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Abstract It was often reported and suggested that the

synchronization of spikes can occur without changes in the

firing rate. However, few theoretical studies have tested its

mechanistic validity. In the present study, we investigate

whether changes in synaptic weights can induce an inde-

pendent modulation of synchrony while the firing rate

remains constant. We study this question at the level of both

single neurons and neuronal populations using network

simulations of conductance based integrate-and-fire neu-

rons. The network consists of a single layer that includes

local excitatory and inhibitory recurrent connections, as

well as long-range excitatory projections targeting both

classes of neurons. Each neuron in the network receives

external input consisting of uncorrelated Poisson spike

trains. We find that increasing this external input leads to a

linear increase of activity in the network, as well as an

increase in the peak frequency of oscillation. In contrast,

balanced changes of the synaptic weight of excitatory long-

range projections for both classes of postsynaptic neurons

modulate the degree of synchronization without altering the

firing rate. These results demonstrate that, in a simple net-

work, synchronization and firing rate can be modulated

independently, and thus, may be used as independent

coding dimensions.

Keywords Cortical columns � Integrate-and-fire

neurons � Temporal code � Gamma oscillations

Introduction

The synchronization of neurons was proposed as a coding

dimension for binding related features (Milner 1974; von

der Malsburg 1981; Singer and Gray 1995). One require-

ment of this hypothesis is that neuronal assemblies are able

to modulate their level of synchrony without affecting their

firing rate (Singer 1999). A number of studies did not

report systematic changes in firing rates while the syn-

chronization pattern within an area was modulated (König

et al. 1995; Riehle et al. 1997; Maldonado et al. 2000;

Steinmetz et al. 2000; Fries et al. 2001a; Grammont and

Riehle 2003). In simulations of neuronal networks, the

emergence of synchrony has been investigated (Traub et al.

1996; Wang and Buzsaki 1996; Golomb & Hansel, 2000;

Hansel & Mato, 2003 Tiesinga and Sejnowski 2004; Pfeuty

et al., 2005) and multiple and complex parameters regimes

were characterized. Despite this accumulation of findings,

it is still unclear what physiological mechanism the cortex

uses.

Synchronization of action potentials can emerge from

network dynamics (Jefferys et al. 1996; Ritz and Sejnow-

ski 1997; Sturm and König 2001). For example, oscillatory

network activity is often associated with precise timing of

spikes (Munk et al. 1996; Herculano-Houzel et al. 1999;
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Fries et al. 2001b), and consequently, is believed to play a

role in the synchronized discharge of widely distributed

neurons (Gray et al. 1989; König and Schillen 1991; Wang

and Buzsaki 1996; Maldonado et al. 2000). Such syn-

chronized activity was shown to occur within as well as

between areas (for a review see Engel et al. 2001) and was

suggested to operate through intra-areal long range con-

nections (König et al. 1995; Bush and Sejnowski 1996).

Importantly, anatomical studies showed that these long-

range connections do not solely target excitatory neurons

but inhibitory interneurons as well (for a review see

Douglas and Martin 2004). Not only was inhibitory activity

shown to induce local oscillations (Traub et al. 1996;

Wang and Buzsaki 1996; Tiesinga and Sejnowski 2004),

but in conjunction with excitatory connections, it is nec-

essary to induce synchronous oscillations between remote

neuronal populations (Bush and Douglas 1991; Bush and

Sejnowski 1996). Altogether, cortical long-range connec-

tions, targeting both excitatory and inhibitory neurons, may

play an important role in synchronizing distant groups of

neurons.

In the present study, we investigate the relationship

between the firing rate and the synchronization of spikes in

a simulated network of integrate-and-fire neurons. We

investigate whether changes in synaptic weights are suffi-

cient to modulate the synchrony between distant neurons

and to keep their firing rates constant. We use a simplified

architecture, where a cortical column is composed of one

group of excitatory neurons and one group of inhibitory

neurons. Connections within and between these groups of

neurons take into account transmission delays. The two

columns are interconnected by excitatory connections tar-

geting excitatory (E fi E) and inhibitory neurons (E fi I).

Each neuron receives uncorrelated external input consist-

ing of Poisson spike trains. We investigate the oscillatory

behavior, the synchrony and the firing rate of the network

while varying the strength of the external input and the

weights of the E fi E and the E fi I synapses. We find

that a specific balanced modification of long-range syn-

apses onto excitatory and inhibitory neurons modulates the

synchronization and oscillatory structure of spikes without

affecting their firing rate.

Material and Method

Network architecture

We used a network of integrate-and-fire (IF) neurons to

model two cortical columns. Each column consisted of 2000

excitatory (E) and 500 inhibitory (I) neurons. The neurons

were randomly connected with a probability of 10%. Thus,

within a column there were 400000 excitatory-to-excitatory

connections (weight wEE), 100000 excitatory-to-inhibitory

connections (wIE), 100000 inhibitory-to-excitatory connec-

tions (wEI) and 25000 inhibitory-to-inhibitory connections

(wII). The inter-column connectivity was ten times sparser

(1%) and consisted of excitatory projections only. Long-

range connections of one column consisted of 50000

synapses: 40000 on excitatory neurons (E fi E, weight

WEE) and 10000 on inhibitory neurons (E fi I, WIE). This

general organization matches well-based principles of cor-

tical circuitry. The bulk of synaptic connections is local

(~90%; Knoblauch et al 2006) and involves both inhibitory

and excitatory neurons. The two columns reflect patches of

similar neurons, which are connected by long-range axons

targeting both excitatory and inhibitory neurons (for review

see Douglas and Martin 2004). Synaptic delays were chosen

as 0.5 ± 0.2 ms for the local connections and 1.5 ± 0.5 ms

for the long range connections. Delays were uniformly dis-

tributed within the given range. With an assumed axonal

transmission velocity of around 1 mm/ms (Longstaff 2000),

this leads to a distance of more than 1 mm between the two

columns. A schematic drawing of the network is shown in

Figure 1.

We also simulated different sizes of the network by

varying the number of excitatory neurons per column from

200 to a maximum of 12800 neurons. The sizes of all other

populations were changed proportionally.

E->E

E->I

E
2000

Neurons
 = 20 ms

400000 Syn.

I
500

Neurons

25000 Syn.

10
00

00
 S

yn
.

10
00

00
 S

yn
.

40000 Syn.

40000 Syn.

10000 Syn
.10000 Syn.

E

I

D
el

ay
 0

.5
 m

s

D
el

ay
 0

.5
 m

s

Delay 0.5 ms

Delay 0.5 ms

Delay 1.5 ms

Delay 1.5 ms

 = 10 ms

Fig. 1 Schematic drawing of the network structure. Each column

contained excitatory (E) and inhibitory (I) conductance-based

integrate-and-fire neurons. Parameters for the two types of neurons

are given in Table 1. Each neuron received ten uncorrelated external

inputs consisting of Poisson spike trains having an exponential

distribution of their inter-spike intervals. E fi E: long-range connec-

tions between excitatory neurons, E fi I: long-range connections

between excitatory and inhibitory neurons
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Neuron model

Conductance based IF neurons were used as the neuron

model (for example see Tuckwell, 1988). All neurons,

either excitatory or inhibitory, had the same general

dynamics given by

sm

dVm

dt
¼ðV0 � VmÞ þ GEðVE � VmÞ

þ GIðVI � VmÞ þ GextðVE � VmÞ
ð1Þ

where Vm was the membrane potential of the cell, sm was

the membrane time constant and V0 was the resting

potential. The excitatory (VE) and inhibitory (VI) reversal

potentials were the same for both types of neurons. If the

membrane voltage crossed a threshold Vt a spike was

emitted and the potential was reset to Vr. For the values of

the parameters see Table 1.

The synaptic conductances GE, GI, and Gext were

enhanced by each incoming spike by a weight w and

decayed exponentially with time constants sE = sext = 2 ms

and sI = 5 ms:

dGE;I

dt
¼ �GE;I

sE;I
ð2Þ

and

GE;I ! GE;I þ w ð3Þ

for each incoming spike.

The size of single weights depended on the connection.

Note, that GE,I in Eq. 1 had no units since the whole

equation was multiplied by the leak conductance of

excitatory (gleak,E = 25 nS) or inhibitory (gleak,I = 20 nS)

neurons, respectively. We report all weights in Nano

Siemens (nS) by multiplying the unitless GE,I in our

simulations by the corresponding leak conductances.

Each neuron received an external input composed of 10

Poisson spike trains, each of them having a mean frequency

minput. minput ranged from 150 to 450 Hz and induced firing

rates between 0 and 100 Hz in the excitatory neurons. Each

input spike train was computed independently to avoid

correlations between them. Hence, this input corresponded

to a single poisson spike train of 1,500–4,500 Hz. The

synaptic weights of the external inputs were

wE,ext = 2.75 nS and wI,ext = 1.8 nS for the excitatory and

the inhibitory neurons respectively. Note that, in the

following, we refer to the weight of intra-column and

inter-column connections as w and W, respectively.

Synchrony measurement

We assessed intra- and inter-column spike synchronization

by computing the respective auto- and cross-correlograms of

the excitatory population. The population activity consisted

in summing the activity of all the neurons within a column

(1 ms bins). The summed spike trains were mean-removed

and conventional auto- and cross-correlations were calcu-

lated from those normalized spike trains (a normalization by

the squared root of the product of the standard deviations of

the two random variables results in values of 1.0 for a perfect

positive correlation). The first 200 ms of each simulation

were not considered for the analysis to avoid synchronous

events that were related to the onset of activity at the

beginning of each simulation. In cross-correlograms, central

peaks were often observed with phases ranging from zero to

two milliseconds lags whereas the period of one oscillation

could range from 12 to 16 ms. We defined the central peak of

the cross-correlograms as the maximum within a window of

–2 ms to +2 ms time lag. Instead of choosing this maximal

value as a synchrony measure, we preferred to have a

measure that can be similarly applied to cross- and auto-

correlograms. Therefore, the synchrony was defined as the

average of the two bins adjacent to the central peaks. Other

synchrony measures (Abeles 1982; Palm et al. 1988) were

tested and the analyses yielded qualitatively similar results.

The frequency range and power of the synchronous oscilla-

tions was assessed from these correlograms using Fourier

analysis.

The goal of the study was to vary the strength of the

long-range connections and compare its impact on the fir-

ing rate, synchrony and synchronous oscillatory activity of

the network. For this purpose, we calculated the modula-

tion ratio for each measure as follows:

Table 1 Parameters of the neuron model

Vt (mV) Vr (mV) sm (ms) V0 (mV) sr (ms) VE (mV) VI (mV)

E –52 –59 20 –74 2 0 –80

I –52 –59 10 –72 1 0 –80

We used the following neuron parameters: threshold potential Vt; reset potential Vr; membrane time constant sm; resting potential V0; refractory

time, sr. The excitatory (VE) and inhibitory reversal potentials (VI) were the same for both types of neurons. Parameters were taken from Wang

(2000) and fit the single cell frequency and current relationship reported in McCormick et al. (1985)
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rX¼ max
W

XWð Þ�min
W

XWð Þ
� ��

max
W
ðXWÞ

����
����þ min

W
ðXWÞ

����
����

� �

ð4Þ

where X was either the firing frequency of the network, the

synchrony or the average power of the synchronous

oscillations between 0 and 125 Hz for various external

input strengths. The maximum and the minimum of X were

taken over all values of the weights WIE and WEE that

conserved a fixed ratio (see below for details). The absolute

values in the denominator ensured that negative synchrony

values did not lead to values of rX > 1.

All simulations were run in NEURON (Hines and

Carnevale 1997) and all subsequent analyses were per-

formed in MatLab (Mathworks). Iteration steps of the

numerical simulation were set to 0.1 ms.

Results

We first simulated a single column. As an initial level of

intra-column synchrony is necessary to maintain the

modulated parameters within a realistic range (see below

for details), we used recurrent inhibition (Brunel and Wang

2003) to set the population synchrony around 0.5. Then, the

two columns were simulated interconnected with long-

range connections, both excitatory to excitatory neurons

(E fi E) and excitatory to inhibitory neurons (E fi I), for

a time period of 2 s. The external input strength and the

weight of E fi E (WEE) and E fi I (WIE) synapses were

varied independently. Finally, we performed 70 additional

simulations (with 7 · 10 variation of the external input and

the long-range synaptic weights with WIE equals 1.6-fold

WEE) for input strengths varying from 150 to 450 Hz. To

investigate the dynamics of single pairs and small popu-

lations of neurons we also ran long simulations of 30 s.

Spiking and synchrony of a single column

We first simulated a single column with an external input

of 300 Hz (minput) and adjusted excitatory and inhibitory

synaptic weights to set the intra-column synchrony around

0.5. The synaptic weights within the columns were set to

the following: wEE = 0.25 nS, wIE = 0.4 nS, wEI = 0.5 nS

and wII = 0.4 nS. These values closely approximate the

characteristic excitatory-inhibitory balanced inputs into

cortical neurons (Destexhe et al. 2003). Figure 2A shows

membrane voltage traces and raster plots for excitatory and

inhibitory neurons in a single column. Synchronous oscil-

lations are noticeable in the raster plots but this oscillatory

activity is not obvious for single neurons. The distribution

of firing rates and coefficients of variation (CV) for single

neurons are shown in Fig. 2B and C, respectively. They

show that the firing rate of single neurons expands from 0

to 200 Hz (Fig. 2B), and that the variability of the spike

trains (Fig. 2C) resembles the variability observed in bio-

logical neurons (Softky and Koch 1993).

Rate, synchrony and oscillations with long-range

connections

Once the intra-column parameters were set, we simulated

two columns of neurons and varied the weights of long-

range projections. We investigated the influence of inter-

column synaptic weights and the external input strength on

the firing rate, synchrony and the synchronous oscillations

of the network. WEE and WIE were varied from 0 to 1.8 nS

and from 0 to 2.88 nS, respectively. These variations were

applied for all the neurons simultaneously and performed

independently from each other at two different input

strengths, 300 and 450 Hz.

# 
of

 n
eu

ro
ns

# 
of

 n
eu

ro
ns

A)

B)

C)

Excitatory neurons Inhibitory neurons

N
eu

ro
n 

n°

0 100
100

0

0 50 100
0

100

200

300

0 100 200
0

20

40

60

0 0.5 1
0

200

400

0 0.5 1
0

50

100

0 100
100

0

Time [ms]Time [ms]

Firing rate [Hz]Firing rate [Hz]

CV CV

Fig. 2 Firing properties of a single column. Properties of single cell

activity are shown for the excitatory (left) and inhibitory (right)

populations within a column. External stimulus strength was 300 Hz.

(A) Sample traces of a highly active and a less active neuron are

shown above a raster plot of the spikes from the whole population. (B)

Spike rastergrams for 100 sample neurons of one excitatory and

inhibitory population. The mean and median firing rates are 38 Hz

and 38 Hz (25th and 75th percentiles are 30 and 48 Hz, respectively)

for excitatory neurons and 121 Hz and 120 Hz (25th and 75th

percentiles are 100 and 142 Hz respectively) for inhibitory neurons.

(C) Distribution of the coefficients of variation for single neurons.

The mean and median are 0.59 and 0.58 (25th and 75th percentiles are

0.51 and 0.66 respectively) for excitatory neurons and 0.53 and 0.52

(25th and 75th percentiles are 0.45 and 0.61 respectively) for

inhibitory neurons
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In the right panels of Fig. 3, we observe that the firing

rate is proportional to the input strength and to WEE and

inversely proportional to WIE. As changes in WEE and WIE

have opposite effects, it is intuitive that an appropriate

tuning of these two parameters should maintain the firing

rate of the excitatory neuron constant. We find that a value

of 1.6 for WEE/WIE keeps the firing rate constant. The fact

that the relationship between WEE and WIE is linear is

explained in the supplementary material. Less obvious is to

know whether the balanced change in the weights can

modulate the inter-column synchrony and how the strength

of the oscillations and the intra-column synchrony are

affected.

The intra-column synchrony follows a pattern similar to

the firing rate when the external input is 300 Hz. It is

proportional to WEE and inversely proportional to WIE

(Fig. 3A; left panel). This induces that the values on the

diagonal of the horizontal axes (green dashed lines) are

maintained constant. In contrast, the inter-column syn-

chrony is modulated along this diagonal and increases with

increasing WEE and WIE (Fig. 3A; middle panel). When

the external input is 450 Hz, we observe a different

behavior in the intra-column synchrony. Only a covariation

of the inter-column weights affects the level of synchrony

(Fig. 3B; middle panel). One explanation is that both

excitatory and inhibitory neurons need to be sufficiently
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Fig. 3 Behavior of the network under two different external input

strengths. The intra- and inter-column synchrony and the spiking

activity are shown as a function of the weights WEE and WI.E and for

external input frequencies of 300 Hz (A) and 450 Hz (B). In the lower

insets, examples of cross-correlograms are plotted. The upper values

in these insets correspond to the level of synchrony. On the right side

of these insets, the power spectra of the cross-correlograms are

shown. Note that the relationship between the long-range synaptic

weights (WEE and WI.E) and the different measures change with

different external inputs. Nevertheless, along the diagonal (green

dashed lines) where WIE/WEE equals 1.6 this relationship is

conserved: the spiking activity remains constant while the inter-

column synchrony is increased from around zero to above 0.2 (A) and

0.4 (B)
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driven by the external input to work in synergy and to

modulate intra-column synchrony. Otherwise, WEE facili-

tates the intra-column synchrony via mutual excitation and

WIE affects it in an opposite direction probably due to a

detrimental increase in inhibition (Bush and Sejnowski

1996). Despite these differences, one interesting charac-

teristic is maintained in the two external input regimes.

Maintaining a specific fixed ratio between WEE and WIE

keeps the spiking rate constant while the inter-column

synchrony is modulated.

To visualize this effect better, we plot in Fig. 4A the

values of the firing rate (upper panel), synchrony (second

and third panels) and the average (from 0 to 125 Hz) power

of the oscillations (forth and fifth panels) along this diag-

onal. The different colors correspond to different external

input strengths, which shows that the external input con-

trols the firing rate of the network as well as the peak of the

power spectra of the synchronous oscillations (Fig. 4B).

We observe again that the firing rate of the two columns is

not affected by a balanced change in WEE and WIE

(Fig. 4A). It is important to emphasize that not only is the

excitatory rate maintained constant but the overall firing

rate as well (Table 2). Certainly, the inhibitory rates are

slightly modulated. However, their modulation is much

weaker roughly seven to ten times less than the modulation

of the inter-column synchrony (Table 2). This means that

the maintenance of the firing rate is fulfilled by the whole

network.

In contrast, the synchrony and the power of the oscil-

lations are considerably modulated by the synaptic weights

of the long-range connections (Table 2), even when longer

inter-column delays, up to 5 ms, were used. In these sim-

ulations, the synchronization level was lower and occurred

with larger phase lags (data not shown). Nevertheless, the

modulation ratios of rate and synchrony were comparable

to the ones obtained with the shorter delay (Table 3). The

modulation ratio of the synchrony was at least ten times

the modulation ratio of the firing rate for all settings of the

input.

However, an initial level of intra-column synchrony is

still necessary for the modulation to take place. For

example, when the intra-column synchrony is low (blue

and green line), the modulation of the inter-column syn-

chrony is poor (Fig. 4A). The cause of this effect is not the

level of activity per se but the level of intra-column syn-

chrony because when we used a weight-configuration that

led to high firing rates but low intra-column synchrony

(~0.2), only nonrealistic enormous increases in WEE and

WIE could modulate the inter-column synchrony (data not

shown). These results suggest that an initial level of syn-

chronous oscillations is necessary within each column to

enable the inter-column connections to have an effect. To

further characterize this effect, we measured the phase lag

between the two columns at different weight configura-

tions. We notice that the phase at the frequency of oscil-

lation, the gamma range (Fig. 4B), approaches to zero as

the weights are increased (Fig. 5). Thus, the role of the

long-range connections is to reduce the phase lag between

the existing intra-column synchronous oscillations, and

thereby, to synchronize the two columns.

Size effects

To evaluate if the number of neurons in our network

impedes on the validity of our finding, we investigated how

the modulation ratios varied when the number of excitatory

neurons per column is changed to 200, 400, 800, 1,600,

3,200, 6,400, and 12,800. The number of inhibitory neu-

rons was changed proportionally. The connectivity was

established in two different manners: (1) We kept the

connectivity at 10% and therefore the number of synapses
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Fig. 4 Population responses to various input strengths with a fixed

WIE/WEE ratio. In (A), we plotted the spiking activity (upper panel),

the inter- and intra-column synchrony (second and third panel) and

the inter- and intra-column oscillation power (forth and fifth panel).

Note that the different colors correspond to different external input

strengths ranging from 150 to 450 Hz. The modulation ratios of all

the curves are given in Table 2. In (B), the distribution of the power

spectra for all WEE and WIE are presented. The solid lines correspond

to the medians and the upper and lower dashed lines are the 75th and

25th percentiles. The colored numbers refer to the different external

input frequencies and the black number is the frequency at the

maximum power
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was proportional to the number of neurons to the square.

To keep the average input to each neuron constant, the

weights were scaled inversely to the number of neurons. In

this case, we stopped the simulations at 6,400 neurons. (2)

The number of synapses was proportional to the number of

neurons in the network, and the weights were kept con-

stant. Each neuron received on average 40 intra-columnar

excitatory inputs. All other connections scaled propor-

tionally.

In both cases, we find that the modulation of synchrony

remains constant and elevated whereas the modulation

ratios of the firing rates are lower (Fig. 6A, C, E). There-

fore, our finding that the synchrony can be modulated

without changes in firing rates is also valid for smaller and

larger networks.

Dynamic of small groups of neurons

So far, we reported the results at the population level only.

However, the randomness of the connections and the var-

ious firing regimes observed in single neurons (Fig. 2)

suggest considerable variability at the level of individual

pairs. Therefore, we investigated the relationship between

firing rate and synchrony in single pairs of neurons and in

small groups of neurons. For this purpose, we increased the

duration of the simulations to 30 s and only investigated

Table 2 Ratios of modulation in population responses

External input strength (Hz)

150 200 250 300 350 400 450

Excitatory rate 0.03 0.02 0.03 0.02 0.02 0.01 0.00

Inhibitory rate 0.10 0.10 0.09 0.08 0.08 0.08 0.08

Firing rate 0.05 0.03 0.02 0.03 0.03 0.03 0.04

Inter-column synchrony 1.00 1.00 0.64 1.00 0.98 0.94 0.95

Intra-column synchrony 0.66 0.14 0.07 0.10 0.14 0.16 0.17

Inter-column oscillations 0.40 0.51 0.65 0.77 0.91 0.94 0.97

Intra-column oscillations 0.12 0.11 0.14 0.28 0.43 0.60 0.66

Table 3 Ratios of modulation at different inter-column delays

External input strength (Hz) Delay

300 3 ms 300 5 ms 450 3 ms 450 5 ms

Excitatory rate 0.02 0.00 0.02 0.02

Inhibitory rate 0.08 0.08 0.08 0.09

Firing rate 0.02 0.04 0.02 0.05

Inter-column synchrony 1.00 0.93 0.86 0.89

Intra-column synchrony 0.07 0.12 0.06 0.29

Inter-column oscillations 0.59 0.88 0.80 0.99

Intra-column oscillations 0.11 0.48 0.23 0.92

20 40 60 80
0

0.4

0.8

1.2

Frequency [Hz]

P
ha

se
 [r

ad
]

1.6

Fig. 5 Phase lag between the population activity of the two columns

as a function of frequency. The different curves represent different

inter-column weight configuration (WIE = 1.6 WEE) with WEE

ranging from zero (dashed line) to 1.0 nS (black to light gray for

increasing weights). The simulations were run at 300 Hz for the

external input strength. Values for WEE above 1.0 nS are not shown

for clarity reasons; they roughly follow the light gray curve and are

always below 0.2 radians. The frequency range was chosen between

20 and 90 Hz because the values are either around zero (<20 Hz) or

are not reliable due to low coherence values (>90 Hz). A multi-taper

method (40 tapers) was used to estimate the phase over the 2 s period

of the simulation
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cases where the equilibrium ratio of the weights (WIE/

WEE = 1.6) was satisfied. First, we looked at the distribu-

tion of firing rates of individual cells. Then, we randomly

selected 100 neurons in each column and computed the

synchrony between all possible pairs of neurons between

these two groups. This was done irrespective of the con-

nectivity of the neurons, thus mimicking an electrophysi-

ological experiment. The distribution of the rates and

‘‘single-cell’’ synchrony are shown in Fig. 7A and B. A

first observation is that, in general, the level of synchrony

between single neurons is small compared to the synchrony

measured at the whole population level (Fig. 4A); a fact

previously observed in a comparable neural network

(Brunel and Wang 2003) and in electrophysiological

recordings (Bedenbaugh and Gerstein 1997; Gerstein

2000). Second, the firing rate and the synchrony between

single cells are not modulated by changes in synaptic

weights (Fig. 7A and B). On the other hand, when we did

1,000 measurements between two randomly selected

groups of 20 neurons in each column, we could detect a

modulation in the average synchrony and its distribution

(Fig. 7C). Interestingly, the distribution is unimodal, which

suggests that the strength of the observed synchrony at the

population level is mainly attributable to a summation

effect and not to specific subpopulations of neurons.

Discussion

In a cortical network, the efficacy of excitatory long-range

connections modulates inter-column synchrony, synchro-

nous oscillations and the firing rate of neurons. However,

in excitatory neurons, it is possible to modulate the degree

of synchronization independently from effects on the spike

rate by modifying the synaptic weights of postsynaptic

excitatory (WEE) and inhibitory (WIE) neurons in a linear

manner.

The firing rate of the excitatory population is kept

constant if the long-range projections drive the excitatory
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Fig. 6 Effect of network size. In (A) and (B) the firing rates are

shown as a function of WEE; WIE = 1.6 WEE. Solid lines: all neurons,

dashed lines: excitatory neurons, dotted lines: inhibitory neurons.

Different curves correspond to different network sizes. (C) and (D)

show the inter-column synchrony as a function of WEE. Different

markers indicate different network sizes: 200 excitatory neurons per

column (circles), 400 (stars), 800 (squares), 1,600 (triangles pointing

to the right) 3,200 (diamonds), 6,400 (crosses), and 12,800 (triangles

pointing down). In (E) and (F) the log–log plots of the modulation

ratios as function of network size are shown: inter-column synchrony

(solid, stars), inter-column oscillations (solid, circles), intra-column

synchrony (dashed, stars), intra-column oscillations (dashed, circles),

rate of all neurons (dotted, diamonds), rate of excitatory neurons

(dotted, triangles left) and rate of inhibitory neurons (dotted, triangles

down). A, C, and E correspond to case 1 (10% connectivity in all

networks); B, D, and F correspond to case 2 (number of synapses

proportional to the number of neurons)
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Fig. 7 Distribution of firing rates (single cells) and synchrony (single

cells and groups of cells) for various weights configurations (WIE/

WEE = 1.6). Each panel represents the normalized distributions at

different weight configurations. The distributions were obtained from

the whole period of 30 s for 300 Hz (left panel) and 450 Hz (right

panel) inputs strength. The averaged rate data is presented for the

firing rate of all excitatory cells in the two columns (A, n = 4,000).

The inter-column synchrony of single cells was calculated for all

possible pairs of 100 randomly selected neurons of each column (B,

n = 10,000) and the inter-column group synchrony (C) was calculated

for 1,000 pairs of randomly selected groups of neurons (n = 20). The

lines in the graphs summarize the histograms, showing the mean (blue
resp. black in the printed version), the median (red resp. gray in the
printed version), as well as the 25th and 75th percentile (black dashes)

of the distribution for the ten different weights
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neurons proportionally to the inhibitory neurons. In our

study, the ratio was 1.6 (WIE/WEE). However, this exact

value depends of course on the parameters of the simula-

tion such as the number of synapses, the relative firing rates

of excitatory and inhibitory neurons and the time constants

of different synaptic events. For example, we found this

ratio to be 1.0 in a homogenous network of 100 identical

excitatory and 100 inhibitory neurons per column (Salazar

et al. 2004a). More importantly, this ratio reflects the linear

relationship between WIE and WEE as a result of the nearly

linear f–I curves of the IF-neurons. Any other monotoni-

cally increasing f–I curve should lead to a solution of

balanced WIE and WEE, which, however, is not necessarily

linear. On the other hand, to know whether changes in the

inter-column weights modulate the inter-column synchrony

accordingly cannot be predicted without large-scale simu-

lations. Therefore, a detailed description of the network

behavior is necessary to acquire a mechanistic under-

standing of the phenomenon.

In this study, we demonstrate that neuronal networks can

modulate their inter-column synchronous activity by line-

arly altering both WEE and WIE. To maintain this modu-

lation within a reasonable parameter range, we introduced

a certain amount of synchronous activity within each col-

umn using recurrent inhibition. This mechanism was

shown to synchronize the populations activity of integrate-

and-fire neurons in the gamma frequency range (Brunel

and Wang 2003); a range that we also observed in the

oscillations within, as well as between, columns and that

was proposed to play an important role in intra-areal syn-

chronization of activity (for reviews see von Stein and

Sarnthein 2000; Engel et al. 2001). The synchronization of

distant populations of neurons raises a couple of issues, one

being the transmission delay. If this delay is too long, the

synchronization breaks down (Bush and Sejnowski 1996).

We find that the modulation ratios of rate and synchrony

were comparable if the inter-column synaptic delay is

increased to 5 ms. Furthermore, despite the fact that model

networks composed of other kinds of neurons may show

more realistic behavior with respect to synchrony and

fluctuations (Fourcaud-Trocmé et al. 2003), our main

findings are still valid even when we use quadratic inte-

grate-and-fire neurons (see supplementary material).

Finally, a modulation of the inter-column synchronization

independently from the firing rate is still achieved in var-

ious networks size despite the relationship between the

synchrony and the number of neurons (Brunel and Hakim

1999; Hansel and Mato 2003). Altogether, our simulations

demonstrate that the role of long-range connections is to

synchronize the gamma oscillations occurring within each

column and to reduce their phase lag.

Interestingly, this effect is only observed at the popu-

lation and subpopulation level. The synchrony between

single neurons is virtually zero and is not modulated by

changes in synaptic weights. One explanation is that single

neurons do not participate in each cycle of the oscillating

network or if they do, that they are not precisely locked to

the oscillation (>2 ms). Thus, when pair-wise correlations

are calculated, they are weak. A comparable phenomenon

was described in another theoretical study (Brunel and

Wang 2003) where the behavior of single neurons did not

precisely follow the oscillations of the population. Effec-

tively, activity of single neurons can often follow loosely

the dominant oscillations, as observed in electrophysio-

logical recordings. For example, in the hippocampus, sin-

gle neurons fire more or less precisely during theta

oscillations but they do not participate in every cycle

(Buzsaki and Eidelberg 1983; Buzsaki et al. 1983;

Kamondi et al. 1998; Csicsvari et al. 1999). Thus, certain

properties of neuronal ensembles are difficult to derive

from the activity of few single neurons, which raises

important restrictions to the experimental investigation of

population coding (Deadwyler and Hampson 1997). Our

results predict that a modulation of synchronization

attributable to learning should be detectable in population

measures such as local field potentials or multi-unit

recordings but unlikely in pairs of single cells.

A last point that deserves discussion is whether it is

realistic to have synaptic plasticity in cortical post-synaptic

inhibitory neurons. Most of the previous studies have

focused exclusively on the plasticity of WEE (for a review

see Abbott and Nelson 2000). Certainly, it is the most

commonly studied type of plasticity. However, WIE was

described in the hippocampus (Perez et al. 2001; Lapointe

et al. 2004) and in the cerebellum (Kano et al. 1992) as

well. We propose that a mechanism that changes the

weights of long range EE and EI connections in a similar

way could induce a modulation of synchrony without

consistent changes in the firing rate. Several electrophysi-

ological recordings of single cells and local field potentials

(König et al. 1995; Vaadia et al. 1995; Riehle et al. 1997;

Fries et al. 2001a; Grammont and Riehle 2003; Salazar

et al. 2004a) reported differences in neuronal synchroni-

zations, and not in firing rates, between behavioral/stimulus

conditions. Tiesinga and Sejnowski (2004) proposed a

mechanism in which a rapid activation of a few selected

interneurons produces such an effect. One difference

between their proposal and ours is their inclusion of ‘‘top-

down’’ information, that is, which group of interneurons

should be selected. This requirement is well suited to, and

inspired from, attentional processes. On the other hand, our

proposal does not require such information and works well

in a simple ‘‘bottom-up’’ processing. Therefore, these two

mechanisms may well explain different processes and may

not be mutually exclusive. Finally, our model is based on

two biological plausible assumptions: the plasticity of WIE
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in the cortex and the ability to modify these synapses

proportionally to WEE. The end result is simply to balance

neuronal activity using homeostatic plasticity; a basic

principle repetitively observed in various systems (for a

review see Turrigiano and Nelson 2004). However, the

implementation of such a mechanism in neuronal networks

is still an open question.

In conclusion, with simple changes in synaptic

weights, the degree of synchronized activity can be

modulated independently from the firing rate. In the last

decade, various reports have supported the notion that

mature sensory areas can modify their synapses (Artola

and Singer 1987; Schuett et al. 2001; Yao and Dan 2001;

Fu et al. 2002) according to behavioral requirements

(Recanzone et al. 1992, 1993; Bao et al. 2001, 2004).

Such synaptic changes may enable the modulation of

neuronal temporal interactions (Crist et al. 2001;

Schwartz et al. 2002; Salazar et al. 2004b) without

potential interferences with the mean level of activity

(Schoups et al. 2001; Ghose et al. 2002; Salazar et al.

2004b). This facilitates the use of synchronous activity

and the firing rate of neurons to cooperatively process

different types of information (Neven and Aertsen 1992;

Salinas and Sejnowski 2001). Therefore, it is tempting to

speculate that cortical networks use two coding schemes,

but more importantly, that one can remain stable while

the other is plastic and sensitive to learning. Such a

mechanism can be a solution to the stability-plasticity

dilemma confronted by sensory systems.
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