contextual layer are based on stable classifications
constructed by the perceptual learning system of the adaptive
layer.

Contextual layer. The contextual layer provides mecha-
nisms for short- and long-term memory (STM/LTM). In the
original DAC architecture only co-occurring prototypes and
responses are stored in STM. In our extension, we additionally
store allocentric spatial information, i.e., the position where an
event has occurred. The general LTM concept still holds. A tu-
ple containing a prototype, spatial information and a response
represents a segment. Segments are stored in STM forming
a sequence that conserves the order of their occurrences, see
Figure 1. An STM sequence is stored in long term memory
when a goal state, G, is reached, such as finding a target. The
sensory content of LTM segments is continuously matched
against interpreted sensory events, P, generated by the adaptive
layer. The recall of behavioral actions from LTM is based
on the matching of ongoing sensory events to those retained
in memory. Action is estimated in a greedy manner as an
average of the LTM actions weighted by the contribution of the
matched LTM segments to which they are attached [5]. DAC
estimates an action when new observation becomes available.
A feedback mechanism favors segments following the selected
one along the corresponding LTM sequence by temporarily
increasing their weights.

We extended the architecture to provide support for our
new concept of biasing an LTM sequence based on sequence
fidelity. Sequence fidelity is illustrated on the Figure 3(a). It
represents a mechanism for memory smoothing. In the original
DAC architecture, the contribution of an LTM segment was
provided by the value of its collector unit, c, where ck

l of
segment l of sequence k is defined as:

ck
l = α(1−mk

l t
k
l ) (1)

where mk
l represents the distance of the prototype stored in the

segment to the current one [5]. α represents the normalization
constant that enforces the total sum of all LTM segment
collector units to be one. The activation the trigger unit tkl
of each segment falls back to its default value according to:

tkl (t + 1) = αT + (1− αT) tkl (t) (2)

where αT ∈ [0; 1]. This trigger unit is used to model sequence
fidelity as (1− tkl ). The collector unit of a segment is directly
proportional to the conditional probability (likelihood) of
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observing the current prototype with respect to the information
carried by the segment. The calculation of collector unit value
precedes the action selection process. Its value represents
the conditional probability p (o|r) that the robot observes
prototype o, given that a target will occur after n time steps
executing the action r associated with the prototype of the
LTM segment. This probability is greater than zero if there is
a sequence in LTM, where the n-th to last segment has stored
the action.

The justification of the probabilistic inference of the LTM
segment weights, where the computation of the α value (Eq.
1) is simplified to the calculation of the normalization constant
in a way it is proposed here, is given by the belief propagation
method [19] and it is related to the action selection process
as described in [2]. By incorporating another source of the
sensory information in a Bayesian manner, the collector unit’s
value is given as:

ck
l = α(1−mk

l t
k
l )(1− skl t

k
l ) (3)

where mk
l represents a gaussian with the distance measure

between two prototypes (as defined in [5]) as its mean, and
scale of spatial information as its standard deviation. Similarly,
skl represents a gaussian with mean equal to the Euclidian
distance between the LTM segment and the current position
of the robot, and the same scale of spatial information as its
standard deviation.

III. INTEGRATION OF SPATIAL INFORMATION

In this section, we present our two approaches for bimodal
sensor fusion: spatial attention and integration. Both fusion
mechanisms use spatial information to narrow down the num-
ber of matched segments from the LTM behavioral sequences
to improve local awareness. The spatial attention approach
improves local awareness by selecting only those ”salient“
cues that are coherent to spatial information. The spatial
integration approach, in contrast, uses a Bayesian technique
to bias cues.

In the original DAC architecture, an LTM segment contains
an egocentric visual prototype and the action performed when
the prototype was acquired. We augmented the LTM segments
to hold also allocentric spatial information. We assume that
allocentric spatial information is provided by the place cells
of the hippocampus. As an abstract version of the place fields
of hippocampal place cells, consistent with recent work [18],
we used perfect 2D-Gaussian tuned place-fields.

Spatial Attention. In the spatial attention approach, the
process of selecting LTM segments consists of two steps. In
the first step, the similarity of the current visual cues to all
LTM segments is measured. If the similarity reaches a given
threshold, we say that the segment is matched. In the second
step, the distance between the current 2D Gaussian place field
and the place field of the matched segment is used to evaluate
the quality of the segment. If the matched segment passes
second step, its similarity with the visual cue will define the
likelihood of its action. By this, possible ambiguity is reduced
as only segments that are coherent with the spatial information
are considered in the action selection process, see Figure 2(a).
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Fig. 2. a) Graphical representation of different scenarios of the sensory
integration methods. b) Top-view on the arena. Two stars represent targets.
Only one target is active at a time. As soon as robot finds active target, this
target is deactivated. The size of the arena is 40 by 25 units, where the unit
size equals to the size of a robot with respects to its camera properties. c)
Each plot represents a histogram of the position estimation error during the
recall experiment in the last 50000 cycles. Position estimation error of the
vision only, spatial attention and integration method are shown. First peak in
the position estimation error of the vision only approach is due to symmetry
of the visual cue. Second peek is estimation error that occurs when the wall
surrounding arena is in the sight of the robot.

If present, this ambiguity will lead to position estimate error,
which will then have an effect on the performance of the robot,
see Figure 2(c).

Spatial Integration. In the spatial integration approach,
visual cues and spatial information are used to calculate the
likelihood of actions stored in the memory. I.e., the value of
the LTM segment collector unit with respect to the current
observation and the robot position depends on both: the
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similarity between prototypes and the distance between the
2D Gaussian place fields, see Figure 2(a).

IV. EVALUATION

We evaluate our extensions to the model together with
additional control groups using a simulated robot in an open-
arena foraging task, see Figure 2(b).

Firstly, we evaluate the performance of these two ap-
proaches with respect to two parameters, namely cue fidelity
and sequence fidelity. We analyzed the possible cause for the
improved performance. The first hypothesis is that the im-
provement is a result of better acquired sequences. The second
hypothesis is that the acquired sequences are more efficiently
exploited. To asses the quality of stored sequences, we employ
the mutual information method [21], an information theoretic
approach that enables us to quantify the amount of missing
information in the LTM of one experiment with respect to the
other experiment. We use logarithms to the base 2 such that
the mutual information is given in the number of bits.

Secondly, we analyzed the trajectory of the robot during the
experiment. We validate that the trajectory is caused by activity
of the contextual layer and cannot be explained with the lower
layers. For this, we recorded the LTM memory sequences for
the three DAC levels separately: reactive layer, reactive and
adaptive layers, and the complete hierarchy. Then, we modeled
the LTM sequences of these levels as a hidden Markov model,
HMM [20]. Having HMM models of the DAC levels enables
us to generate optimal state sequences that we compare with
the appropriate excerpts from the robot’s trajectory which
represent observation sequences. The HMM model consists
of a set of states and transition probabilities between them.
In addition, each state has an associated emission probability
describing probability distribution for generating a symbol.
The first step in creating a HMM from LTM is to define
states and their emission probabilities, then capture transition
probabilities between such states. LTM memory consists of a
set of short sequences of ten segments capturing two to three
different visual cues. The projection of LTM segments onto
the arena surface reveals clusters centered around visual cues
(symbols). We modeled each cluster as a separate state with
Gaussian probability distribution. We generate these clusters
in an unsupervised mannner by employing the Expectation-
Maximization (EM) algorithm [22]. The EM is run until it
converges. The transition probabilties between such clusters
are then read out from the LTM sequences. We created
observation sequences from the the robot’s trajectory when
memory was active. Each sequence consists of three visual
cues. By having a set of observation sequences and their
respective optimal state sequences, we can compare their
distances. As a distance measure we used Kullback-Leibler
divergence (relative entropy) as described in [23]. Using bit as
a measurement unit for the two non-overlapping sequences we
expect a KL divergence of two bits. Two correlated sequences
have a KL divergence equal to zero. We assessed the likelihood
that the observation sequence comes from each of these
models and we looked at the correlation of these observation
sequences with their ”optimal” state sequences generated by
each of DAC HMM models.

Finally, we evaluate the system with respect to the perfor-
mance of its lower layers and in a broader context using a
known robotics algorithm.

A. Effects of Bimodal Sensory Integration

To evaluate the performance of these two approaches, we
performed four sets of experiments. The first uses the ”spatial
attention” while the second assesses the impact of the ”spatial
integration” method. We compared these results with two
control experiments in which the recall of the behavioral
sequences is based solely on either the spatial signal or the
visual cues stored in LTM.

By comparing the target rates of the four types of experi-
ments, we observed that both, the ”visual cue” and the ”spatial
only” condition show a low performance, see Figure 3(c). We
inspected the trajectories of the experiments runs of these two
groups. For both, the robot falls into two behavioral patterns:
moving along a stereotypical path including only one target
or following the wall. Effect of such behavior is reflected on
the content of the memory, i.g., the memory content of these
two experimental groups shows significantly less information
about the environment compared to the respective content in
the best performing group (integration method with the spatial
and memory smoothing scale: (0.5, 2.0))

The ”integration” approach employs a Bayesian method to
decide on the actions of the robot. This method shows the
highest performance among all other, if the spatial scale is
set low. Increase of the spatial and memory smoothing scales
decreases the performance. However, if the increase of the
uncertainty in the spatial information is counterbalanced by
decrease in the scale of the memory smoothing, the perfor-
mance is preserved.

In the ”spatial attention” approach, only those cues and
actions stored in LTM that have been stored in a region around
the current position are selected. This method results in a low
variance in memory content and performance across the given
range of memory smoothing and spatial scale. As a result of
the better exploration/exploitation strategy at the higher scales,
it outperforms the ”integration” method. While the weight of
the action stored in the LTM segment is determined solely by
the similarity of the disambiguated visual cue, these results
further suggest that of the two sources of inputs, spatial and
vision driven, the latter has a dominant role.

In summary, we showed that the integration of the two
sensory inputs not only reduces ambiguities of the egocentric
frame reference but, at the same time, it improves both: an
exploratory behavior of the robot and its performance.

B. Correlation of robots trajectory to LTM sequences

The DAC system consists of three coupled layers. The
lowest one provides prewired reflexive actions. Adaptive layer
is associating distal cues with the low sensory inputs of the
reactive layer, and over time it will overide the purely reactive
response at the places where distal cues and low sensory
inputs occur together. Contextual layer learns sequences of
perception/action pairs that lead to goal states, either targets
or collisions. We wanted to confirm that the performance
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Fig. 3. Performance data. a) An unfolded LTM sequence. Each segment
of the sequence contains an egocentric visual cue called prototype, a spatial
information and an egocentric action. The scale of the spatial information
represents the standard deviation of the 2D Gaussian, with the unit size equal
to the size of the robot and it directly influences the cue fidelity. Another
parameter is the scale of the memory smoothing. It is also represented with the
standard deviation of the 2D Gaussian and is used to enhance sequence fidelity.
b) We measured the mean number of accumulated targets over a fixed period
of time (50 000 cycles). Each line represents an average over 40 experiments
for a fixed set memory smoothing and spatial scale. The slope of the regression
line is used as measure for the target rate. c) The plots show the target rate
(upper plot) and information content(lower plot) for the four experimental
groups by varying two parameters: cue and sequence fidelity. These two
parameters are represented by spatial and memory STD respectively. The
memory of the best performing group (integration method (0.5, 2.0)) is taken
as the baseline to compare the information content of the memories stored
by each experimental group. Color on the plots corresponds to the number of
missing bits of information, with blue one being the minimum.

of the system is not achieved merely by the activity of its
lower layers, namely the reactive and the adaptive one. We
analyzed the memory content of each additional layer in the
DAC hierarchy and quantified the correlation of the path of
the robot with the LTM memory sequences. With the HMM
model created by the contextual layer, each fragment from

experimental groups

(0
.5
,0
.5
)

(0
.5
,2
.0
)

(0
.5
,3
.5
)

(0
.5
,5
.0
)

(2
.0
,0
.5
)

(2
.0
,2
.0
)

(2
.0
,3
.5
)

(2
.0
,5
.0
)

(3
.5
,0
.5
)

(3
.5
,2
.0
)

(3
.5
,3
.5
)

(3
.5
,5
.0
)

(5
.0
,0
.5
)

(5
.0
,2
.0
)

(5
.0
,3
.5
)

(5
.0
,5
.0
)

s
e

q
u

e
n

c
e

 d
is

ta
n

c
e

visual cue only
spatial only
spatial attention
integration

(a)
3 -

2.5 -

2 -

1 -

0.5 -

0 -

-0.5 -

-1 -

-1.5 -

(0
.5

,0
.5

)

(0
.5

,2
.0

)

(0
.5

,3
.5

)

(0
.5

,5
.0

)

(2
.0

,0
.5

)

(2
.0

,2
.0

)

(2
.0

,3
.5

)

(2
.0

,5
.0

)

(3
.5

,0
.5

)

(3
.5

,2
.0

)

(3
.5

,3
.5

)

(3
.5

,5
.0

)

(5
.0

,0
.5

)

(5
.0

,2
.0

)

(5
.0

,3
.5

)

(5
.0

,5
.0

)

visual only reactive layer
adaptive layer
contextual layer

experimental groups

s
e

q
u

e
n

c
e

 d
is

ta
n

c
e

3 -

2.5 -

2 -

1 -

0.5 -

0 -

-0.5 -

-1 -

-1.5 -

(0
.5

,0
.5

)

(0
.5

,2
.0

)

(0
.5

,3
.5

)

(0
.5

,5
.0

)

(2
.0

,0
.5

)

(2
.0

,2
.0

)

(2
.0

,3
.5

)

(2
.0

,5
.0

)

(3
.5

,0
.5

)

(3
.5

,2
.0

)

(3
.5

,3
.5

)

(3
.5

,5
.0

)

(5
.0

,0
.5

)

(5
.0

,2
.0

)

(5
.0

,3
.5

)

(5
.0

,5
.0

)

spatial attention reactive layer
adaptive layer
contextual layer

experimental groups

s
e

q
u

e
n

c
e

 d
is

ta
n

c
e

3 -

2.5 -

2 -

1 -

0.5 -

0 -

-0.5 -

-1 -

-1.5 -

(0
.5

,0
.5

)

(0
.5

,2
.0

)

(0
.5

,3
.5

)

(0
.5

,5
.0

)

(2
.0

,0
.5

)

(2
.0

,2
.0

)

(2
.0

,3
.5

)

(2
.0

,5
.0

)

(3
.5

,0
.5

)

(3
.5

,2
.0

)

(3
.5

,3
.5

)

(3
.5

,5
.0

)

(5
.0

,0
.5

)

(5
.0

,2
.0

)

(5
.0

,3
.5

)

(5
.0

,5
.0

)

spatial only reactive layer
adaptive layer
contextual layer

experimental groups

s
e

q
u

e
n

c
e

 d
is

ta
n

c
e

3 -

2.5 -

2 -

1 -

0.5 -

0 -

-0.5 -

-1 -

-1.5 -

(0
.5

,0
.5

)

(0
.5

,2
.0

)

(0
.5

,3
.5

)

(0
.5

,5
.0

)

(2
.0

,0
.5

)

(2
.0

,2
.0

)

(2
.0

,3
.5

)

(2
.0

,5
.0

)

(3
.5

,0
.5

)

(3
.5

,2
.0

)

(3
.5

,3
.5

)

(3
.5

,5
.0

)

(5
.0

,0
.5

)

(5
.0

,2
.0

)

(5
.0

,3
.5

)

(5
.0

,5
.0

)

integration reactive layer
adaptive layer
contextual layer

experimental groups

s
e

q
u

e
n

c
e

 d
is

ta
n

c
e

(b)

Fig. 4. Plots represent mean and std of the KL divergence between
observation and ”optimal” state sequences. a) Optimal state sequences are
generated by the HMM model of the contextual layer. From black to light
gray: visual cue only, spatial group only, spatial attention and integration
group. b) Cross-model KL divergence. Optimal state sequences generated by
the HMM model of the reactive(green) and adaptive layer(blue).

the observed robot path correlates strongly with its ”optimal”
state sequence. For the HMM models of the lower layers, the
correlation is significantly lower as confirmed by anova1 test,
p>0.001. Here we present as an equivalent measure the KL
divergence between path fragments and state sequences, see
the Figure 4.

C. Comparison to MC-POMPD

To evaluate our approach in a broader context, we compare
the results of the best performing group with the performance
of the two lower DAC layers and with the MC-POMPD
method [23], one of the known methods from robotics co-
munity for learning to act optimally in a partially observable
dynamic environment. This algorithm works over continuous
action and state spaces and it employs the value iteration,
a reinforcement learning algorithm, for action selection. For
the purpose of comparison with the DAC, a discrete set of
actions (NE, N, NW, W, SW, S, SE, E) is used and distance
to the next goal is provided directly as a reward. Each so-
called ”belief” state, is represented by a set of samples. The
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actual implementation of how a set of samples is drawn from
the state space follows the seminal paper of [24]. Up to
K(= 10) similar belief states are stored in a memory. Each
memorized belief state is accompanied by the expected reward
(utility) for each action. In the MC-POMD method, the belief
propagation uses the Monte Carlo sampling. Proprioceptive
information and vision are used as input. For a given belief
state, an outcome (utility) of all actions is simulated and the
action that maximizes the expected reward is selected. A utility
value of each action is approximated by interpolation from
corresponding utility values of the K nearest-neighbor belief
states. The sampling-based Bellman backup is used for their
update. The results show that the contextual layer achieves
up to three times better performance than the lower layers of
DAC hierarchy, and its performance is only ten percent lower
then that of the MC-POMDP method.
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Fig. 5. Comparison of the performance of the reactive layer, adaptive layer,
an the MC-POMDP algorithm.

V. CONCLUSION

Our results show that the approaches which use both the
visual and spatial information perform better and, at the
same time, they improve the robot’s exploratory behavior
which we confirmed by inspecting contents of their respective
LTM memories. Comparison of the memory content and the
performance at the different memory smoothing and spatial
scales further suggests that the memory content of the LTM
sequences reflects the method by which they are formed.

Both factors, scale of the memory smoothing and the spatial
information, have an impact on the performance. A narrow
spatial window helps selecting the correct sequences and thus
reduces the ambiguity of the information stored in the memory.
Widening of the spatial window degrades the performance
by introducing additional noise into the system leading to
the inclusion of incorrect sequences in the decision making
process. For a wide spatial signal, the recall behavior matches
the one visual cue only control group. Sequence fidelity,
represented by the memory smoothing scale, can be used
to counterbalance the performance decrease resulting from
increased uncertainty in the spatial information.

If the uncertainty of the spatial information and the memory
smoothing are in the lower range, the ”integration” approach
outperforms the ”spatial attention”. However, a low variance

in memory content and performance across the upper range of
memory smoothing and spatial scale of the ”spatial attention”
suggests the feasibility of a combined approach.

We compared DAC performance with the performance of
the MC-POMDP algorithm. The results show that DAC’s
performance is only ten percent lower then that of the MC-
POMDP method. DAC’s peculiar way of sampling the input
state and of matching learned perception/action pairs could be
improved by introducing an additional sequence bias that will
directly reflect goal fidelity. However, this result is remarkable
considering that DAC does not require a priori global informa-
tion, i.e. it uses purely egocentric actions vs. allocentric ones
used by the benchmark POMDP.
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