
Spike Correlations in a Songbird Agree
with a Simple Markov Population Model
Andrea P. Weber, Richard H. R. Hahnloser

*

Institute of Neuroinformatics UZH/ETH Zurich, Zurich, Switzerland

The relationships between neural activity at the single-cell and the population levels are of central importance for
understanding neural codes. In many sensory systems, collective behaviors in large cell groups can be described by
pairwise spike correlations. Here, we test whether in a highly specialized premotor system of songbirds, pairwise spike
correlations themselves can be seen as a simple corollary of an underlying random process. We test hypotheses on
connectivity and network dynamics in the motor pathway of zebra finches using a high-level population model that is
independent of detailed single-neuron properties. We assume that neural population activity evolves along a finite set of
states during singing, and that during sleep population activity randomly switches back and forth between song states
and a single resting state. Individual spike trains are generated by associating with each of the population states a
particular firing mode, such as bursting or tonic firing. With an overall modification of one or two simple control
parameters, the Markov model is able to reproduce observed firing statistics and spike correlations in different neuron
types and behavioral states. Our results suggest that song- and sleep-related firing patterns are identical on short time
scales and result from random sampling of a unique underlying theme. The efficiency of our population model may apply
also to other neural systems in which population hypotheses can be tested on recordings from small neuron groups.
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Introduction

Spontaneous neural activity in the absence of sensory
stimulation (e.g., during sleep) often exhibits stereotyped
sequences that can resemble sensory or motor sequences [1–
5]. A central question pertaining to such observations is the
extent to which spike sequences in single neurons reflect
sequential behaviors across larger populations. Sometimes
there is strong correspondence, and the spike patterns in
single neurons can be precisely predicted from a coarse
population readout [6]. However, it is largely unexplored
whether population-conditional models of spike trains can go
beyond single-neuron statistics and also explain pairwise
spike correlations.

Pairwise spike correlations can signal important informa-
tion beyond that of firing rates [7,8], and in some sensory
systems no higher-order interactions seem to exist beyond
that of cell pairs [9]. Spike correlations can be interpreted as
evidence either of direct synaptic interactions or of common
synaptic inputs. To illustrate the relationship between spike
correlations and population models, let us consider neurons
that display some regular subthreshold oscillations and
occasionally fire a spike at the peaks of oscillation cycles.
From single-unit data, we cannot infer the activity distribu-
tion across the population. However, given pairwise spiking
data, we can estimate the number of population states from
the conditional probability that a cell spikes given that a spike
in another cell occurs (which is a measure of spike
correlation). For example, if the conditional spike probability
(CSP) averaged over cell pairs is one, then all cells must be
linked to the same population state, and fire with unit
probability when that state is visited. If, on the other hand,
CSPs average to 0.2, then the cells can be distributed among
at most five equiprobable states. For example, neurons could
each be randomly linked to one of five states and fire with

unit probability when that state is visited; or they could all be
linked to the same state and fire with probability 0.2 when
that state is visited. Which of these cases applies depends on
the spread of CSPs: in the one-state case, all CSPs would be
narrowly distributed around 0.2, and in the five-state case,
CSPs would be bimodally distributed around zero and one
(and average to 0.2). The point of this hypothetical example is
to illustrate that population-conditional models are con-
strained by spike correlations, and therefore such models
must be tested on experimental data.
In the robust nucleus of the arcopallium (RA) and the high

vocal center (HVC) of zebra finches, neurons exhibit precise
and stereotyped high-frequency bursts during singing. The
number of bursts produced per song motif varies strongly
between neuron types, from about one burst in RA-
projecting HVC neurons (HVCRA neurons), to about 12
bursts in RA projection neurons, and up to more than 20
bursts in HVC interneurons (HVCI neurons) (Figure 1A)
[1,10,11]. In awake, non-singing birds, RA and HVC neurons
do not burst and are either silent or in a mode of tonic firing
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[12,13]. And during sleep they display incessant switching
between bursting and tonic firing modes; in RA neurons, the
sleep-related burst patterns can be highly similar to song-
related patterns [4], and often the patterns are time-locked to

bursts in simultaneously recorded RA-projecting HVC
neurons (Figure 1Bi) [12].
Inspired by these data, we study a simple Markov model of

neural populations that is based on a chain network of
synaptic connections among HVCRA neurons [14,15]. Model
spike trains depend on the sequence of population states and
are otherwise independent of each other. Formally, state–
space models allow for the a priori estimation of the state
dynamics from given spike data [16–19]. However, because
here we assume knowledge of the state–space topology (i.e., a
chain-like network among HVCRA neurons), we are faced
with the simpler problem of estimating the transition
probabilities associated with the chain.
We explore to what fraction sleep-related bursts in HVC

and RA constitute replay of premotor bursts. We compare
our simulations to sets of song- and sleep-related spike data
in different HVC and RA neuron types [1,10–12]. These
datasets are affected by a nonnegligible variability, as
exemplified by averages of sleep-related interspike interval
(ISI) distributions in RA neurons (Figure 1Bii). This variability
entails model parameters needing to be individually adjusted
for each dataset. Our main finding is that the diversity of the
data across sets and across behavioral states (waking, singing,

Figure 1. Song and Sleep-Related Firing in HVC and RA Neurons of Zebra Finches

(A) During the production of a song motif (sound spectrogram on top), RA-projecting HVC neurons (HVCRA neurons) produce at most one stereotyped
spike burst (red rasters). HVC interneurons (HVCI neurons) produce dense and less-stereotyped spike patterns (green rasters). A more elaborate version
of this figure was originally published in [1].
(B) Sleep-related firing in HVCRA and RA neurons. (i) Top: spike-raster plot of a simultaneously recorded HVCRA–RA pair during sleep. RA spikes (black
rasters) have been time aligned to HVCRA bursts (red rasters). (i) Bottom: CSP function of the same neuron pair. Also known as the cross-intensity
function, the CSP function is an estimate of the conditional RA spiking probability as a function of the time lag to HVCRA spikes (see Methods). (ii) ISI
pdfs of RA neurons vary from one dataset to another. ISI pdfs have been averaged either over 29 RA neurons recorded in isolation (full line), or over 26
RA neurons recorded simultaneously with HVCRA neurons (dashed line), or over 50 RA neurons recorded simultaneously with HVCI neurons (dotted line).
doi:10.1371/journal.pcbi.0030249.g001
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Author Summary

To deal with the vast complexity of the brain and its many degrees
of freedom, many reductionist methods have been designed that
can be used to simplify neural interactions to just a few key
underlying macroscopic variables. Despite these theoretical advan-
ces, even today relatively few population models have been
subjected to stringent experimental tests. We explore whether
second-order spike correlations measured in songbirds can be
explained by single-neuron statistics and population dynamics, both
reflecting hypotheses on network connectivity. We formulate a
Markov population model with essentially two degrees of freedom
and associated with different behavioral states of birds such as
waking, singing, or sleeping. Excellent agreement between spike-
train data and model is achieved, given a few connectivity
assumptions that strengthen the view of a hierarchical organization
of songbird motor networks. This work is an important demon-
stration that a broad range of neural activity patterns can be
compatible at the population level with few underlying degrees of
freedom.

Population Model of Songbird Spike Data



and sleeping) can be essentially ascribed to two macroscopic
transition probabilities; these set the likelihood that pop-
ulation activity either evolves along the chain of motor states
imprinted in the HVCRA network, or flips back and forth
between motor states and a single resting state. Our results
strengthen the view that synaptic networks are organized to
support well-defined and highly constrained population
behaviors.

Results

Model
In our model, HVC population activity is a random variable

that evolves in roughly 5 ms steps and is either in the ground
state, or in one of 100 song states. The number of song states
is chosen such that a total song-motif duration of 500 ms
results [20]. Each of the song states corresponds to activation
of a virtual group of 50–150 RA-projecting HVC neurons
(referred to as HVCRA neuron groups, or simply HVCRA

groups). During singing, HVCRA groups are activated sequen-
tially with probability p ¼ 1 (Figure 2A). When birds are
awake, but not singing, HVC activity remains in the ground
state (state 0) with probability q ¼ 1. During sleep, HVCRA

groups are also sequentially activated, but with reduced

probability p , 1, and, the persistence probability in the
ground state is also reduced to q , 1 (Figure 2B). By
construction, neurons remain for exponentially distributed
times in song and ground states during sleep, in agreement
with recent estimates [17].
Given a sequence of states that describes HVC population

activity, we generated spike trains in individual neurons by
random sampling of model ISI probability density functions
(pdfs). We assumed that HVCRA neurons are each randomly
linked to exactly one HVCRA group and fired a burst only
when that group was activated; otherwise they remained
silent. HVCI and RA neurons were randomly linked to more
than one HVCRA group and fired several bursts per song
motif. For each neuron type, burst ISI pdfs were fixed and
were simply derived from measurements (Figure 2C). Inter-
estingly, in all neuron types, sleep-related bursts have lower
firing rates than song-related bursts (see Figure S1). To
accommodate this fact, model pdfs had to be slowed down
during sleep (see Methods for details). Finally, when HVC
activity was in the ground state, HVCRA neurons remained
silent, whereas RA and HVCI neurons generated ISIs sampled
from gamma functions (Figure 2D). Because waking-related
RA and HVCI firing rates are very diverse [12], the means of

Figure 2. Markov Model of HVC Activity during Behavior and Sleep

(A) When birds are awake, but not singing, HVC activity persists in a ground state (state 0) with probability q¼ 1. When birds sing, groups of HVCRA

neurons (numbered circles) are sequentially activated with probability p¼ 1 (the dashed arrows indicate song onset and offset). A single HVCRA neuron
(red square) is linked with exactly one HVCRA group, and single RA and HVCI neurons (blue and green squares) are linked with random subsets of LR and
LI groups, respectively.
(B) During sleep, HVCRA groups are sequentially activated with probability p , 1; with probability 1 � p, HVC activity transits into the ground state.
There, it persists with probability q , 1; with probability 1� q, it transits back into a song state.
(C) Bursts in different neuron types are modeled by the first few milliseconds of averaged song-related ISI pdfs pb(s).
(D) Tonic firing in RA and HVCI neurons is modeled by gamma functions pa(s) (black curves). The diversity of waking-related ISI pdfs in these neurons is
illustrated by the blue and green curves, each representing a different neuron.
doi:10.1371/journal.pcbi.0030249.g002

PLoS Computational Biology | www.ploscompbiol.org December 2007 | Volume 3 | Issue 12 | e2492522

Population Model of Songbird Spike Data



gamma functions were kept as free parameters together with
p and q. Descriptions and derivations of model parameters
are summarized in Table 1.

Fits to Song-Related and Sleep-Related Data
We found that song-related ISI pdfs beyond the burst scale

could be well fit over the entire ISI range (up to 100 ms) by
randomly linking RA neurons to LR¼ 12 HVCRA groups and
HVCI neurons to LI¼35 groups (Figure 3A and 3B). Note that
the larger the link counts LR and LI, the steeper were the
corresponding exponential tails of the pdfs. However, to also
account for the considerable lack of stereotypy mainly in
raster plots of HVCI neurons [11], we had to trade off high
link counts against reduced burst probabilities (the proba-
bility that a neuron bursts when an HVCRA group to which it
is linked is activated). Note that a less than unit burst
probability can be interpreted as a reduction in neural
responsiveness to excitatory synaptic drive, or as increased
inhibition. We obtained good results with burst probabilities
in RA neurons of pR¼0.92 (LR¼13) and in HVCI neurons pI¼
0.63 (LI ¼ 50) (Figure 3C and 3D). Note that first-order
statistics impose the following constraints on the average
number of RA and HVCI bursts per song motif: pRLR ffi 12
and pILI ffi 35.

Sleep-related ISI pdfs of RA neurons could be well-fit given
a suitable tonic-firing model and suitable persistence prob-
abilities p and q (Figure 4A and 4B). The peak at small ISIs
resulted from spikes produced in song states, and the peak at
large ISIs from spikes produced in the ground state. Raster
plots of simulated RA-neuron activity aligned to HVCRA

bursts looked very realistic (compare Figure 4C and 4D to
Figure 1Bi). Autocovariance functions of sleep-related RA
spike trains could also be well-fit (see Figure S2).

The parameters p and q characterized what we shall refer to
as the depth and the coherence of the sleep. By denoting the
average number of time steps spent in song states by hnsi¼ p /
(1�p) and similarly hnai¼p / (1� q) for the ground state (these
numbers are known as the survival times in the language of
point processes), we defined the sleep depth d by their ratio
hnsi / hnai (experimentally, d could be estimated from burst-
rate measurements as d ¼ b / (b0 � b), where b0 and b are
measured burst rates during song and during sleep, respec-

tively). Small ISIs prevailed during deep sleep (Figure 4B, hnsi/
hnai ¼ 12%) and large ISIs during light sleep (Figure 4A, hnsi/
hnai ¼ 3.6%). The coherence of sleep was defined by the
product hnsihnai ¼ 12%. Model ISI pdfs showed almost no
dependence on sleep coherence. For example, by doubling
both p and q, sleep-related ISI pdfs in Figure 4A and 4B
remained essentially unchanged. However, the sleep coher-
ence had a strong influence on raster plots: the larger the
sleep coherence, the longer was the time interval relative to
HVCRA bursts over which stereotyped RA bursting could be
observed (Figure 4C and 4D; note that sleep depths were very
similar in Figure 4C and 4D: 19% versus 14%).
RA and HVCI neurons frequently display 1–2 s epochs of

increased burst density during sleep ([12]; Figure 5A, top).
From a recent experimental study, we know that these burst
epochs are shaped by input from the thalamic nucleus
uveaformis (Uva): decreased tonic firing in HVC-projecting
Uva neurons leads to increased bursting in HVC and RA
neurons, whereas increased tonic firing in HVC-projecting
Uva neurons suppresses HVC and RA burst rates (unpub-
lished data). Here, we modeled this Uva-mediated control of
burst epochs by random fluctuations of the parameter p (we
transiently set p ¼ 1 to model a burst epoch; see Methods)
(Figure 5A, middle and bottom). By modifying p rather than
any other parameter, we satisfied the experimental finding
that burst shapes (burst-related ISI distributions) are un-
changed during burst epochs. By virtue of burst epochs,
raster plots of simulated HVCRA–HVCI pairs were very
realistic and displayed characteristic horizontal bands of
long, uninterrupted bursting, coexisting with brief bands of
very few bursts (Figure 5B). Without fluctuations in p, HVCI

burst patterns would mostly be either narrow or wide, but not
both.
One of the touchstones of our model is whether it can

reproduce pairwise correlations in sleep-related spike trains
on large time scales (two orders of magnitude beyond the
burst scale). We modeled CSP functions by averaging over 50
simulated cell pairs with randomly drawn link sets. It was a
simple matter to produce excellent fits of CSP functions in
RA–RA and RA–HVCI pairs (Figure 5C and 5D). The effect of
p was to set the width of CSP functions, whereas q and average
RA and HVCI firing rates set the baseline and peak values.

Table 1. Model Parameters and Their Derivation

Model Parametera Description Derived from

Population model p, q Transition probabilities Markov process Free. Range of p: 0.18–0.67. Range of q: 0.97–0.996

hdti ¼ 5 ms Time step of Markov process Typical durations of songs and HVCRA bursts

pb ¼ 0.04, Tepoch ¼ 400 ms Burst epoch parameters CSP fits in Figure 5

Neuron models Dt ¼ 0.1 ms Spike-train sample time —

VR ¼ 0.65, VI ¼ 0.9, VP ¼ 0.63 Speed of sleep bursts Average ISI pdfs in waking and sleeping states, Figure S1

DR ¼ 240 ms Average duration of RA inhibition Average RA burst-triggered IFR, Figure S1E. Range of DR: 120–240 ms

PInh ¼ 0.1 Probability of RA inhibition Figure 7B. Range of PInh: 0.06–0.16

tR ¼ 4 ms Spike propagation time from HVC to RA Antidromic stimulation, RA–HVCI CSP peaks [22]

LRpR ffi 12, LIpI ffi 35 Link counts (L) and burst probabilities (p) Raster plots and ISI pdfs of song data, Figure 3

pb
RðsÞ; pb

I ðsÞ; pb
PðsÞ Model ISI pdfs of bursts Average song-related ISI pdfs, Figure 2C

pa
RðsÞ; pa

I ðsÞ Model ISI pdfs of waking-related firing

(gamma functions)

Free (average firing rates). Range RA: 15–27 Hz; range HVCI: 0–8 Hz

Ranges specified are not representative of overall single-neuron ranges, but represent the ranges used in simulations to fit selected single-neuron data and population averages.
aP indicates HVCRA; I, HVCI; and R, RA.
doi:10.1371/journal.pcbi.0030249.t001
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However, CSP function in HVCRA–HVCI pairs and HVCI–
HVCI pairs turned out to be more problematic because it was
impossible to reproduce the high CSP peaks near zero time
lag. For HVCRA–HVCI pairs, there was a simple explanation
for this shortcoming: when we simulated only as many model
pairs as were available in the experimental dataset (26 instead
of 50), then the high CSP peak could be occasionally
reproduced due to random link sampling (Figure 5E). Thus,
from a bootstrapping point of view, the small difference
between model and real CSP functions in HVCRA–HVCI pairs
was not statistically significant. In contrast, the peak CSP in
HVCI–HVCI pairs was significantly higher than its model
counterpart: even when sleep activity was restricted to song
states only (p ¼ 1), the high peak CSP in HVCI–HVCI pairs
could not be reproduced. A good fit was only possible with
substantially higher HVCI burst probability, pI ¼ 0.95. Thus,
we were faced with the paradoxical conclusion that HVCI

neurons burst more reliably during sleep than during singing
(this conclusion is paradoxical, because with our estimate of
HVCRA burst probability pP ¼ 1 during singing and pP ¼ 0.8

during sleep, the presumed HVCRA drive is smaller during
sleep, and so pI should be smaller as well). We could imagine
two reasons why the CSP peaks of HVCI pairs might be so
high during sleep. First, during sleep, HVCI neurons could be
selectively driven by X-projecting HVC (HVCX) neurons or by
neurons in the nucleus interface of the nidopallium (NIf) that
project to HVC (NIfHVC neurons), in addition to their weaker
drive from HVCRA neurons. This explanation by itself seems
somewhat implausible, because it would require that HVCRA

neurons not be driven (or only very weakly driven) by HVCX

or NIfHVC neurons, which appears not to be the case [21–23]).
Therefore, we favored a second explanation, which is that our
assumption of random and uniform links in HVCI neurons
must be wrong. In other words, there must be a special subset
of HVCRA groups to which HVCI neurons are linked with
higher probability. In fact, such an explanation agrees with
song-related data, according to which HVCI population
activity is weakly correlated with sound amplitude and
therefore not uniformly distributed over the time course of
a song motif [11]. Indeed, when we relaxed the assumption

Figure 3. Song-Related ISI pdfs of RA and HVCI Neurons

(A,B) Model-based fits of averaged ISI pdfs in RA and HVCI neurons during singing. The arrows delimit the ISI range of the burst models in Figure 2C, i.e.,
6 ms and 10 ms, respectively. The RA-neuron data (A) were taken from [10], and the HVCI data (B) were provided courtesy of A. Kozhevnikov. LR¼ 12,
and LI ¼ 35.
(C,D) Raster plots of song-related spike trains in four RA and four HVCI model neurons for two different values of link counts LR/I and burst probabilities
pR/I. Spikes are represented as tick marks and drawn in alternating colors for different neurons.
doi:10.1371/journal.pcbi.0030249.g003
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that HVCI neurons can be linked to any one of the 100
HVCRA groups, but to only 56 randomly selected groups, we
obtained a good fit to the CSP peak with standard HVCI

parameters pI ¼ 0.63 (LI ¼ 50) (Figure 5F).
Note that a requirement for the excellent CSP fits was the

inclusion of burst epochs. Without burst epochs, the long tails
of CSP functions could not be well fit (see Figure S3). Note
also that the asymmetry in the average RA–HVCI CSP
function in Figure 5D was largely due to RA inhibition that
decreases tonic firing after bursts and due to differences
between RA and HVCI tonic firing rates.

One of our model assumptions is that any HVCRA group
can be activated from within the ground state. We were
unable to stringently test this assumption: All of our results
remained unchanged when singing-like activity could be
initialized in only a random subset of ten or more song states.
However, when this number was much smaller (two to four
states), unrealistic peaks in correlation functions appeared,
thereby setting a lower bound for the number of possible
initial HVCRA groups.

Tests of HVC Ultrasparseness and Sequential Dynamics
during Sleep

We tested the validity of our assumptions of ultrasparse-
ness and sequential dynamics of HVCRA activity. Given that
during sleep HVCRA bursts are time-locked to burst patterns
in RA neurons (Figure 1Bi), we decided to use this locking to
test whether individual HVCRA neurons are linked to a single
or, potentially, to several HVCRA groups, and whether during

sleep, HVCRA groups are activated sequentially or in more
random order.
We determined the experimental CSP distribution of all

HVCRA–RA pairs in the time interval [�60, 60] ms of HVCRA

spikes (Figure 6). With the exception of extreme (very small
and very large) CSPs, the distribution was well-approximated
by an exponential curve. The excessive occurrence of
extreme CSPs did not happen by chance: the number of
CSPs in the bin [0.99, 1] was significantly larger than the
number of CSPs in equally sized adjacent bins (p , 0.01,
binomial test). The same held true for the number of CSPs in
the bin [0, 0.01], which was significantly larger than in
adjacent bins. This CSP behavior illustrates that on the
population level, RA activity tends to be highly locked to
HVCRA bursts within at least 660 ms.
We compared the experimental CSP distributions with

model distributions for 50 simulated HVCRA–RA pairs under
various model assumptions. For the model in Figure 2, very
small and very large CSPs appeared frequently (red curve in
Figure 6), in good agreement with the data. Almost no
parameter tuning was necessary to achieve a good fit. The
heights of extreme CSP peaks were positively correlated with
q. When q was small, the likelihood of repeated switching
between ground and song states within 60 ms was large,
thereby decorrelating spike trains and forcing extreme CSP
values to appear less frequently. CSPs in the intermediate
range 0.5–0.95 were positively correlated with p, because with
longer RA burst sequences, intermediate CSP values occurred

Figure 4. Modeling Sleep-Related Activity (p,q , 1)

(A) An RA neuron producing few burst ISIs. A good fit is produced when the survival time of the ground state is long, compared to that of song states
(light sleep, q much closer to 1 than p). DR ¼ 80 ms, and VR ¼ 0.7.
(B) A different RA neuron producing many burst ISIs. A good fit was produced by a relatively long survival time of sleep states (deep sleep). DR¼120 ms,
and VR ¼ 0.67.
(C,D) Spike raster plots of HVCRA and RA neurons. All HVCRA bursts (red rasters) are aligned at the center of the plots. Corresponding RA spikes (black
rasters) are shown below each HVCRA burst. When p is large (strongly coherent sleep) (C), stereotyped RA bursting is observed over larger intervals than
when p is small (D).
doi:10.1371/journal.pcbi.0030249.g004
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more often. For a peak at unit CSP to appear, the RA burst
probability pR had to be close to one: by decreasing pR from
one to 0.8, the peak at unit CSP completely disappeared.
Thus, to agree with the data, RA neurons must have a very
high burst probability, which is suggestive of a strong drive
from HVC.

We then assumed that HVCRA neurons do not burst by
linkage with a single HVCRA group, but that 80% of their
bursts are locked to a first HVCRA group, and 20% of bursts
are locked to a second group (in the simulations, the two
groups were randomly chosen for each simulated HVCRA

neuron). We expected these double linkages to create a
washout effect in which clear RA burst pattern would no
longer be seen. Indeed, by remapping just 20% of HVCRA

bursts in this manner, very high and very low CSPs appeared
less frequently (green curve in Figure 6), in disagreement with
the data. This phenomenon was very robust because increas-
ing p up to 99/100 and q up to 999/1000 was insufficient to
reproduce the high peak at unit CSP. Thus, ultrasparseness of
HVCRA linkage is necessary to explain the abundance of
extreme CSPs.
We also estimated the degree to which HVCRA groups are

activated in sequence as opposed to random (nonsequential)
activation. In principle, our sleep model in Figure 2B allows
for almost arbitrary state transitions by means of a brief
intermission via the ground state. However, reasonable
values for p and q imply that nonsequential HVCRA-group
activation is rare and that such events have little impact on

Figure 5. Burst Epochs and Pairwise Correlations

(A) Instantaneous firing rates of a recorded HVCI neuron (top), a simulated HVCI neuron without burst epochs (middle), and a simulated HVCI neuron
with burst epochs (bottom). Burst epochs are indicated by arrows.
(B) A sample raster plot of a simultaneously recorded HVCRA–HVCI pair (top) and a comparable plot from model simulations (bottom). The inclusion of
burst epochs gives rise to rows with very sparse HVCI bursting (top arrow) and rows with dense HVCI bursting (bottom arrow), as is seen in real data.
(C–F) Average CSP functions in different neuron types. The functions are plotted in reference to a spike in the first pair, i.e., with respect to RA spikes in
(D) and with respect to HVCRA spikes in (E).
(C) RA–RA neuron pairs (from n¼ 29 recorded pairs). p ¼ 6/7, and q ¼ 39/40.
(D) RA–HVCI pairs (n ¼ 50 pairs). The arrow indicates an asymmetry that is reproduced by the model. p¼ 9/11, and q ¼ 49/50.
(E) HVCRA–HVCI (n¼ 26). p ¼ 7/8, and q ¼ 59/60.
(F) HVCI–HVCI pairs (n ¼ 19). HVCI neurons randomly link to 56 of the 100 HVCRA groups. p ¼ 7/8, and q ¼ 32/33.
In (C–F) LI ¼ 50, pI ¼ 0.63, DR ¼ 240 ms, pR ¼ 0.92, and LR ¼ 13.
doi:10.1371/journal.pcbi.0030249.g005
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the observed CSP distribution. To test our model assumption
that fixed and sequential state transitions underlie sleep-
related activity patterns, we performed simulations in which
20% of transitions between song states were nonsequential
but completely random. We found that introducing such
randomness into the model resulted in an altered CSP
distribution in which zero CSPs appeared very infrequently,
in stark disagreement with the data (blue curve in Figure 6).
The reason for this lack was that with increasing time lag to
HVCRA spikes, stray RA bursts started to appear due to
random transitions, leading to non-zero CSPs. This phenom-
enon was very robust as it was not possible to remedy the
scarcity of zero CSPs by changing p and q. Note that the peak
at unit CSP was unchanged by the introduction of random
transitions, presumably because unit CSPs arose only at very
small time lags away from HVCRA spikes and thus were not
significantly affected by the random transitions. In con-
clusion, the inclusion of few nonsequential transitions leads
to severe decorrelation of RA spikes a few tens of milli-
seconds away from HVCRA spikes and to shortage of very
small CSPs; therefore, nonsequential transitions of HVC
activity must be very rare during sleep. Note that by the same
argument, we could also exclude the possibility that two or
more HVC-activation sequences can coexist at the same
time. If this were the case, then extreme CSPs would be rare,
even more so than by relaxing sequential order or ultra-
sparseness.

Tests of RA Intrinsic Dynamics and Inhibition
In our model, RA neurons are simply driven by HVCRA

bursts. To test for the possibility that RA burst sequences

can be self-sustaining due to recurrent RA circuitry and in
the absence of HVC drive, we performed model simulations
in which after each transition into the ground state, RA
burst sequences continued to propagate for a random
duration uniformly distributed in the time interval 0–15
ms. By doing this, RA neurons produced less than 4%
additional burst spikes compared to before. Despite this
small addition of spikes, average CSP functions of RA–HVCI

pairs became unrealistically heavy at negative time lags,
Figure 7A. This behavior was very robust, though it
obviously depended on the estimated HVCRA spike prop-
agation time tR ¼ 4 ms; see Methods and [24]. To assess the
relevance of RA intrinsic dynamics in a manner independ-
ent of spike-propagation estimates, we removed single
spikes in RA neurons (these are spikes forming ISI pairs of
more than 10 ms each). Thus-formed RA–HVCI CSP
functions (with single RA spikes removed) displayed a high
peak that in fact could not be reproduced with any set of
model parameters p and q unless RA links were correlated
with HVCI links (good agreement could be achieved when
RA neurons were linked to 13 among the 56 HVCRA groups
to which HVCI neurons were linked). Thus, rather than
finding evidence for RA intrinsic dynamics, we found the
contrary evidence that in order to explain the non-lagging
and strong RA–HVCI correlations, RA neurons must be
preferentially linked to and driven by the same HVCRA

groups as are HVCI neurons.
We were also able to test a more subtle prediction of our

model, such as the impact of RA-intrinsic inhibition. The key
experimental observation is that right after sleep bursts, RA
neurons do not immediately reenter the tonic firing mode,
but that tonic firing recovers after an estimated recovery time
of DR ¼ 240 ms (Figure S1E). We modeled this transient
suppression of tonic firing by RA inhibition. This inhibition
had average duration DR and was randomly elicited with
independent probability PInh per activated HVCRA group (see
Methods). A good fit was achieved using PInh¼ 0.1. Due to the
nonspecificity of this inhibition, tonic RA firing was sup-
pressed also when the recorded RA neuron did not burst, but
some other RA neuron did. The situation was different when
we modeled the reduced tonic firing by a soft refractory
period with average duration DR¼240 ms, in which case tonic
RA firing was suppressed only after bursts. To distinguish
between these two models, we inspected paired RA–neuron
recordings for periods when one neuron burst, but the other
did not. We then plotted the average instantaneous firing rate
(IFR) of the nonbursting neurons, time-aligned to burst
onsets. We found that in synchrony with the bursts, there was
a brief dip in the IFR. The inhibition model was able to
reproduce this phenomenon, but the adaptation model was
not, Figure 7B. These findings demonstrate that tonic RA
firing during sleep is suppressed by intrinsic inhibition and
not by firing adaptation alone.

Discussion

We have translated a popular diagram of songbird
premotor dynamics into a simple state-space model of
neuron populations. To produce good fits of spike correla-
tions measured during sleep, we had to make use of a
nonnegligible range of parameter values. We justified this
requirement by intrinsic variability of the data that on the

Figure 6. HVC States Evolve Sequentially and Are Formed by Distinct

HVCRA Groups

Distribution of CSPs in (n¼ 46) HVCRA–RA pairs in the interval�60 to 60
ms of HVCRA spikes (black histogram). With the exception of two peaks at
CSPs zero and one (black arrows), the distribution is well-approximated
by an exponential curve (purple line). Shown are the average CSP
functions of 50 simulated HVCRA–RA pairs for three different model
assumptions: (1) HVCRA neurons fire with probability pP¼ 0.8 in a single
HVCRA group (red curve); (2) HVCRA neurons fire in two (randomly
selected) HVCRA groups with probabilities 0.64 and 0.16 (green curve);
and (3) activation of HVCRA groups is sequential in 80% of song-like
transitions and in 20% it is random (blue curve). The green and blue
arrows indicate inadequacies of model assumptions 2 and 3. p¼ 6/7, q¼
39/40, LR¼ 12, pR ¼ 1, DR¼ 240 ms, and pb ¼ 0.
doi:10.1371/journal.pcbi.0030249.g006
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one hand is due to nonstationarities of sleep modeled by p
and q, and on the other hand is due to individual differences
in tonic firing rates. The parameters p and q interpolate
between firing characteristics associated with two different
behavioral states, i.e., waking and singing. We can at this point
only speculate about their biophysical interpretations.

The persistence probability p of song states could be a
neuromodulatory mechanism that affects vesicle release
probability in HVCRA neurons, or their excitability. Such a
scenario seems plausible if sequential activation of HVCRA

groups derives from excitatory synaptic connections between
HVCRA neurons. Current evidence indicates that HVC and

RA burst epochs are shaped by a thalamic nucleus. Accord-
ingly, the persistence probability p must depend on such
extrinsic influences as well. We are more uncertain about the
persistence probability q of the ground state. Songs of birds
are initiated somewhere in the brain with the result of
activating a particular HVCRA group. During sleep, initializ-
ing signals appear to originate in the NIf that projects to
HVC [23]. The parameter q could thus represent vesicle
release probability in synapses of HVC-projecting NIf
neurons or of synapses (or excitability) within NIf.
An inherent assumption in our model is conditional

independence of spike trains given a sequence of population
states. This is a strong assumption, as it ignores the fact that
cells spike more reliably when their afferents spike more
reliably as well. As a consequence, we found that the model
tended to underestimate some measured correlations (Figure
5F), yet the differences could be explained by assuming
nonhomogeneity of link distributions. Possibly, by doing so,
we have overestimated the tendency by which neurons link to
preferred HVCRA groups; part of the high CSPs could be
attributable to genuine pairwise interactions. To be able to
estimate these interactions in future work, it will be necessary
to simultaneously record from larger neuron populations.
Our prediction would be that higher-order spike correlations
must obey the regularities imposed by population-condi-
tional spike-generation mechanisms. If this prediction turns
out to be wrong and spike triplets appear more often than
predicted, then we might have to revise our model by
incorporating mutual dependencies of burst probabilities,
which in essence corresponds to introducing higher-order
spike correlations.
We were unable to characterize the HVCRA groups to

which HVCI and RA neurons are linked with higher
probability, but we speculate that preference applies to
HVCRA groups that represent syllable onsets, in agreement
with weak predictive correlations between song patterns and
activity in HVCI and RA neurons [10,11]. These distinguished
HVCRA groups could also be leaders that are preferentially
activated in transition from the ground state. Such a scenario
seems plausible given that syllable onsets are flexible song
elements optimally aligned with global song tempo [25].
Insights into these questions could emerge from applications
of our modeling approach to a set of HVC and NIf recordings
[23]: because NIf projection neurons tend to burst in time
intervals of 100 ms and more, their correlations with HVC
neurons might provide evidence of regular spacing between
leading HVCRA groups.
One of the benefits of our modeling approach compared to

other approaches is increased simulation efficiency, because
the time it takes to generate a model spike train is orders of
magnitude shorter than for detailed biophysical models such
as conductance-based integrate-and-fire neurons. Thanks to
this efficiency, we were able to compare simulated data with
real data to great detail, a task that usually becomes
exhaustive in simulations of membrane biophysics. We have
not hand-picked neurons for model comparison, but tested
model predictions on data from all recorded cells and in all
relevant behavioral states. Despite the many simplifications of
our model, we believe it can be converted into the language
of membrane voltages and synaptic potentials. For example,
we have implicitly assumed that neurons are intrinsic
bursters. It is known that intrinsic bursting can stabilize the

Figure 7. RA-Intrinsic Dynamics and Inhibition

(A) When RA burst sequences extend beyond HVCI sequences by a
random time uniformly distributed in the interval 0–15 ms, then the left
flank of the average RA–HVCI CSP function gets uncharacteristically wide
(arrows).
(B) Transitive suppression of tonic firing in RA neurons is explained by RA
inhibition. Shown are average RA IFR curves in 1.2 s time windows in
which one RA neuron does not fire a burst, and time-aligned to burst
onset in a simultaneously recorded RA neuron. Conjunctively with the
bursts, there is a transient reduction in firing rate of the nonbursting
neuron (black curve, n ¼ 50 RA neuron pairs). The model in which RA
inhibition suppresses spontaneous firing (red curve) is able to reproduce
this transient reduction, but the model in which RA neurons display a
soft refractory period after bursts (blue curve) is not. p¼6/7, q¼39/40, LR

¼ 12, pR ¼ 1, DR ¼ 240 ms, and pb ¼ 0.
doi:10.1371/journal.pcbi.0030249.g007
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propagation of synchronized activity in conductance-based
model neurons [14]. One of the main difficulties would then
be to find the appropriate conductance values that imple-
ment our estimates of burst probabilities and burst durations.
In contrast, comparatively little effort would have to be made
to compose synaptic weight matrices, as these are specified by
our estimates of link statistics.

It might also be interesting to apply our approach to other
neural systems. For example, in the insect olfactory system,
odor processing is associated with stereotyped neural
sequences in the antennal lobe [26]. Although the diversity
of these sequences is thought to have the function of
maximizing odor discriminability in downstream areas, it is
currently not clear whether odor-evoked sequences are
assembled from discrete states and constrained by a small
number of state transitions, or whether an almost infinite
number of possibilities applies [27]. Our approach would be
ideally suited to explore such hypotheses.

Our findings suggest that all sleep-related bursts are in fact
replay of song-evoked bursts, as each model sleep burst is
clearly associated with one of 100 song-related activity states.
Such similarity seems not surprising given that song- and
sleep-related activity is generated by the same synaptic
circuits. However, what could be the function of such
randomized replay? We do not know the answer, but
generative probabilistic models as ours have the advantage
that they are closely related to some machine learning
algorithms [28]. With the growing notion that activity replay
during sleep may be involved in memory consolidation and
learning processes [29,30], our model provides a sound basis
for the quantitative testing of such ideas.

Methods

Markov population model of HVC activity. We model the activity
state of HVC at time t as a random variable St that can be in any one
of 101 states, where state 0 is termed the ground state and states 1–
100 are termed song states (Figure 2). When at time t the random
variable is in the ith song state (St¼ i . 0), we say that the ith group of
HVCRA neurons (or ith HVCRA group) is activated. Accordingly, at
time t þ dt, the (i þ 1)th group is activated with probability p (a free
model parameter): PðStþdt ¼ iþ 1jSt ¼ iÞ ¼ p; alternatively, with
probability 1 � p, HVC activity transits into the ground state:
PðStþdt ¼ 0jSt ¼ iÞ ¼ 1� p: The space of song states has a ring
structure such that when the 100th state is reached, HVC activity
transits into state 1 with probability p. When at time t, HVC activity is
in the ground state, it stays there at time t þ dt with probability q
(another free model parameter): PðStþdt ¼ 0jSt ¼ 0Þ ¼ q; alternatively,
with probability 1� q, HVC activity transits into any one of the song
states, PðStþdt ¼ i.0jSt ¼ 0Þ ¼ ð1� qÞ=100:

The time steps dt in which HVC dynamics evolve is a random
variable that depends on the HVCRA group that is active at that time:
dt ¼ ðni � mtÞdS ;i. Here, ni sets the fixed maximum time-step duration
of the ith group (a Gaussian random number with a mean of 9 ms
and standard deviation of 1.8 ms), mi introduces temporal fluctua-
tions (a Gaussian random variable with a mean 4 ms and standard
deviation 0.4 ms), and dSt ;i is the Kronecker delta (dSt ;i ¼ 1 if St ¼ i,
and 0 otherwise). The reason for this doubly random choice of time
steps is to avoid any periodicity which would lead to uncharacteristic
ultranarrow peaks in correlation functions. For the ground state,
time steps are not randomized, but simply set to the average
duration of song states, i.e., 5 ms. The large-time behavior of the
model output was independent of detailed time-step assumptions.

Model spike trains. Given a sequence fStg0,t,T of HVC activity
states, we generate spike trains in a small set of HVCRA, HVCI, and RA
neurons in the following manner. First, we randomly link each of the
neurons to a distinct subset of HVCRA groups, where the subset size
(the link count) ranges from LI¼ 35 to 50 for HVCI neurons, from LR
¼ 12 to 13 for RA neurons, and is set to 1 for HVCRA neurons. In the

time interval [t, t þ dt], neuron X is (1) in the burst mode with
probability pX, if Si¼ i . 0 and if neuron X is linked to the ith HVCRA
group, or (2) in the tonic (firing) mode otherwise (X ¼ P for HVCRA
neurons, X ¼ R for RA neurons, and X¼ I for HVCI neurons).

For HVCRA neurons, we chose pP ¼ 1 during singing and pP ¼ 0.8
during sleep [1], though none of the results depended on the actual
value of pP (due to our conditional assessment of spike correlations).

Spikes associated with the two firing modes are generated by time
rescaling of a Poisson process [20] using conditional intensity functions
(CIFs). The CIF h(s) (also known as the stochastic intensity function) is
the instantaneous spiking probability as a function of the time lag s
since the last spike. Mathematically, the CIF is defined by the
conditional probability h(s) ¼ P(one spike in [t þ s, t þ s þ Dt]j last
spike at t), where Dt ¼ 0.1 ms is the smallest time unit in our
simulations. CIFs can be derived from ISI pdfs p(s) according to [20]:

hðsÞ ¼ pðsÞ

1�
Xs

k¼0
pðkÞ

: ð1Þ

The CIFs associated with burst modes are denoted by hb(s) (b, as in
burst) and are identical for all neurons of a given type; they are
derived from averages of measured ISI pdfs (Figure 2C). During sleep,
firing rates of burst spikes are typically lower than during singing (see
Figure S1 for a comparison), suggesting a weakened synaptic drive
during sleep. To account for this fact, when modeling sleep behavior
(p , 1 and q , 1), we sample burst CIFs hb(s) at a reduced speed
defined by hb(Vs), where VP¼ 0.63 for HVCRA neurons, VR¼ 0.65 for
RA neurons, and VI¼ 0.9 for HVCI neurons. The CIFs associated with
tonic firing modes in HVCI and RA neurons are denoted by ha(s) (a, as
in awake) and are modeled by gamma functions (Figure 2D).

To model spike propagation times from HVC to RA [1,24], we add
a fixed delay of 4 ms to all RA spikes. By construction, spike trains
restricted to time intervals [t, t þ dt] have renewal statistics, but
because of frequent state switching of the HVC population, renewal
statistics does not apply to large time intervals. All our simulations
are performed with a unit time step of Dt¼0.1 ms. For each simulated
neuron, we generate spike trains between 2 min and 30 min duration.

The following additional assumptions about switching behavior
produce good results: when a neuron switches from the tonic mode
into the burst mode, we automatically set the first spike of the burst.
However, if a neuron remains for two or more consecutive time steps
in the burst mode, then we continue to sample the CIF without
setting a spike at subsequent time steps (we set a spike only after a
state switch).

To model reduced tonic firing in RA neurons after spike bursts
(Figure S1E), we incorporate an RA inhibitory mechanism into the
model. We assume that in each song state, there is an (independent)
probability PInh ¼ 0.1 that a neuron experiences inhibitory input
from RA interneurons [31]. Such inhibitory input lasts for a duration
D, where D is randomly drawn from an exponential distribution with
mean DR. As long as an RA neuron receives inhibitory input, it does
not produce tonic spikes (in contrast, RA neurons are allowed to fire
burst spikes while subjected to inhibitory input). To test the validity
of this inhibition model, we compare it to a different model in which
tonic firing is reduced after bursts by means of burst-triggered spike-
rate adaptation. That is, when an RA neuron switches into the tonic
firing mode, no spike is fired until a random time delay D passes
since the onset of the last burst, where D is again randomly drawn
from an exponential distribution with mean DR. Both models are
able to explain burst-triggered firing adaptation in single RA
neurons (Figure S1E); however, only the inhibition model is able
to correctly reproduce transitive firing suppression in RA pairs
(Figure 7).

Bursting in RA and HVC neurons is under tight control of input
from Uva (unpublished observation). We implement Uva-mediated
burst epochs as a Poisson point process: in regular time intervals of
Tepoch ¼ 400 ms and with probability pb ¼ 0.04, we increase the
persistence of song states to p ¼ 1 for a duration of Tepoch. No fine-
tuning of burst epoch parameters Tepoch and pb was necessary to
produce good fits in Figure 5C–5F.

Curves in Figures 2 to 5 were fit by manual parameter selection
using a graphical user interface written in MATLAB (The Mathworks)
and Cþþ. The parameter values that were explored to produce fits in
Figures 4 and 5 were p, q, and the average tonic firing rates in RA and
HVCI neurons (fixed for each neuron type). No objective fitting
criterion or systematic parameter sampling was used; satisfactory
results could be obtained by trial and error.
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Spike-train analysis. All spike-train analysis is performed using
Matlab scripts mixed with fast Cþþ routines. Methods are described
in detail in [12] and [24].

The IFR R(t) is defined as the inverse of the ISI enclosing time t.
The ISI pdf p(s) (s is the ISI) is defined as the histogram of ISIs

normalized to sum to one.
We estimate CSP functions PBjA(t) for simultaneously recorded or

simulated neuron pairs A and B in terms of the fraction of spikes in
neuron A that are associated with at least one spike in neuron B in
the relative time window [t �½s, t þ½s]:

PBjAðtÞ ¼
1
NA

XNA

i¼1
h

s
2
�minj jtAi þ t� tBj j

� �
;

where NA is the total number of spikes in neuron A, ftAi g are the spike
times of neuron A, ftBj g are the spike times of neuron B,
hðxÞ ¼ 1

2þ 1
2 signðxÞ is the Heavyside function, and s ¼ 5 ms is the

halfwidth of the spike clipping window. For more information on
CSP functions, consult [24].

Supporting Information

Figure S1. Comparison of Song-Related and Sleep-Related Average
ISI pdfs

(A–D) Shown are ISI pdfs (normalized to the first 10 ms) measured
during singing and during sleep. In all neuron types, sleep-related
bursts have lower firing rates, indicated by the rightward shift of ISI
peaks. Matching of singing-related and sleep-related ISI pdfs can be
achieved by different stretch factors V (see Methods). V¼ 0.65 for RA
neurons in (A), V¼ 0.9 for HVCI neurons in (B), V¼ 0.63 for HVCRA
neurons in (C), and V ¼ 0.77 for X-projecting HVC neurons (HVCX
neurons) in (D). ISI pdfs were produced based on data in [1,10–12].
(E) RA spike histogram for a range of time lags since the last sleep
burst, computed for all RA bursts that were followed by a burst-free
period of at least 2 s (the histogram is composed of RA single spikes
only). The red curve depicts the fit 1.9 � 1.3exp(t/DR), where t is the
time lag since the last burst, and DR¼ 240 ms is our estimation of the
RA inhibition time constant.

Found at doi:10.1371/journal.pcbi.0030249.sg001 (94 KB PDF).

Figure S2. Autocovariance Functions of RA Spike Trains during Sleep

The autocovariance function C(t) of a spike train q(t) (modeled as a
sum of delta functions) is a measure of spike density fluctuation and
is defined as

CðtÞ ¼ 1
T � jtj

ZT

0

qðtþ sÞqðsÞds� �q2;

where �q is the average firing rate and T is the total duration of the
spike train. The characteristic oscillatory behavior of autocovariance
functions in RA neurons is well-reproduced by the model.
(A) A short survival time of the ground state leads to fast decay of
autocovariance oscillations. DR ¼ 240 ms and VR ¼ 0.7.
(B) A long survival time of the ground state leads to slow decay of
oscillations. DR ¼ 120 ms and VR ¼ 0.67.
In (A) and (B), LR¼ 13 and pR ¼ 0.92.

Found at doi:10.1371/journal.pcbi.0030249.sg002 (85 KB PDF).

Figure S3. Average CSP Functions Fitted without Burst Epochs

(A–D) Unlike in Figure 5, no burst epochs (fluctuations in p) were
included in the model. Model curves (black) represents the best fits
achievable by trial and error. The arrows indicate regions where the
quality of fit could not be improved. Same legend as in Figure 5.

Found at doi:10.1371/journal.pcbi.0030249.sg003 (49 KB PDF).
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