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Abstract – Neuromorphic circuits are being used to develop a new generation of computing
technologies based on the organizing principles of the biological nervous system. Within this
context, we present neuromorphic circuits for implementing massively parallel VLSI net-
works of integrate-and-fire neurons with adaptation and spike-based plasticity mechanisms.
We describe both analog continuous time and digital asynchronous event-based circuits for
constructing spiking neural network devices, and present a VLSI implementation of a spike-
based learning mechanisms for carrying out robust classification of spatio-temporal patterns,
and real–time sensory signal processing. We argue that these types of devices have great po-
tential for exploiting future scaled VLSI processes and are ideal for implementing sensory-
motor processing units on autonomous and humanoid robots.
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1.  Introduction

Neuromorphic circuits are a class of hybrid analog/digital circuits that implement hardware models of bio-
logical systems. Neuromorphic systems carry out sensory-signal processing tasks using computational principles
analogous to the ones used by nervous systems. The styles of computation used by nervous systems are funda-
mentally different from those used by conventional computers: biological neural networks process information
using energy-efficient asynchronous, event-driven, methods. They are adaptive, fault-tolerant, self-repairing, learn
from their interactions with the environment, and can flexibly compose complex behaviors by combining multiple
instances of simpler elements. These biological abilities offer an attractive alternative to conventional computing
strategies. When implemented in Very Large Scale Integrated (VLSI) technology, neuromorphic systems share
to a large extent the same physical constraints of their biological counterparts. Therefore they often have to use
similar strategies for maximizing compactness, optimizing robustness to noise, minimizing power consumption,
and increasing fault tolerance. By emulating the neural style of computation, neuromorphic VLSI architectures can
exploit to the fullest potential the features of advanced scaled VLSI processes and future emerging technologies,
naturally coping with the problems that characterize them, such as device inhomogeneities, and imperfections.

The greatest successes of neuromorphic systems to date have been in the emulation of peripheral sensory
transduction: single chip devices, such as silicon retinas, or silicon cochleas have been successfully implemented
and used in a wide variety of applications [25, 32]. In recent years a new class of neuromorphicmulti-chipsystems
started to emerge [26, 10, 9, 30]. These systems typically comprise one or more neuromorphic sensors, interfaced
to chips that implement general-purpose computational architectures based on networks of silicon neurons and
synapses. Consistent with the neuromorphic engineering approach, the strategy used to transmit signals across
chip boundaries in these types of systems is inspired from the nervous system: output signals are represented by
stereotyped digital pulses (spikes), and the analog nature of the signal is typically encoded in the mean frequency
of the neuron’s pulse sequence (spike rates). Similarly, input signals are represented by spike trains, conveyed to
the chip in the form of asynchronous digital pulses, that stimulate their target synapses on the receiving chip. The
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circuits that generate and manage these streams of input/output digital pulses are fast asynchronous logic elements.
Conversely, the circuits that generate the on-chip synaptic currents when stimulated by incoming spikes are slow
low-power analog circuits. Typically these types of analog circuits operate in theweak-inversionor subthreshold
regime [22], where current amplitudes are of the order of picoamperes and operating time-constants are of the
order of milliseconds. These biologically plausible time constants are required so that the circuit response is
well-matched to the sensory signals they are designed to process, and the neuromorphic system is inherently
synchronized with the real world events. Between two consecutive spikes generated by a "slow" analog neuron
(typically firing at rates of a few Hertz) digital pulses generated by millions of other neurons can be multiplexed
on a fast digital bus, and conveyed to receiver chips. Temporal integration of input spikes inside the receiver chip,
at the level of the synapses, and the spatio-temporal integration of weighted synaptic currents at the level of the
neurons take place in a massively parallel fashion, and the integration time does not scale with the network size.

As VLSI networks of spiking neurons are being used more and more often in multi-chip neuromorphic sys-
tems, the development of spike-based learning circuits compatible with these systems is extremely important.
Spike-based learning circuits enable these multi-chip systems to adapt to the statistics of their input signals, to
learn and classify complex sequences of spatio-temporal patterns (e.g.arising from visual or auditory signals), and
eventually to interact with the user and the environment.

In this article we present a specific instance of a generic reconfigurable neural architecture that comprises
an array of spiking neurons, silicon synapses and spike-based learning circuits which implement a novel synaptic
plasticity algorithm recently proposed in [8]. In the following sections we describe the asynchronous infrastructure
used to construct large-scale multi-chip systems, the circuits that implement the device’s neurons and synapses,
the VLSI spike-based plasticity mechanism, and experimental results demonstrating how the system fulfills the
learning model’s requirements for classifying complex patterns of mean firing rates. In the conclusions we point
out the advantages of this approach and propose possible applications for these types of devices.

2.  Multi-chip Systems and the Address-Event Representation

A wide range ofspike-basedneuromorphic devices has been developed in recent years. These range from
sensory devices such as spiking silicon retinas and spiking silicon cochleas [21, 10, 31], to reconfigurable arrays
of integrate and fire neurons [26, 18, 9], and learning chips implementing detailed models of spike-based synaptic
plasticity [18, 3, 2, 29, 7]. In parallel with the development of pulse-based VLSI devices, there have been significant
advancements in the development of asynchronous event-based communication infrastructures. These led to the
construction of an impressive set of pulse-based multi-chip systems, such as vision-based systems that emulate the
orientation selectivity functions of the visual cortex [9, 26, 10], or large-scale systems that can perform convolution,
segmentation and object tracking in natural scenes [30].

The asynchronous communication protocol used in these types of multi-chip systems is based on theAddress-
Event Representation(AER) [20, 5]. In AER, each neuron on a sending device is assigned an address. When
the neuron produces a spike its address is instantaneously put on an asynchronous digital bus (see Figure 2). In
the case of single-sender/single-receiver communication, a simple handshaking mechanism ensures that all events
generated at the sender side arrive at the receiver side. Event ‘collisions’ (cases in which sending nodes attempt to
transmit their addresses at exactly the same time) are managed by on–chip arbitration schemes. Systems containing
more than two AER chips can be constructed by implementing special purpose off-chip arbitration schemes.

These multiplexing strategies are very efficient because only the addresses of active elements are transmitted
(as opposed to conventional scanning techniques, that allocate the same bandwidth for all the pixels, independent
of their activity). The source address-events being transmitted on the digital bus can be translated, converted or
remapped to multiple destinations using conventional logic and memory elements. AER infrastructures therefore
allow us to construct large multi-chip networks with arbitrary connectivity, and to seamlessly reconfigure the
network topology. In this way we exploit at best both the programmable and noise-insensitive properties of digital
logic when transmitting signals across chips, and the size and power-efficient properties of the parallel analog
neuromorphic circuits in the core of the chips.
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Figure 1. Asynchronous communication scheme between two chips using the Address-Event Representation
(AER). When a neuron on the source chip generates an action potential, its address is placed on a common digital
bus. The receiving chip decodes the address events and routes them to the appropriate synapses.
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Figure 2. Schematic diagram of an integrate-and-fire neuron. The input currentIin is integrated onto the neuron’s
membrane capacitorCmem until the spiking threshold is reached. At that point the output signalVspk goes from
zero to the power supply rail, signaling the occurrence of a spike, and the membrane capacitor is reset to zero.
The “leak” module implements a current leak on the membrane. The “spiking threshold” module controls the
voltage at which the neuron spikes. The “adaptation” module subtracts a firing rate dependent current from the
input node. The amplitude of this current increases with each output spike and decreases exponentially with time.
The “refractory period” module sets a maximum firing rate for the neuron. The “positive feedback” module is
activated when the neuron begins to spike, and is used to reduce the transition period in which the inverters switch
polarity, dramatically reducing power consumption. The circuit’s biases (Vlk, Vadap, Valk, Vsf , andVrf ) are all
subthreshold voltages that determine the neuron’s properties.

3.  A Low-power Silicon Neuron Circuit

A spiking neuron model that allows us to implement large, massively parallel networks of neurons is the
Integrate-and-Fire (I&F) model. I&F neurons integrate pre-synaptic input currents and generate a voltage pulse
analogous to an action potential when the integrated voltage reaches a spiking threshold. Networks of I&F neurons
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have been shown to exhibit a wide range of useful computational properties, including feature binding, segmen-
tation, pattern recognition, onset detection, input prediction,etc. [23]. Many variants of these circuits had been
built during the 50’s and 60’s using discrete electronic components. The first simple VLSI version was probably
the Axon-Hillock circuit, built by Mead in the late eighties [28]. In this circuit, a capacitor that represents the
neuron’s membrane capacitance integrates current input to the neuron. When the capacitor potential crosses the
spiking threshold a pulse is generated and the membrane potential is reset. This circuit captures the basic principle
of operation of biological neurons, but cannot faithfully reproduce all of the dynamic behaviors observed in real
neurons.

More elaborate models of neurons, that take into account the biophysical properties of the voltage depen-
dent conductances and currents present in real neurons have also been proposed. The first and most influential
conductance-based silicon neuron is perhaps that of Douglas and Mahowald [24]. This silicon neuron is composed
of connected compartments, each of which is populated by modular sub-circuits that emulate particular ionic con-
ductances. This circuit can reproduce in great detail many of the behaviors observed in real neurons, but their
overall size and circuit complexity is significantly larger than the one of the simpler Axon-Hillock circuit.

A compromise between the above two approaches is provided by a more elaborate I&F neuron circuit that
implements additional neural characteristics, such as spike-frequency adaptation properties and refractory period
mechanisms. An example of such a circuit is shown in Figure 3. In addition to implementing the basic behavior
of integrating input currents and producing output pulses at a rate that is proportional to the amplitude of its input,
this low-power I&F neuron [18] implements aleak mechanism (as in leaky I&F neuron models); an adjustable
spiking thresholdmechanism for adapting or modulating the neuron’s spiking threshold; arefractory periodmech-
anism for limiting the maximum possible firing rate of the neuron; and a spike-frequencyadaptationmechanism,
for modeling some of the adaptation mechanisms observed in real neurons. The circuit’s low-power dissipation
properties derive from the positive feedback block, that drastically reduces the switching time of the neuron’s first
inverter.

Figure 3 shows experimental measurements from one of these silicon neurons, in response to a constant current
input. Figure 3(a) shows a single spike, where the effect of positive feedback is evidenced in the figure’s inset.
The data in the figure inset is fitted with an equation analytically derived from the circuit schematics, and fully
characterized in [17]. Figure 3(b) shows the effect of the spike-frequency adaptation block, when the neuron is
stimulated with a constant current step. After an initial transient, the mean firing rate of the neuron decreases to
a low steady-state value. This mechanism ensures that the neuron responds mainly to changes in the input, and
minimizes the bandwidth requirements for data transmission.

4.  A Compact Silicon Synapse Circuit

Synapses are highly specialized structures that represent the input terminals of a neuron, and are responsible
for converting sequences of digital spikes into analog currents. When a spike generated by a source neuron reaches
a pre-synaptic terminal, a cascade of events leads to the production of ionic currents that flow into or out of the post-
synaptic neuron’s membrane. These excitatory or inhibitory post-synaptic currents (EPSC or IPSC respectively)
have temporal dynamics with a characteristic time course that can last up to several hundreds of milliseconds [12].
In neuromorphic chips, the detailed dynamics of post-synaptic currents can be readily emulated using dedicated
subthreshold analog circuits. An example of an excitatory synapse circuit is shown in Figure 4. This circuit,
dubbed the “Diff-Pair Integrator” (DPI), implements a log-domain temporal filter that reproduces the temporal
properties of real synapses and accounts for the linear summation property of post-synaptic currents [4]. The DPI
has independent control of time constant, synaptic weight, and synaptic scaling parameters; moreover it supports
a wide range of synaptic properties, ranging from short-term depression to conductance-based EPSC generation,
to synaptic plasticity. The time course and duration of the synaptic currents is set by the circuit’s time constant
parameterIτ , while their amplitude can be modulated locally by changing the synaptic weight biasVw, or globally
by changing the common synaptic scaling biasVthr.

Typically, in a neural-network chip, many synaptic circuits are connected to an I&F neuron (e.g. see Figure
5(a)). The output currents of all the afferent synapses are summed in parallel onto the neuron’s membrane capacitor
node, following Kirchhoff’s current law. If multiple neurons are present on the chip, as is usually the case (e.g.
see Figure 2), they also integrate in parallel the net input currents, and produce spike trains proportional to the
weighted sum of their synaptic currents.
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Figure 3. (a) Membrane potentialVmem of the silicon neuron circuit in response to a constant input current. The
inset shows the effect of the positive feedback block, whenVmem reaches the spiking threshold. The solid line
represents a fit of the data derived analytically from the circuit equations. (b) Instantaneous firing rate as a function
of spike count. This data shows the effect of the spike-frequency adaptation block, when the neuron is stimulated
with an input current step. The inset shows how the individual spikes increase their inter-spike interval, with time.
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Figure 4. (a) The Diff-Pair Integrator circuit. The circuit’s analog output currentIsyn is an EPSC that encodes
the frequency of the input spikes, represented as digital voltage pulses arriving at theVspk node. The circuit’s
time constant is set by adjusting the value of theIτ current. TheVthr bias in the “gain” module can be used to
set the circuit’s gain. Similarly the synaptic efficacy can be set with theVw bias voltage in the “weight” module.
Additional circuits can be connected to theVw node to implement short and/or long term plasticity mechanisms,
and to locally store or refresh the value of the weight. (b) Measured EPSC in response to an input step current, for
different values of the synaptic weight. The shaded curves show the DPI response, and the superimposed dashed
lines represent the fits of the data with the circuit’s impulse response derived from the circuit equations [4].

5.  Plasticity, Learning, and Classification

One of the key properties of biological synapses is their ability to exhibit different forms ofplasticity. The
type of plasticity that we consider here is “long-term” plasticity [1]. This mechanism produces long term changes
in the synaptic strength of individual synapses in order to form memories or learn about the statistics of the input
stimuli.
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In neuromorphic VLSI chips, implementations oflong–termplasticity mechanisms allow us to implement
learning algorithms and set synaptic weights automatically, without requiring dedicated pins or wires for each
individual synapse. Moreover, plasticity mechanisms based on the timing of the spikes (or Address-Events) map
very effectively onto silicon neuromorphic devices [18, 6, 14, 16]. A popular class of spike-driven learning rules
that has recently been the subject of renewed interest is the one based on the Spike Timing Dependent Plasticity
(STDP) [27, 1]. In STDP the relative timing of pre- and post-synaptic spikes determine how to update the efficacy
of a synapse. Several examples of STDP leaning chips have been fabricated [18, 2, 6], and a wide range of
theoretical models proposed. It has been shown, both in theoretical models and VLSI implementations, that STDP
can be effective in learning to classify spatio-temporal spike patterns [15, 2]. However, the STDP algorithm in its
simplest form has the problem of not being suitable for learning different patterns of mean firing rates [1].

An additional problem that arises when considering physical implementations of synapses, either biological or
electronic, has to do with the fact that the synaptic weights are bounded (they cannot grow indefinitely or assume
negative values). This imposes strong constraints on the network’s capacity to preserve memories, stored in the
synaptic weights: in our VLSI implementation we have to make sure we don’t over-write the stored synaptic values
due to the storage of new memories. Furthermore we have to implement long-term storage of the synaptic weight
voltage biases, making sure they don’t decay with the passage of time. It has been shown that an efficient strategy
for protecting previously stored memories is to use two stable synaptic efficacy states per synapse and very low
average number of transitions from one stable state to the other [13]. By modifying only a random subset of the
synapses with a small probability, memory lifetimes increase by a factor inversely proportional to the probability
of synaptic modification [13]. As for spike sequences observed in cortical recordingsin vivo, patterns obtained
from AER sensors in response to real-world stimuli are noisy. We decided to use a bistable synapse circuit and
exploit the noise in the input spike patterns to implement the stochastic update mechanism required to increase
memory lifetimes. Using just two stable synaptic states solves efficiently also the problem of long-term storage: it
is sufficient to use a bi-stable circuit that restores the synaptic state to either its high rail or its low one, depending
if the weight is above or below a set threshold. In this way memory preservation is guaranteed also in the absence
of stimuli, or when the pre-synaptic activity is very low.

Concerning the weight-update rule, rather than using a simple form of STDP we implemented the spike-
triggered plasticity mechanisms described in [8], which depends on the post-synaptic membrane potential and on
a slow “calcium” variable that represents the neuron’s recent spiking activity. This model [8] has been shown to be
able to classify patterns of mean firing rates, to capture the rich phenomenology observed in neurophysiological
experiments on synaptic plasticity, and to reproduce the classical STDP phenomenology.

The circuits that implement this plasticity mechanism are shown in Figure 5. A spike-triggered weight-update
module is implemented in every synapse (see Figure 5(b)), while a post-synaptic stop-learning control module
(shown in Figure 5(c)) is implemented only at the neuron level.

5.1 Spike-triggered weight-update module

This module comprises four main blocks: an input AER interfacing circuit [5], a bi-stability weight refresh
circuit, a spike-triggered weight update circuit and a DPI circuit, of the type described in Section 4. Upon the
arrival of an input address-event, the AER circuits produce an active-high pulsepre, and a complementary active-
low pulse∼ pre. These pulses trigger the weight update block. Thepre pulse is also used to drive the plastic
synapse’s diff-pair integrator. The bi-stability weight refresh circuit is a positive-feedback amplifier with very
small “slew-rate” (set by theVilk bias) that compares the weight voltageVWi to a set thresholdVwth, and slowly
drives it toward one of the two railsVwhi or Vwlow, depending whetherVWi > Vwth or VWi < Vwth respectively.
This bistable drive is continuous and its effect is superimposed to the one from the spike-triggered weight update
circuit.

If during a pre-synaptic spike theVUP signal from the post-synaptic stop-learning control module is enabled
(VUP < Vdd), the synapse’s weightVWi undergoes an instantaneous increase. Similarly, if during a pre-synaptic
spike theVDN signal from the post-synaptic weight control module is active,VWi undergoes an instantaneous
decrease. If the weight increases bringVWi above theVwth threshold, the bi-stability block will slowly driveVWi

towardVwhi (thus consolidating the potentiated state of the synapse). Conversely, if the weight decreases bring
VWi below theVwth threshold, the bi-stability block will consolidate the synapse’s depressed state, drivingVWi to
theVwlow stable state.
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Figure 5. (a) Schematic diagram of a typical VLSI learning neuron: multiple instances of synaptic circuits source
in parallel their output currents into the I&F neuron’s membrane capacitance. The I&F neuron integrates the
weighted sum of the currents and produces sequences of spikes in output. (b) Synapse with pre-synaptic weight
update module. An AER asynchronous logic block receives input spikes and generates thepre and∼ pre pulses.
An amplifier in positive-feedback configuration slowly drives the weight voltageVW i toward one of the two stable
statesVwlow or Vwhi. The transistors driven by thepre and∼ pre pulses, together with the ones controlled by the
V ′

UP andV ′
DN signals implement the weight update. The diff-pair integrator block generates the output synaptic

currentIsyn that is sourced into theVmem node of the I&F circuit. (c) Neuron with post-synaptic weight control
module. An I&F neuron circuit, integrates the input synaptic currents and produces a spike train in output. A
diff-pair integrator filter generates theVCa signal, encoding the neuron’s mean firing rate. Voltage comparator
and a current comparator circuits determine whether to update the synaptic weights of the afferent synapses, and
whether to increase or decrease their value (see Section 5.2 for details).

5.2 Post-synaptic stop-learning control module

This module, shown in Figure 5(c), is responsible for generating the two global signalsVUP andVDN that
enable positive and negative weight updates respectively. The signalsV ′

UP andV ′
DN are buffered copies ofVUP

andVDN , that are shared among all synapses belonging to the same dendritic tree. Post-synaptic spikesVspk,
generated by the I&F neuron are integrated by a diff-pair integrator. The integrator produces aVCa signal, related
to the Calcium concentration in real neurons, that represents the neuron’s mean firing rate. Learning is enabled only
if the neuron’s mean firing rate is in an intermediate range. Indeed, if the rate is either very high or very low, this
indicates that the current synaptic weights already allow the neuron to classify correctly the input pattern [8, 19],
so the weight update should be switched off. This stop-learning condition is evaluated in our circuits by comparing
VCa to three different thresholds (Vth1, Vth2, andVth3) using winner-take-all circuits as current comparators [19].
In parallel, the neuron’s membrane potentialVmem is compared to a fixed thresholdVmth. The values ofVUP

andVDN depend both on the state of the neuron’s membrane potentialVmem and its Calcium concentrationVCa.
Specifically if Vth1 < VCa < Vth3 andVmem > Vmth, then the arrival of a pre-synaptic spike at a synapse
produces an increases in its synaptic weight. And ifVth1 < VCa < Vth2 andVmem < Vmth, then the pre-synaptic
spike produces a decreases in the synapse’s weight. Otherwise no changes in the synaptic weights are allowed.

This stop-learning mechanism, together with the bi-stability circuit, the spike-driven weight update circuits,
and the stochasticity in the AER spike trains allow us to faithfully implement the learning model proposed in [8].
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Figure 6. Layout of a6.1mm2 neuromorphic chip comprising an array of 16 I&F neurons and 2048 synaptic
circuits. The vast majority of the silicon area is occupied by plastic synapses. The row of 16 neurons is layed out
on the far right of the chip. The AER digital interfacing circuits are layed out on the periphery of the chip.

6.  Experimental Results

We designed an AER trans-ceiver chip comprising an array of 16 I&F neurons and 2048 synaptic circuits: 128
per neuron, of which 120 plastic (as described in Figure 5(b)), 4 excitatory non-plastic (as described in Figure 4(a))
and 4 inhibitory, non-plastic. The chip, fabricated using a standard0.35µm CMOS technology, occupies an area
of 6.1mm2 (see Figure 5.2).

To characterize the plasticity circuits and test the the stochastic nature of the weight update mechanism, we
stimulated a plastic synapses and observed its weight voltage as it was being updated. Specifically, we first made a
post-synaptic neuron fire at an average frequency of 80Hz, by stimulating one of its excitatory non-plastic synapses.
Once the theVCa voltage was in the relevant range, as specified in Section 5.2, we stimulated also one of the plastic
synapses, with Poisson distributed spike trains with a mean firing rate of 100Hz. Figure 7(a) shows an example of
a stimulation session where the weight was increased several times during the trial, but never consolidated a Long
Term Potentiation (LTP) transition. In Figure 7(b) we show another instance of a stimulation session, in which
we used Poisson spike trains with analogous pre- and post-synaptic firing rates. In this case an LTP transition was
made and consolidated (att = 0.05s). Due to stochastic nature of the pre- and post-synaptic spiking activity, some
instances of pre- and post-synaptic spiking patterns with the same mean firing rates induce an LTP transition, while
others don’t. The probability of inducing long-term potentiation, or long-term depression can be easily controlled
by changing the bias parameters of the learning circuits (such asVwth, Vmth, etc.), as well as the mean frequencies
of the pre-synaptic and post-synaptic firing rates.

To further evaluate the stochastic nature of LTP transitions at the network level we stimulated 60 plastic
synapses of all 16 neurons present in the chip over 100 trials. In Figure 8(a) we show the response of 60 synapses
of one of the network’s neurons over all trials. In the experiment, at each trial, all synapses were reset to an initial
low state (black pixel). After the stimulation we tested the synapse to check the state of its weight, and assigned it a
1 (white pixel) if it had undergone an LTP transition. The figure shows that all the 60 synapses exhibit the stochastic
transition nature, and that all share similar statistics. In Figure 8(b) we show the LTP probability averaged over all
16 neurons, for the same bias settings used in Figure 8(a). We tuned the chip to produce low LTP probabilities, by
manipulating the height of the weight “up” and “down” jumps. The value of the average LTP probability can be
well controlled also by changing the mean frequencies of the input spike trains, the current comparator thresholds
and/or the voltage comparator threshold.
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Figure 7. Synaptic weight updates. The non-plastic synapse is stimulated with Poisson distributed spikes, making
the post-synaptic neuron fire at an average rate of 80Hz (top row). The pre-synaptic synapse is stimulated with
Poisson distributed spike trains with a mean firing rate of 100Hz (bottom row). Depending on the state ofVmem,
the weightVw is either increased or decreased with every pre-synaptic spike (middle row). The bi-stability circuit
continuously drivesVw to the synapse’s low or high stable states. (a) The updates in the synaptic weight did not
produce an LTP transition during the 250ms stimulus presentation. (b) The updates in the synaptic weight produced
an LTP transition that remains consolidated. The transition thresholdVwth is set toVwth = 2.5V in this example.
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Figure 8. (a) LTP transitions of 60 synapses over 100 trials; (b) LTP transition probability of all synapses in the
array (16x60)

7.  Discussion and Conclusions

We presented circuits for implementing neural architectures distributed across multiple chips, that use compu-
tational principles analogous to the ones used in the nervous system. We described the circuit implementation of
a recently proposed spike-driven plasticity mechanism [8], to endow these architectures with learning capabilities,
and showed that the circuits fulfill all of the model’s requirements for learning to classify complex patterns of mean
firing rates. We showed data that characterizes the basic neuron, synapse and plasticity mechanisms. Real world
applications are currently being implemented. Examples include real–time learning of auditory data extracted from
a silicon cochlea, or on-line classification of spike data obtained in neuro-physiological experiments (e.g. to drive
actuators or build neural prostheses devices) [11].

Given their adaptive properties, the low-power and size characteristics, and the flexibility offered by the AER
infrastructure, these types of systems are particularly suitable for implementing processing units on autonomous
and humanoid robots. For example, we are at a point now where building a system comprising two silicon cochleas,
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two silicon retinas, and a number of similar AER neural network devices responsible for processing auditory
signals, computing motion, implementing selective attention, and so forth is viable.

The types of devices described here are also in a position to best exploit the features of advanced scaled CMOS
VLSI processes, without being dramatically affected by the device mismatch, leakage current, and unreliability
problems that characterize them: the theoretical model that the plasticity circuits implement explicitly prescribes
the use of redundancy and stochastic selection mechanisms. The neural architectures we propose are therefore
fault-tolerantby construction. The conditions required by the learning theory on the VLSI design are in perfect
agreement with the ones required for achieving fault-tolerance, minimizing the effect of device mismatch, avoiding
the problems of fast digital clock logic design,etc. in advanced VLSI processes.

As the circuits proposed are extremely low power and compact, they can be used to implement very large,
massively parallel, and redundant arrays of neurons and synapses. In principle these types of neural networks
can scale up to any arbitrary size. In practice the network size is limited by the maximum silicon area and AER
bandwidth available. Given the current speed and specifications of the AER interfacing circuits, and the availability
of silicon VLSI technology, there is room for developing neuromorphic networks with millions of neurons, and
billions of synapses.
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