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Abstract— In this study, two chaotic circuits coupled by a
time-varying resistor are investigated. We assume that the time-
varying resistor is realized by switching a positive and a negative
resistors alternately. By carrying out circuit experiments and
computer simulations, we confirm that interesting switching
phase states between in-phase and anti-phase is observed.

I. INTRODUCTION

Synchronization phenomena in complex systems are very
interesting to describe various higher-dimensional nonlinear
phenomena in the field of natural science. Studies on syn-
chronization phenomena of coupled oscillators are extensively
carried out in various fields, physics [1]-[4], biology [5], [6]
engineering [7]-[11] and so on. Because many researchers
suggest that synchronization phenomena of coupled oscillators
have some relations to information processing in the brain. We
consider that it is very important to investigate the synchro-
nization phenomena of coupled oscillators to realize a brain
computer for the future engineering application.

On the other hand, there are some systems whose dissi-
pation factors vary with time, for example, under the time-
variation of the ambient temperature, an equation describing
an object moving in a space with some friction and an
equation governing a circuit with a resistor whose temperature
coefficient is sensitive such as thermistor. However, there are
few discussions about coupled oscillators coupling by a time-
varying resistor.

In our previous research, we have investigated synchro-
nization phenomena in van der Pol oscillators coupled by a
time-varying resistor. We realized the time-varying resistor by
switching a positive and a negative resistors periodically. By
changing the duty ratio p, we confirmed that the characteristics
of the synchronization phenomena changed as follows. First,
for smaller p, the two coupled oscillators are synchronized
only in anti-phase. Second, for intermediate p, the coexistence
of the in-phase and the anti-phase synchronizations can be ob-
served. Finally, for larger p, only the in-phase synchronization
can be confirmed. We consider what complex synchronization
phenomena can be observed, when chaotic circuits are coupled
by time-varying resistor.

In this study, two chaotic circuits coupled by a time-varying
resistor are investigated. First, the coexistence of in-phase and
anti-phase synchronization are observed. Next, we confirm
that interesting synchronization phenomena with switching
phase states between the two chaotic circuits can be observed
when the strength of coupling parameter R is decreased.

Furthermore, the sojourn time of the in-phase and the anti-
phase are investigated. We confirm that the sojourn time
depends on the frequency and the strength of the time-varying
resistor.

II. CIRCUIT MODEL

Figure 1 shows the circuit model, which is the chaotic
version of the circuit investigated in [12]. In the circuit, two
identical chaotic circuits are coupled by a time-varying resistor
whose characteristics are shown in Fig. 2 [13].
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Fig. 1. Circuit model (TVR is a Time-Varying Resistor).

2πp

2πR(t)

ωtt0

R

-R

Fig. 2. Characteristics of the TVR.

First, the i−v characteristics of the diodes are approximated
by two-segment piecewise-linear functions as

vd(ik) = 0.5(rdik + E − |rdik − E|). (1)

By changing the variables and parameters,
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the normalized circuit equations are given as⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

dxk

dτ
= β(xk + yk) − zk ± γ(x1 + x2)

dyk

dτ
= αβ(xk + yk) − zk − f(yk)

dzk

dτ
= xk + yk (k = 1, 2)

(3)

where the sign of the coupling term changes according to the
value of the time-varying resistor. The normalized character-
istics of the diodes are given as

f(yk) = 0.5 (δyk + 1 − |δyk − 1|). (4)

III. SYNCHRONIZATION PHENOMENA

A. In-Phase and Anti-Phase Synchronization

We observed that the two coupled oscillators are synchro-
nized in in-phase and anti-phase as shown in Figs. 3 and 4.
These two synchronization states can be obtained by giving
different initial conditions. The parameters of the chaotic
circuits are fixed as α = 7.0, β = 0.084, γ = 0.1 and
ω = 1.924.
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Fig. 3. In-phase synchronization (computer simulation results). (a) 1st circuit
attractor (x1 vs z1). (b) 2nd circuit attractor (x2 vs z2). (c) Phase difference
(x1 vs x2). (d) Time wave form (τ vs x1 and x2).
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Fig. 4. Anti-phase synchronization (computer simulation results). (a) 1st
circuit attractor (x1 vs z1). (b) 2nd circuit attractor (x2 vs z2). (c) Phase
difference (x1 vs x2). (d) Time wave form (τ vs x1 and x2).

We also confirm that the two coupled chaotic circuits are
synchronized in in-phase or at anti-phase in circuit experi-
ments as shown in Figs. 5 and 6.
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Fig. 5. In-phase synchronization (circuit experimental results). (a) 1st circuit
attractor (I1 vs v1). (b) 2nd circuit attractor (I2 vs v2). (c) Phase difference
(I1 vs I2). (d) Time wave form (t vs I1 and I2). L1 = 300mH, L2 =
10mH, C = 33nF, r = 700Ω and R = 100Ω.
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Fig. 6. Anti-phase synchronization (circuit experimental results). (a) 1st
circuit attractor (I1 vs v1). (b) 2nd circuit attractor (I2 vs v2). (c) Phase
difference (I1 vs I2). (d) Time wave form (t vs I1 and I2). L1 =
300mH, L2 = 10mH, C = 33nF, r = 700Ω and R = 100Ω.

The one parameter bifurcation diagram of x1 for in-phase
and anti-phase synchronization modes are shown in Fig. 7.
Figure 8 show the one parameter diagram of the phase
difference. We can confirm the coexistence of in-phase and
anti-phase synchronizations for 0.055 < β < 0.090.

B. Switching Phase States

In this section, we investigate the synchronization phe-
nomena when the strength of the coupling parameter γ is
decreased. We can confirm that the switching of the phase
states between the in-phase and the anti-phase is observed as
shown in Fig. 9. These switching phenomena could not be
confirmed in the two van der Pol oscillators coupled by time-
varying resistor. The chaotic circuits coupled by time-varying
resistor has possibility to generate complex phenomena.

Next, we pay our attention to the sojourn time of the in-
phase state and the anti-phase state. We carry out the 30
moving average of the phase difference between two coupled
chaotic circuits to distinguish the in-phase state and the anti-
phase state more correctly. The simulated result of the moving
average of the phase difference is shown in Fig. 10. We
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(a) Bifurcation diagram of x1 for in-phase synchronization mode.
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Fig. 7. One parameter bifurcation diagrams for α = 7.0, γ = 0.1, ω =
1.924. Horizontal axis: β.
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Fig. 8. Phase difference.

define in-phase or anti-phase synchronization, by using the
30 moving average of the phase difference. Namely, when
the phase difference is smaller or larger than 90 degrees, the
synchronization state of two chaotic circuits are determined to
in-phase or anti-phase state.

The frequency distribution of the sojourn time of the
synchronization states is investigated. Figure 11 shows the
simulated results of the frequency distribution. From these
figures, the frequency distribution of the in-phase and the anti-
phase is similar when the parameters of the chaotic circuits are
set as follows: α = 7.0, β = 0.084, γ = 0.095 and ω = 1.924.

Furthermore, the average sojourn time of the in-phase state
and the anti-phase state when the frequency ω of the time-
varying resistor is changed. The simulated result is shown in
Fig. 12. The horizontal axis is frequency ω and the vertical
axis is average sojourn time. The average sojourn time of the
in-phase state increase by increasing ω. On the other hand, the
average sojourn time of the anti-phase state is almost constant.
From these results, we can see that the anti-phase state does
not depends on the frequency ω of the time-varying resistor.
When ω is smaller than 1.908, two chaotic circuits coupled by
time-varying resistor do not synchronous neither the in-phase
state nor the anti-phase state. And ω is larger than 1.930, the
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Fig. 9. Switching phase states (γ = 0.095).
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Fig. 10. Moving average of the phase states.
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(a) In-phase. (b) Anti-phase.
Fig. 11. Frequency distribution of sojourn time.

only in-phase state can be occurred.
Some example of the switching synchronization state and

the frequency distribution when ω are set to 1.922 and 1.926
are shown in Figs. 13 and 14, respectively. In the case of
ω = 1.922, the sojourn time of the in-phase state is longer
than the anti-phase state (Fig. 13). In the case of ω = 1.926,
the sojourn time of the anti-phase state is longer than the in-
phase state (Fig. 14).

Finally, we investigate synchronization in dependence on the
coupling strength γ. The average sojourn time of the in-phase
state and the anti-phase state is shown in Fig. 15. The average
sojourn time of the in-phase state increase by increasing γ.
On the other hand, the average sojourn time of the anti-phase
state is almost constant. From these results, we can see that the
anti-phase state does not depends on γ as well as frequency
ω.

IV. CONCLUSIONS

In this study, we have investigated phase differences in two
chaotic circuits coupled by a time-varying resistor when the
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Fig. 12. Average sojourn time in dependence on ω.
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Fig. 13. Switching phase state for ω = 1.922. (a) Moving average of
switching synchronization state. (b) Frequency distribution of sojourn time
(in-phase). (c) Frequency distribution of sojourn time (in-phase).

frequency of the time-varying resistor is changed. By carrying
out computer calculations, we can confirmed that the syn-
chronization phenomena of the two coupled chaotic circuits is
depend on the frequency of the time-varying resistor. Further,
we investigated the sojourn time of the synchronization state
when the frequency ω and coupling strength γ are changed.
The average sojourn time of the anti-phase has no influence
for changing ω and γ.
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(a) Moving average of switching synchronization state.
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Fig. 14. Switching phase state for ω = 1.926. (a) Moving average of
switching synchronization state. (b) Frequency distribution of sojourn time
(in-phase). (c) Frequency distribution of sojourn time (in-phase).
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