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Abstract Correlation measures are important tools
for the analysis of simultaneously recorded spike trains.
A well-known measure with probabilistic interpretation
is the cross-intensity function (CIF), which is an esti-
mate of the conditional probability that a neuron spikes
as a function of the time lag to spikes in another neuron.
The non-commutative nature of the CIF is particularly
useful when different neuron classes are studied that can
be distinguished based on their anatomy or physiology.
Here we explore the utility of the CIF for estimating
spike-time jitter in synaptic interactions between neu-
ron pairs of connected classes. When applied to spike
train pairs from sleeping songbirds, we are able to dis-
tinguish fast synaptic interactions mediated primarily by
AMPA receptors from slower interactions mediated by
NMDA receptors. We also find that spike jitter increases
with the time lag between spikes, reflecting the accumu-
lation of noise in neural activity sequences, such as in
synfire chains. In conclusion, we demonstrate some new
utility of the CIF as a spike-train measure.

1 Introduction

The most commonly used spike correlation measures
are commutative, i.e., they are essentially unchanged
by the combined operation of neuron interchange and
time reversal. Examples of commutative measures are
the cross-correlation function or joint spike density
(Tuckwell 1988) and the coherency function (Jarvis and
Mitra 2001). The cross-correlation function has a
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probabilistic interpretation: it can be thought of as the
joint probability of observing spikes in neuron S at some
time lag of spikes in neuron T (Palm et al. 1988).

Usually little importance is attributed to numerical
values of correlations and coherencies, except that they
must be significant by some standard. Possibly, because
of this lack of numerical interest, it has been largely
ignored that commutative correlation measures are not
ideal for spike train pairs with very different average
firing rates. For example, if hypothetical neuron T fires a
spike every second and hypothetical neuron S synchro-
nously fires spikes every 10 s, then their peak correlation
and peak coherency both are only 0.1. However, given
that all spikes in neuron S are perfectly synchronized
with spikes in neuron T, we might prefer to work with
correlation measures that reflect this fact by assigning
the maximal correlation value of 1.0 in such a situation.

The non-commutative correlation measures analyzed
in this study are useful when anatomical or other data
are available based on which the two spike trains (and
neurons) can be distinguished. For example, the cross-
intensity function (CIF) (Brillinger 1992; Perkel et al.
1967) is an estimate of conditional spike probability
(CSP), i.e., the probability of a spike in neuron T (target)
conditional on a spike in neuron S (source) at some time
lag, Fig. 1a. Conditional probabilities can be large even
when average firing rates in neurons S and T are very
different from each other. For the example in the last
paragraph, the peak spike probability of target neuron
T conditional on spikes in source neuron S is 1.0, thus
accounting for the perfect synchrony in these neurons.
Note that the cross intensity function is not a hazard
rate in the language of stochastic processes and so is not
to be confused with the conditional intensity function
(Brown et al. 2001).
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Fig. 1 a The (clipped) cross-intensity function (CIF, or CSP func-
tion) Pτ

T|S(t = 40 ms) is defined as the fraction of spikes in source
neuron S that are followed by at least one spike in the target
neuron T within the clipping window (gray area) of width τ . b
The spike trains analyzed in this study are from two neuron clas-
ses in HVC (HVCRA and HVCI neurons), a neuron class in RA
(RA neurons) and a neuron class in LMAN (LMANRA neurons).
Known synaptic connections are indicated by arrows. Known feed-
back connections from the inhibitory HVCI neurons onto HVCRA
neurons are not plotted

To compensate for small amounts of data, it is com-
mon to reduce the temporal resolution of correlation
functions, for example by temporal integration or by
spike clipping (e.g., by clipping target spikes to time
windows conditional on source spikes). Here we explore
whether there exists a natural time scale over which one
can integrate or clip CIFs. We find that when clipping
is performed at the optimal width—defined by highest
significance—we are left with a good estimate of tem-
poral jitter between spike interactions. As a demonstra-
tion we apply CIF clipping to synaptically connected
neuron classes and find that the optimal clipping width
is small for neuron pairs interacting mainly through
AMPA receptors, and large for neurons interacting
through NMDA receptors—thus quite accurately
reflecting receptor kinetics.

The data on which we illustrate the utility of CIFs are
from simultaneous recordings of spontaneously active
neurons in sleeping zebra finches (Hahnloser et al. 2006).
We analyze spike trains from premotor neurons in HVC
that project to the robust nucleus of the arcopallium
(RA), and from RA neurons, Fig. 1b. RA neurons
exhibit a regular background firing in the awake ani-
mal of about 20 Hz. During sleep, these neurons fire
complex sequences of high-frequency bursts that can
closely resemble premotor burst sequences recorded
during singing (Dave and Margoliash 2000; Hahnloser

et al. 2002). The presence of bursting behavior through-
out premotor song nuclei makes the sleeping bird an
ideal system for the study of mechanisms of complex
sequence generation and of synaptic interactions. The
data are well suited for the exploration of CIFs thanks
to the large variability of average firing rates (almost two
orders of magnitude) and thanks to our knowledge of
the underlying microcircuit that connects the different
neuron classes (Fig. 2).

2 Results

Since our most interesting results were obtained with
spike clipping, we restrict the presentation of our results
to the clipped CIF. For results on the integrated CIF see
the Methods section.

2.1 The clipped cross-intensity function

The (clipped) cross-intensity function Pτ
T|S(t) between

spike trains produced by a ‘source neuron S’ and a ‘tar-
get neuron T’ is a function of time lag t. Pτ

T|S(t) assumes
values between zero and one and is given by the frac-
tion of spikes in the source neuron for which the target
neuron fires at least one spike in the clipping window
[t−τ/2, t+τ/2] relative to source spikes. In other words,
the variable t sets the offset of the clipping window from
spikes in S and the parameter τ sets the width of the
window, Fig. 1a.

Given a stationarity assumption, we can view the CIF
at a particular time lag as an estimate of a binomial pro-
cess, i.e., the probability of observing a target spike in a
τ -window centered at time lag t of a source spike (see
Methods). All time lags combined, the CIF forms esti-
mates of many binomial processes, one for each time lag
t. Because of this probabilistic interpretation, in the fol-
lowing we refer to the CIF also as the conditional spike
probability (CSP) function.

When many target spikes are present within a clip-
ping window, then these are reduced to a single event,
thus guaranteeing that the CSP function is normalized
between zero and one. If the clipping width τ is small,
then conditional spike probabilities are very small,
because few target spikes will be separated precisely
by time lag t from a source spike. Small clipping win-
dows may pose a problem because the estimation of
small probabilities and their significance requires large
amounts of data (see Methods). Therefore, it may be
desirable to clip spike trains to much larger windows
than the original sample time (which typically is 20–
50 µs). However, very coarse clipping can be problem-
atic as well. For example, for τ = 10 ms, if the target
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Fig. 2 Example spike trains
recorded in the sleeping zebra
finch. a Triple recording of an
RA, HVCI, and HVCRA
neuron. b Paired recording of
an RA, and an LMANRA
neuron. Only small excerpts
are shown here, spike trains
analyzed were at least 200 s
long

a Triple recording
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b Paired recording

RA
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neuron forms a regular spike train of 100 Hz or higher,
we have that every single clipping window will be filled
with at least one target spike. Thus, we are left with
the uninformative result Pτ

T|S(t) = 1 irrespective of the
source spike train. In conclusion, for given data the
choice of the clipping window is subject to a tradeoff.
Next we present a simple method for finding a suitable
window size.

2.2 Confidence intervals and significance tests

A peak p̂τ = maxt Pτ
T|S(t) in the CSP function is indica-

tive of interactions between two neurons, or their depen-
dence on a common source signal (we keep the
superscript τ as a free parameter). Peaks have to be
tested for their significance as they can arise by chance
even for mutually independent spike trains. A simple
null hypothesis H0 for significance tests is the assump-
tion of independence of target spike probability and
source spike times, H0 : p̂τ = Pτ

T, where Pτ
T is the mar-

ginal spike probability, i.e., the probability that at least
one target spike is observed in a random clipping win-
dow of width τ .

How can we determine whether to reject the null
hypothesis or not? We choose as our test statistic the z-
value function zτ (t), defined as the difference between
Pτ

T|S(t) and Pτ
T, normalized by the standard error of the

CSP estimate (see Eq. 11 in the Methods section). When
we assess the significance of a CSP peak p̂τ , we refer to
this normalized difference simply as the z-value ẑτ . In
general, the more source spikes we record, the more
likely it is that a large deviation of p̂τ from Pτ

T will be
significant.

2.3 An artificial example

In Fig. 3 we have created two artificial spike train pairs
based on given CSP functions used as generative mod-
els. In both cases, the source neuron fires a spike exactly
every second and the target neuron randomly fires a

spike in response to 70% of source spikes. The target
spike times are randomly drawn from a Gaussian or a
uniform probability density, centered on source spikes,
Fig. 3a. We use these two spike train pairs to illustrate
some of the properties of CSP functions.

The clipping width τ is an important parameter.
Because both the marginal spike probability Pτ

T and the
CSP Pτ

T|S(t) are monotonic functions of τ , their normal-
ized difference—the z-value function zτ (t)—may in fact
be a non-monotonic function of τ . Indeed, the optimal
clipping window τ̂ = arg maxτ ẑτ for the artificial spike
trains is τ̂ � 10 ms, Fig. 3b (bottom). Because 10 ms
also corresponds to the time jitter we artificially applied
to the target spikes, we find that the optimal clipping
window (defined as the window that yields highest sig-
nificance) forms a good estimate of the temporal jitter
of target spikes relative to source spikes. Note that a
similar behavior of significance has been reported for a
symmetric measure of spike coincidence as a function
of coincidence width (Grün et al. 1999).

2.4 Application to songbird data

We applied our methods to real spike trains recorded
in the sleeping songbird. We used previously published
data from neuron pairs in premotor area HVC and
the robust nucleus of the arcopallium (RA). In HVC,
data were derived from sparsely firing excitatory neu-
rons projecting to RA (HVCRA neurons, abbreviated
H) and from inhibitory HVC interneurons (HVCI neu-
rons, abbreviated I). We also used data records from a
single RA neuron class of excitatory neurons (RA neu-
rons, abbreviated R).

Our first analysis was to study CSP functions of
HVCRA and RA neuron pairs. Conditional on spikes
in HVCRA neurons, we usually observed several signifi-
cant peaks in CSP functions, Fig. 4a. The peak CSP p̂τ

increased steeply as a function of clipping width, reach-
ing a plateau within less than 10 ms, Fig. 4b (top). For this
CSP peak, we plotted the z-value ẑτ and found a distinct
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Fig. 3 Two artificial examples where given conditional spike
probability functions are used to generate spike trains. a In the
first example the probability density of a target spike as a function
of the time lag to source spikes is a box function (full line); in the
second example it is a Gaussian (dashed line). The width of the
box function and the standard deviation of the Gaussian density
both are 10 ms. The area under each curve is 0.7. b The peak CSP
p̂τ is a monotonically increasing function of the clipping width τ

(top). The peak z-value ẑτ (bottom) is a non-monotonic function
of τ and peaks at roughly 10 ms for both the box function (full
line) and the Gaussian (dashed line)

maximum for a clipping window of 4.0 ms, Fig. 4b (bot-
tom). After examining a larger population of HVCRA–
RA neuron pairs, we found that optimal clipping win-
dows had a median value of 4 ms (range 0.2– 47.8 ms,
n = 46 HVCRA–RA neuron pairs). These results sug-
gest that the drive provided by HVCRA neurons onto
RA neurons is subject to a small temporal jitter of only
±2 ms.

Analyzing HVCRA–HVCI neuron pairs, we found
many significant CSP peaks close to zero time lag. Even
though CSP functions near the peak were quite broad
(10–100 ms), z-values reached a maximum for small
clipping windows (of median value τ̂ = 5.0 ms, range
1.4–48.4 ms, n = 26 neuron pairs). Note that for a clip-
ping window of τ = 5 ms, we found a large average CSP
peak of 〈p̂τ 〉 = 0.61 in these neurons.
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Fig. 4 HVCRA–RA neuron pair. a CSP function Pτ
R|H(t) for τ =

5 ms. The horizontal line indicates the marginal probability Pτ
R and

the gray area delimits a confidence interval of 99% (a z-value of
2.33 corresponds to a significance level of p = 0.01). b Top the
CSP peak p̂τ is a steep function of clipping width τ , saturating at
a value close to one. Bottom the peak z-value ẑτ peaks at roughly
4 ms

The optimal clipping windows of HVCRA neurons
and their target neurons in HVC and RA are small,
strongly suggestive of strong and precise synaptic inter-
actions. In fact, values of τ = 4–5 ms are in agreement
with time constants of fast AMPA receptor kinetics.
AMPA is known to be the dominant receptor type of
HVCRA neuron synapses in adult birds (Mooney and
Konishi 1991; Stark and Perkel 1999).

To further explore the relationship between optimal
clipping windows and known synaptic kinetics, we ana-
lyzed a set of paired recordings in LMAN and RA.
RA-projecting neurons in LMAN (LMANRA neurons)
are known to drive RA neurons by action of NMDA-
type glutamate receptors (Mooney and Konishi 1991;
Stark and Perkel 1999). In conditional correlation func-
tions of 11 LMANRA–RA neuron pairs, we found that
optimal clipping windows had a median width of 27 ms
(range 2–76 ms). Note that the large clipping windows
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associated with LMAN projection neurons cannot be
explained by spike propagation times. In fact, in our pre-
vious antidromic stimulation experiments we found that
the variability of spike latencies is smaller in LMANRA
neurons (0.81 ms) than in HVCRA neurons (2.4 ms)
(Hahnloser et al. 2006). Note also that optimal clip-
ping windows were not obviously related to presynaptic
spike-train statistics, despite large differences between
HVCRA and LMANRA statistics. For example, HVCRA
neurons exhibited frequent bursts, whereas LMANRA
neurons did not, Fig. 5c. The average optimal window
was unchanged in HVCRA–RA pairs (4 ms) when we
removed all burst spikes in HVCRA neurons, leaving
only single spikes for the computation of CSP functions.
And, the optimal clipping windows of LMANRA–RA
pairs were smaller than the typical interspike intervals
of LMANRA neurons, implying that spike statistics of
single neurons cannot explain the clipping behavior of
LMANRA–RA pairs. In conclusion, we attribute the
large differences in optimal clipping windows between
HVC and LMAN projection neurons mainly to kinet-
ics differences of synaptic receptors. The large clipping
windows for LMANRA neurons agree well with the slow
action of NMDA receptors, and the smaller windows for
HVCRA neurons agree with the faster action of AMPA
receptors, see the inset of Fig. 5c.

Given the precise drive provided by HVCRA neu-
rons onto target neurons in HVC and RA, we expected
similarly precise spike correlations between the target
neurons themselves. Indeed, optimal spike detection
windows between RA and HVCI neurons had a median
value of 7.7 ms (conditional on RA neuron spikes, n =
50 neuron pairs, Fig. 6). Thus, the average spike time
jitter between RA and HVCI neurons is slightly larger
than that of synaptically connected pairs such as
HVCRA–HVCI and HVCRA–RA pairs. In fact, such a
behavior was to be expected, given that correlations
between HVC interneurons and RA neurons can only
arise indirectly via their common source (HVCRA
neurons). Quantitatively, assuming that noise sources
responsible for spike-time jitter are independent among
target neurons, we would have expected a spike jitter
of 6.4 ms for RA–HVCI neuron pairs (6.4 ms =√

42 + 52 ms), only slightly smaller than the measured
value of 7.7 ms.

So far we have ignored a possible relation between
time lags t and optimal clipping widths. These two vari-
ables may be correlated based on our interpretation of
the optimal clipping window as an estimate of tempo-
ral jitter inherent in synaptic interactions. By the finite
coherence time of stochastic processes and the accumu-
lation of noise in serial computations, we expect tem-
poral jitter to increase with increasing time lag between
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Fig. 5 The optimal clipping width reflects synaptic receptor time
constants. a The peak z-value function averaged over 46 HVCRA–
RA neuron pairs peaks at τ = 4.0 ms. The gray area delimits the
standard error of the mean. b The peak z-value function averaged
over 11 LMANRA–RA neuron pairs peaks at τ = 30 ms. c Aver-
age interspike interval probability density functions of HVCRA
and LMANRA neurons showing pronounced bursts only in
HVCRA neurons. Inset Examples of evoked postsynaptic currents
(EPSCs) in RA neurons triggered by electrical stimulation in
HVC and in LMAN. During HVC stimulation, NMDA receptors
were blocked in RA (AMPA curve) and during LMAN stimula-
tion, AMPA receptors were blocked in RA (NMDA curve). The
inset has been redrawn with permission from Stark and Perkel
(1999)

spikes (in a random walk, the expected distance from
the origin increases with the number of steps). In other
words, we expect the optimal clipping window to be
large when the CSP function peaks at a large time lag,
and vice versa when the CSP function peaks at a small
time lag.

In a first analysis, we computed the optimal clipping
window as a function of time lag t, τ̂ (t) = arg maxτ zτ (t).
The mean optimal clipping function 〈τ̂ (t)〉 for 50 RA–
HVCI neuron pairs reached a minimum at a time lag of
t = −4 ms, Fig. 7a. Thus the temporal jitter of RA neu-
ron spikes is minimal 4 ms after HVCI neuron spikes.
Interestingly, the mean curve is well approximated by
the lines τ = ±2(t + 4 ms), which means that the opti-
mal clipping window tends to grow twice as fast as the
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Fig. 6 RA–HVCI neuron pairs. a Example conditional corre-
lation function PI|R(t). Legend as in Fig. 4a. b Top the z-value
function of this neuron pair. Bottom mean z-value function and
standard error for n = 50 RA–HVCI neuron pairs

time lag. This behavior is suggestive of strong spike
correlations at an exclusive time lag of −4 ms. Indeed,
to include strongly correlated spikes at a lag of −4 ms,
a clipping window centered at time lag t must have a
halfwidth of at least |t +4| ms, which is what we observe.

By analyzing each neuron pair separately, we found
that pairs with large optimal clipping windows have CSP
peaks at large time lags. In a scatter plot of the optimal
clipping window τ̂ versus the time lag t̂ = arg maxt τ̂ (t)
at which optimality holds, we found a positive correla-
tion with correlation coefficient r = 0.52 (p < 10−4),
Fig. 7b. Again, there is a tendency for the optimal win-
dow to grow twice as fast as the time lag of the CSP
peak, indicating existence of a small and unique time
lag at which strong spike correlations between RA and
HVCI neurons exist.

To summarize these findings, we should slightly revise
our original interpretation of the optimal clipping win-
dow as a simple estimate of spike-time jitter. That is, we
must distinguish between true synaptic jitter of mono-
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Fig. 7 a Optimal clipping width as a function of time lag. Shown
is the optimal width τ̂ (t) averaged over n = 50 RA–HVCI neuron
pairs. The standard error of the mean is shown in gray. The tilted
black lines represent the curves τ̂ (t) = ±2(t + 4 ms). b Scatter
plot of the optimal clipping width τ̂ versus |t̂ − 4| ms for n = 50
RA–HVCI neuron pairs. The black line shows a linear regression
curve

synaptic events (at small time lags), and the accumu-
lation of jitter due to poly-synaptic events. Therefore,
we should view the optimal clipping window at large
time lags as an upper bound to the true (monosynaptic)
jitter. We can estimate the true jitter by restriction of
conditional spike probabilities to small time lags of a
few milliseconds (if no spikes are present at small time
lags, then precise estimation clearly is difficult).

2.5 Discussion

We have shown some new interesting properties of the
cross-intensity function when spikes are clipped. Besides
of providing for some smoothing, spike clipping can be
used to estimate spike-time jitter from paired record-
ings of directly or indirectly connected neuron classes.
We have found a correspondence between the opti-
mal clipping window and the time constant of synaptic
interactions. For NMDA-mediated synaptic interactions
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optimal clipping windows are large, and for AMPA-
mediated interactions they are small, in agreement with
previous findings (Gutkin et al. 2003; Harsch and Robin-
son 2000). A similar use of the clipping operation has
previously been demonstrated in a different context. By
clipping artificial spike trains to variable bin sizes, Grün
et al. were able to extract the applied temporal jitter to
these spike trains using a commutative correlation mea-
sure (Grün et al. 1999, 2002). In agreement with a spike
jitter estimate, we have found that optimal clipping win-
dows typically are smaller than interspike intervals, and
are also smaller than the widths of CSP peaks (which are
a measure of co-fluctuation of firing rates—Figs. 4 and 6).

Our study leaves many open problems that need to
be addressed in future work. For example, it can be
argued that our significance test is based on too simpli-
fying Poissonian assumptions. That is, we have estimated
the marginal spike probability by the fraction of clipping
windows that were filled with at least one spike. One can
argue that a more stringent estimate might be more ade-
quate. For example, given the strong tendency of HVC
projection neurons to produce spike bursts, we might
want to estimate the standard error Sτ

T in Eq. 10 by the
number of source bursts instead of the number of source
spikes. As there always are fewer bursts than spikes, we
would obtain an increased standard error and so be less
likely to reject the null hypothesis of independence.

Even with this more stringent significance test, we
may be strongly biased towards rejecting the null
hypothesis. In an earlier study, we found that during
sleep, firing rates of neurons are highly fluctuating on
the time scale of seconds (Hahnloser et al. 2006). In
this context, it is not clear whether significant peaks in
CSP functions arise from true spike correlations, or from
coincident fluctuations of excitability. To be able to dis-
tinguish fast spike-time correlations from slow correla-
tions due to a common source of excitability, it might
be possible to apply similar techniques as in (Brody
1999; Grün et al. 2002). The essential idea would be
to use a local estimate of background correlation, thus
reducing the sensitivity to nonstationarities in excitabil-
ity. There exist powerful techniques to segment nonsta-
tionary spike trains into non-overlapping time windows
during which spike train statistics are approximatively
stationary (Danóczy and Hahnloser 2006; Grün et al.
2002). By first running such a segmentation analysis,
we could restrict the entire analysis to segments with
stationary spike train statistics only, thus getting rid of
excitability fluctuations.

An important limitation of our work is that we have
only presented methods for single trial data, well appli-
cable to studies of spontaneous activity during sleep
and in-vitro experiments. However, often, correlation

measures are used in the context of multiple experi-
mental trials (Brown et al. 2004; Schreiber et al. 2004).
A multiple trial situation arises when some sensory or
other nerve stimulation is repeatedly applied. We
believe that cross-intensity functions can be very use-
ful also for multiple trial data. The generalization might
pose some challenges such as the formulation of signifi-
cance tests with marginal spiking probabilities that are
time-dependent (stimulus-locked) functions.

In conclusion, there remain interesting open prob-
lems to be studied; their solutions will help to strengthen
the ties between raw spike data, probabilistic models of
synaptic interactions, and Bayesian computation in neu-
ral circuits.

3 Methods

We first introduce spike-train correlation measures at
the temporal resolution of the sample rate. We then dis-
cuss two methods for reducing temporal resolution: one
is to clip spikes, the other is to (linearly) integrate.

3.1 Spike-train correlations

Spike train: We represent a spike train ρ(t) by a sum of
delta functions,

ρ(t) :=
N∑

i=1

δ(t − ti), (1)

where N is the total number of spikes generated up to
time T. We assume that time is sampled in discrete steps
�t smaller than the refractory period of action poten-
tials. The discrete delta function is defined as δ(k�t) = 0
for all integers k �= 0 and δ(0) = 1/�t.

Cross-correlation function: Assume we are given
spike trains from two neurons T and S, with spike times
tTi (i = 1, . . . , NT), and tSi (i = 1, . . . , NS). The cross cor-
relation function PTS(t) between the two spike trains is
defined as

PTS(t) := 〈ρT, ρS〉(t) = 1
T

T∫

0

ds ρT(t + s)ρS(s). (2)

Note that neuron T is not to be confounded with the
total recording time T. In general, we are interested in
the cross-correlation function in some small time inter-
val |t| ≤ tmax � T. The reason for this limited range is
that in most neural systems we do not expect correla-
tions between spike trains to last for longer than about
tmax ∼ 1 s. In this limit, the cross-correlation function
is commutative, which means that there exists a com-
bined symmetry of neuron exchange and time reversal,
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PTS(t) = PST(−t). Thanks to this commutative property,
the cross-correlation function can be thought of as the
joint probability density of observing a spike in neuron
S separated by time t from a spike in neuron T.

Cross-intensity function: In probability theory, the
conditional probability between two random variables
is defined as the joint probability divided by the mar-
ginal probability. Accordingly, the cross intensity func-
tion (CIF) is defined as:

PT|S(t) := 〈ρT|ρS〉(t) = 1
〈ρS〉 〈ρT, ρS〉(t), (3)

where 〈ρS〉 := NS/T is the average firing rate of neuron
S. A straightforward calculation shows that the CIF is
an estimate of the conditional spike probability (CSP)
that neuron T spikes at a time lag t of a spike in neuron
S:

PT|S(t) = 〈ρT|ρS〉(t)

= NS

NST〈ρS〉
T∫

0

ds
NS∑

i=1

δ(s − tSi )ρT(s + t)

= �t
NS

NS∑

i=1

ρT(tSi + t)

= # S spikes separated by t of a T spike
NS

.

Given this probabilistic interpretation of the cross-
intensity function, it makes sense to call neuron S the
source neuron and neuron T the target neuron.

Confidence intervals: To put error bars on the CIF, in
line with our probabilistic interpretation, we assume that
spikes in the target neuron are generated by a Bernoulli
process. That is, we assume that at time lag t of a spike
in the source neuron, spikes in the target neuron are
generated with probability PT|S(t). Given the NS trials,
the standard error ST|S(t) of our probability estimate is

ST|S(t) :=

√√√√PT|S(t)
(

1 − PT|S(t)
)

NS
. (4)

That is, ST|S(t) represents the uncertainty of the condi-
tional spike probability function at timelag t.

Significance: To test for significance of the peak p̂ =
maxt PT|S(t), we use as null hypothesis that the target
spike train is conditionally independent of the source
spike train, H0 : p̂ = PT, where PT is the probability
that the target neuron spikes in a randomly selected bin,

PT := NT

T/�t
= NT�t

T
. (5)

Here T/�t corresponds to the total number of time bins
covered in time T (typically a very large number).

Given a confidence level α, we reject the null hypoth-
esis if p̂—being an estimator of PT—falls into the α-tail
of the estimator density. Using the Gaussian approxi-
mation of the Bernoulli distribution, we reject the null
hypothesis if

z−value := |p̂ − PT|√
PT(1−PT)

NS

> zα , (6)

where zα is the z-value of the Gaussian distribution (for
example zα = 2.33 corresponds to a one-sided test at
confidence level α = 1%).

With �t being equal to the sample time, most bins
will end up being devoid of spikes, leading to very small
(conditional) spike probabilities. In general, the esti-
mation of small probabilities is undesirable, because it
requires a relatively large number of source spikes, i.e.,
long recordings. As a rule of thumb, to estimate the
probability p of a binomial process we should perform
at least NS = 9

p(1−p)
coin flips, which is a function that

diverges as p−1/2 when p → 0 (with this choice of NS,
we expect to see each side of the coin at least 9 times).

There are two reasons why we are interested in per-
forming our analysis with larger bin sizes: One is to
obtain better statistics, and the other is to explore
whether there exists a natural time scale for condi-
tional spike probabilities. In the following we present
two alternative methods for increasing bin size, one is
by clipping, the other by integration.

3.2 Clipped cross-intensity function

The clipped CIF Pτ
T|S(t) is an estimate of spike proba-

bility in time bins τ larger than the sample time �t; it is
given by the fraction of spikes in the source neuron S,
for which the target neuron T fires at least one spike in
the window [t − τ/2, t + τ/2] relative to source spikes.

Pτ
T|S(t) := 1

NS

NS∑

i=1

�

(
τ

2
− min

j
|tSi + t − tTj |

)
, (7)

where |.| denotes the absolute value, and � is the
Heaviside function (i.e., �(x) = 1 if x ≥ 0 and �(x) = 0
otherwise). The parameter τ is referred to as the clipping
width. If we choose τ = �t in Eq. 7, then we get back the
original definition of the CIF (Eq. 3), as there can be at
most one spike in a window of size �t. The clipped CIF
is a monotonically increasing function of τ , as in large
windows it is more likely to encounter at least one spike
than in small windows. Note that large windows may
contain many spikes; therefore, we clip spike trains as a
simple means to maintain a probabilistic interpretation.
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Confidence intervals: We compute confidence inter-
vals for Pτ

T|S(t) using the Gaussian approximation of the
binomial distribution (large NS-limit). Accordingly, con-
fidence intervals correspond to multiples of the stan-
dard error Sτ

T|S(t) of a Bernoulli process with parameter
Pτ

T|S(t). In analogy to Eq. 4 we have that

Sτ
T|S(t) :=

√√√√Pτ
T|S(t)

(
1 − Pτ

T|S(t)
)

NS
. (8)

For example, the interval ±2.58 Sτ
T|S(t) corresponds to a

99% confidence interval for the estimate of Pτ
T|S(t).

Marginal probability: Under clipping, the marginal
spike probability Pτ

T corresponds to the probability that
a random time window of width τ contains at least one
target spike. We estimate Pτ

T by the fraction of filled
windows within the recording of duration T,

Pτ
T := τ

T

T/τ∑

k=1

�

(
τ

2
− min

j
|kτ − tTj |

)
, (9)

where T/τ corresponds to the number of clipping win-
dows. For τ not too large, the confidence interval for Pτ

T
is much smaller than than that of Pτ

T|S(t), because there
are more windows of size τ in Eq. 9 than there are source
spikes in Eq. 7. This explains why for significance testing
we neglect uncertainties in our estimate of Pτ

T.
Significance test: When we estimate the marginal

probability Pτ
T from only NS trials (for significance test-

ing) then the estimate is subject to a standard error

Sτ
T :=

√
Pτ

T(1 − Pτ
T)

NS
. (10)

The conditional spike probability Pτ
T|S(t) is signifi-

cantly larger than the marginal spike probability Pτ
T if it

satisfies

z−value function = zτ (t) = |Pτ
T|S(t) − Pτ

T|
Sτ

T
> zα . (11)

This significance criterion has an interesting dependence
on τ . Since all of Pτ

T|S(t), Pτ
T, and Sτ

T are increasing func-
tions of τ , the z-value function may be a non-monotonic
function of τ , as we have seen in Figs. 3, 4, 5 and 6.

Removal of single spikes: Note that to compute CIFs
for RA − HVCI neuron pairs and to test for signifi-
cance in Fig. 6b, we removed single spikes in all RA
neurons (all spikes separated by more than 10 ms from
both preceding and succeeding spikes). This procedure
was motivated by reversible lesion studies, where it was
found that only RA bursts are driven from HVC, not
RA single spikes (Hahnloser et al. 2006). In support of
this procedure, when we did not remove single spikes
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Fig. 8 Dependence of peak significance on the integration win-
dow size τ . For each τ and each neuron pair we have computed
the integrated CIF pτ (t) = Pτ

T|S(t − τ/2, t + τ/2) as a function of
t. Then we determined the peak p̂τ = maxt pτ (t) and its log sig-
nificance sτ = − log P(N > Nsp̂τ |N̂). a Mean log significance 〈sτ 〉
for n = 46 HVCRA–RA neurons as a function of the integration
window size τ . b Mean log significance for n = 50 RA–HVCI
neurons. The gray areas delimit the standard error. Compare a
and b with Figs. 5a and 6b where we used spike clipping instead of
integration

in RA neurons, we did not observe significant correla-
tions between CSP-peak time lags and optimal clipping
windows in Fig. 7b.

3.3 Integrating the CIF

Instead of spike clipping, we can also integrate the
(sample-time) CIF in Eq. 3 to obtain a lower-resolu-
tion estimate of conditional spiking. However, for the
estimation of spike jitter the integrated CIF gave less
satisfactory results than the clipped CIF, illustrated in
the following.

Integrated CIF: To estimate the expected number of
spikes PT|S(t1, t2) in neuron T in the time interval [t1, t2]
relative to a spike in neuron S, we have to integrate the
CIF in Eq. 3 from t1 to t2:

PT|S(t1, t2) =
t2∫

t1

PT|S(t)dt.

We are interested in testing whether PT|S(t1, t2) is com-
patible with a null hypothesis H0 of conditional inde-
pendence of T spikes on S spikes: H0: PT|S(t1, t2) =
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(t2 − t1)PT, where the marginal probability PT is defined
as in Eq. 5.

According to this null hypothesis, the number of
spikes in neuron T in [t1, t2] is given by a cumulative
Bernoulli process. If the probability per sample time of
this process is very small and the interval [t1, t2] extends
over many sample times, then we may approximate the
Bernoulli process by a Poisson process. We reject the null
hypothesis at the α level if the probability of observing
No spikes or more satisfies P(N ≥ No|N̂) < α, where
No = NSPT|S(t1, t2) is the total number of T spikes in
intervals [t1, t2] and N̂ = Ns(t2 − t1)PT = NS

t2−t1
T is the

expected number of T spikes under hypothesis H0. To
evaluate the probability P(N > No|N̂) we make use of
the incomplete gamma function as in (Grün et al. 2002).

We see in Fig. 8 that integrated CIFs lead to a qual-
itatively different behavior of significance than clipped
CIFs. For HVCRA–RA neurons the integrated CIF does
not peak for small integration windows, but is an increas-
ing function that reaches a plateau at roughly 15 ms,
Fig. 8a. For RA–HVCI neuron pairs a weak significance
peak emerges at integration windows of roughly t2−t1 =
4 ms, Fig. 8b. In general, we observed that integrated
CIFs do not lead to sharp significance peaks, implying
that integration is less suitable than clipping for inferring
intrinsic time scales of neural interactions.
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