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The grid cells of the rat medial entorhinal cortex (MEC) show an increased firing frequency when the
position of the animal correlates with multiple regions of the environment that are arranged in regular
triangular grids. Here, we describe an artificial neural network based on a twisted torus topology, which
allows for the generation of regular triangular grids. The association of the activity of pre-defined hip-
pocampal place cells with entorhinal grid cells allows for a highly robust-to-noise calibration mechanism,
suggesting a role for the hippocampal back-projections to the entorhinal cortex.
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1. Introduction

The grid cells of the rat medial entorhinal cortex
(MEC) show an increased firing frequency when
the position of the animal correlates with multi-
ple regions in an environment, or subfields, that
are arranged in regular triangular grids.1–3 These
grids can be characterized by only a few parameters:
their orientation, phase and spacing (i.e. the mini-
mal inter-subfield distance). With these parameters,
it has been shown that grid cells are topographi-
cally organized in the MEC: first, neighboring cells
share common grid orientation and spacing; second,
the grid spacing isometrically increases along the
dorsoventral axis (in Ref. 1, the grid spacing varies
between 39 to 73 cm).

It has been proposed that grid cells may be
part of a generalized path integration system.1,4,5

Three main arguments confirm this hypothesis: first,
entorhinal lesions disrupt the return path that rats
follow;6 second and third — which also suggests
hard wired connections — the grid structure is

expressed instantaneously in novel environments1

and the spacing parameter does not depend on allo-
thetic (external) information (for instance, the grid
spacing remains constant when the size of the arena
is increased1). This raises the question of how such a
system can be implemented in the brain. In addition,
since a path integration system is inherently prone
to the accumulation of errors, it remains to be deter-
mined how the grids can be anchored to allothetic
information.

In this study, we first describe an artificial neural
network that implements grid cells as a path integra-
tion mechanism. In this model, the activity of rate
coded neurons is transduced and shifted by asym-
metric synaptic connections. These connections are
modulated by the velocity of the animal that is rep-
resented by a virtual rat exploring randomly a square
arena. The network connectivity, which is organized
cyclically, can be represented by a twisted torus. This
topology allows for the generation of regular triangu-
lar grids sharing the same orientation and spacing,
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but different phases, as neighboring MEC grid cells.
Second, we describe an associative system that cal-
ibrates the grids using allothetic information. We
generate the neural activity of a population of hip-
pocampal place cells7 that code for unique regions
in an environment. We connect these place cells as
input to the population of grid cells using a Heb-
bian associative learning rule, combining the idio-
thetic (internal) representations of grid cells with
this allothetic information. In this way, the model
grid cells are permanently recalibrated using the set
of hippocampal place cells, allowing for the correc-
tion of large path integration errors. Even if nothing
is initially known about the phase, orientation and
spacing of the grids, the grid cell mean activity maps
are intrinsically learned in the synaptic weights con-
necting place cells to grid cells. As a result, a coherent
representation of space is constructed.

2. Methods

2.1. Model of grid cells

2.1.1. Virtual rat and environment

We simulated a virtual rat exploring a 1×1m2 arena.
The movements of the virtual rat alternated ran-
domly (at each time step with a probability of 0.5)
between translations (maximum 2.75 cm/time step)
and rotations (maximum π

10 rad/time step), that
were combined with obstacle avoidance at the walls
based on a reactive Braitenberg neural controller.8

2.1.2. Grid cell sheet

We constructed a population of N = Nx × Ny or
10 × 9 neurons organized in a matrix (or grid cell
sheet) covering the repetitive rectangular structure
formed by the grid subfields (Fig. 1a). To conserve
the ratio between the height and the side of an equi-
lateral triangle (which is the core element of a regu-
lar triangular tessellation) and to allow for the same
density of cells along both x- and y-axes, the number
of cells in each row was chosen to be approximately
2/

√
3 times larger than the number of cells in each

column (Fig. 1b).

2.1.3. Grid cell sheet synapses

The synapses of the grid cell sheet can be divided
into two distinct populations. The first population is
formed by the synapses that are used to compute the

(a)

(b)

(c)

Fig. 1. (a) Repetitive rectangular structure (gray filled
rectangle) of the grid subfields (gray circles), which define
a regular triangular tessellation of space. d represents
the minimal distance between two subfields, i.e. the grid
spacing. (b) Matrix of a population of 10×9 grid cells
(grid cell sheet). Neighboring relationships between cells
on the side of the structure are represented by gray
arrows. For instance, neurons at two opposite vertical
sides are neighbors. (c) Representation of the grid cell
sheet on a twisted torus, with one locus of activity over
the cell population: dark regions and light regions repre-
sent high and low cell activity respectively.

overall neural activity of the sheet and to stabilize it.
They connect all the sheet cells to an external cell
N + 1 that computes the sum of all activities. These
synapses have constant synaptic weights that are all
set to 1. The second population is formed by the
synapses implementing attractor dynamics on the
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grid cell sheet. They connect each cell i to each cell
j, with i, j ∈ {1, 2, . . . , N}. The synaptic weights are
computed as a Gaussian function of a toral distance
between cells (exciting neighboring and inhibiting
distal cells, Fig. 2a and Eq. 3) to maintain a single

(a)

(b)

Fig. 2. (a) Synaptic weights connecting cell i to other
grid cells. Intensity, shift and width parameters are rep-
resented by I , T and σ respectively, defining excitatory
and inhibitory connections. ‖ ci − cj ‖tri represents the
toral distance between cells i and j. (b) Modulation of
the synaptic connections of a cell i. Before modulation,
the synaptic pattern of the cell is centered around ci.
After modulation, the synaptic pattern is shifted in the
direction of the speed v of the virtual rat, leading to
an asymmetric synaptic pattern. Dark and light arrows
represent high and low synaptic connections respectively.
For simplicity, only the synaptic weights along an hori-
zontal axis are represented.

locus of activity over the grid cell sheet. In addition,
these connections are modulated by the speed of the
virtual rat, which allows shifting the locus of activity
in a manner consistent with the rat’s motion.

2.1.4. Activity and stabilization

The neurons of the grid cell sheet are initialized
with a random activity that is uniformly distributed
between 0 and 1/

√
N . The activity of a cell j at time

t + 1, i.e. Aj(t + 1) is defined using a linear transfer
function Bj(t + 1) given by

Bj(t + 1) =
N∑

i=1

Ai(t)wij(t), (1)

where wij(t) is the synaptic weight connecting cell i

to cell j, with i, j ∈ {1, 2, . . . , N}. A floating normal-
ization mechanism over the cell activity ensures the
stability of the network:

Aj(t + 1) = (1 − τ)Bj(t + 1) + τ

(
Bj(t + 1)∑N

i=1 Ai(t)

)
,

(2)

where
∑N

i=1 Ai(t) is computed locally using the
activity of external cell N + 1 and where the param-
eter τ determines the stabilization strength. In order
to prevent negative cell activities, we set Aj(t+1) = 0
when Aj(t + 1) is smaller than zero.

2.1.5. Attractor dynamics

The Gaussian weight function defining the synaptic
patterns connecting the neurons of the grid cell sheet
is given by

wij = I exp
(
−‖ ci − cj ‖2

tri

σ2

)
− T, (3)

where ci = (cix , ciy ) is the position of the cell i

on the sheet, defined by cix = (ix − 0.5)/Nx and
by ciy =

√
3

2 (iy − 0.5)/Ny respectively (with ix ∈
{1, 2, . . . , Nx} and iy ∈ {1, 2, . . . , Ny}) and where ix
and iy are the column and the row number of cell
i. I is the intensity parameter, defining the overall
synaptic strength, σ regulates the size of the Gaus-
sian and T is the shift parameter determining excita-
tory and inhibitory connections (Fig. 2a). The norm
‖ · ‖tri defines the induced metric disttri(. , .) of the
network. To obtain the repetitive rectangular struc-
ture of the grid subfields (Fig. 1a), the cells at the
border of the layer have to be the neighbors of the
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cells at the opposite border (Fig. 1b). This struc-
ture is equivalent to a torus. However a simple torus
is not sufficient, since it would lead to regular rect-
angular tessellations. The regular triangular tessel-
lation is generated by twisting the torus (Fig. 1c),
which is implemented in the definition of the dis-
tance disttri(. , .) or the norm ‖ · ‖tri:

disttri(ci, cj) := ‖ ci − cj ‖tri

=
7

min
j=1

‖ ci − cj + sj ‖, (4)

where

s1 := (0, 0),

s2 :=
(
−0.5,

√
3

2

)
,

s3 :=
(
−0.5,−

√
3

2

)
,

s4 :=
(

0.5,

√
3

2

)
,

s5 :=
(

0.5,−
√

3
2

)
,

s6 := (−1, 0),

s7 := (1, 0),

(5)

and where ‖ · ‖ is the Euclidean norm.

2.1.6. Modulation

The main input of the network is the speed vector
v := (vx, vy), which represents the speed of the vir-
tual rat. This input does not depend on any absolute
information about the location of the animal. The
maximum velocity of the virtual rat is determined by
the parameter vmax such that ‖v‖ is always smaller
than vmax.

It is possible to increase or decrease the size and
the spacing of the grid subfields, as well as to rotate
the grid, by changing only two parameters in the
model: the gain α ∈ IR+ and the bias β ∈ [0, π/3].
The input of the network is thus modulated and
biased by the gain and bias parameters, with

v �→ α Rβv, (6)

where Rβ is the rotation matrix of angle β defined by

Rβ =

(
cos(β) − sin(β)

sin(β) cos(β)

)
. (7)

The activity pattern of the grid cell sheet is stable
when the virtual rat stays put. However, when the
rat moves, the synaptic connections of the network
shift it in the direction of the speed vector of the
virtual rat (Fig. 2b). When expressing the synaptic
weight as a function of time we have

wij(t) = I exp
(
−‖ ci − cj + α Rβ v(t) ‖2

tri

σ2

)
− T.

(8)

2.2. Calibration mechanism

2.2.1. Noise and idiothetic error

To test the stability of the model to noisy inputs,
we added white noise to the idiothetic information
(i.e. the speed vector v). This noise is described by
two independent uniform random variables X, Y ∼
U(−µ, µ), where µ > 0 is a scaling parameter for this
distribution. The idiothetic estimation value v̂ of the
speed v is given by

v̂x = vx + X ‖ vx ‖, (9)

and

v̂y = vy + Y ‖ vy ‖ . (10)

Unless stated otherwise, we used in the calibra-
tion experiments a value of µ = 0.5, which corre-
sponds to a noise level of 50% of speed of the virtal
rat. Representative errors of path integration with
this noise value are shown in Fig. 3.

0.17 / 0.02

Noise [no unit] / Mean distance [m]

0.33 / 0.04 0.50 / 0.08

1m

Fig. 3. 20 representative trajectories of the virtual rat
with different levels of error in path integration. The rat
moves around an imaginary circle of 1 m diameter. A
white circle indicates the path start. A mismatch occurs
between the initial position and the end position, due to
the accumulation of path integration error, as indicated
by the value of the mean distance between the starting
and end position under the plots.
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Fig. 4. A population of 25×25 place cells, driven by allo-
thetic inputs, is connected to the population of entorhi-
nal grid cells. Mx, My , Nx and Ny indicate the number of
columns and rows on the place and grid cell sheets respec-
tively. ukj represents the synaptic weight between cell k
and j, and ck, cj indicate the respective cell positions.

2.2.2. Place cell sheet

We constructed a place cell sheet of M = Mx×My =
25×25 neurons (Fig. 4) using the model proposed in
Ref. 9, i.e. formed by the thresholded sum of Gaus-
sian tuning curves each oriented perpendicular to the
walls of the environment. This model, which explains
how place fields can expand when the size of the envi-
ronment is increased, provides a good approximation
of the place fields observed in the rat. It has also been
generalized to a model that supports real-world robot
navigation.10 Moreover, we have previously shown
how these place fields, that are view dependent rep-
resentations of visual stimuli, can be generated by
a real-world visual system.11 We can thus refer to
these inputs as allothetic information.

The activity Ck of a place cell k is defined by

Ck(x) = exp
(
−‖ x − dk ‖2

γ2

)
, (11)

where x is the position of the virtual rat and dk =
(dkx , dky) is the position of cell k on the place cell
sheet, defined by dkx = (kx − 0.5)/Mx and dky =
(ky − 0.5)/My respectively and where kx and ky

are the column and the row numbers. γ is chosen
such that place fields slightly overlap their neighbors
(γ = 0.1) .

2.2.3. Synaptic connections from place cells
to grid cells

Each place cell is connected to each grid cell (Fig. 4).
Grid cells and place cells are correctly associated

when each place cell, coding for a unique region in
the environment, is combined with the grid cells that
have a subfield at approximately the same region.
Hebbian synapses are well suited to learn these asso-
ciations, since they strengthen connections between
neurons with correlated activity. In the case of a path
integration error, the place cell input may not match
anymore the position of the locus of activity on the
grid cell sheet. However, because of the attractor
dynamics of the grid cell matrix, the locus of activity
will return to its correct position, attracted back by
the learned associated input provided by the place
cells, which is projected to the grid cell sheet.

To stabilize these synaptic weights, which would
be growing infinitely since pre- and postsynaptic
activities are both positive by definition, we addi-
tionally used Oja’s learning rule.12 To satisfy the
biological constraint of locality we restricted it to its
first order terms in the learning rate η,13 assumed to
be small. Therefore, a synapse ukj that connects an
afferent neuron k (place cell) to an efferent neuron j

(grid cell) is updated as follows:

ukj(t + 1)

=

8><
>:

ukj(t) + η � Aj(t)(�Ck(t) − �Aj(t)ukj(t))

if � Aj(t) > 0 or � Ck(t) > 0,
ukj(t) else.

(12)

where �Aj(t) = Aj(t)−〈Ai(t−1)〉Ni=1 and �Ck(t) =
Ck(t) − 〈Cl(t − 1)〉Ml=1 and where Ck is the activity
of the presynaptic cell k and Aj the activity of the
postsynaptic cell j. The function 〈 · 〉 is the mean
over the cells of a cell sheet (i.e. for instance 〈Ai(t−
1)〉Ni=1 =

∑N
i=1 Ai(t−1)/N , which can be computed

locally using the activity of the external cell N + 1).

2.2.4. Updating process

At each time step, the population activity of the
place cell sheet is integrated by each grid cell j. Thus,
using Eq. 2, we now have

Aj(t + 1) = (1 − τ)Bj(t + 1) + τ

(
Bj(t + 1)∑N

i=1 Ai(t)

)

+ λ
M∑

k=1

Ck(t)ukj(t), (13)

where λ determines the strength of the place cell
input.
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2.2.5. Correlation between the mean activity
maps of grid cells and the synaptic
patterns connecting place cells
to grid cells

To compute the mean activity map of a grid cell j,
we discretized the environment into 40 × 40 bins.
We measured the mean activity of the cell in each
bin, and divided this value by the number of time it
was visited by the rat. To compute the correlation
between the mean activity map of a grid cell and
the synaptic connections connecting the place cell
sheet to this grid cell, we constructed a similar mean
activity map, but with 25 × 25 bins, corresponding
to the number of place cells.

The correlation was then computed using this
mean activity map and the synaptic weight matrix
U = (ukj) where k ∈ {1, 2, . . . , M} and j ∈
{1, 2, . . . , N}.

2.3. Parameters

The values of the parameters used in this study are
given in Table 1. These values have to satisfy two cri-
teria. First, they have to ensure the stability of the
cells of the network. This means for instance that
the cell activity should not increase without bound.
Second, they must induce the attractor dynamics of
the grid cell sheet and therefore a single and sta-
ble locus of activity should be continuously observed
in this population. Since no objective or cost

Table 1. Parameter values used in this study.

Parameter Value Unit

α ∈ [1, 3] [no unit]
β ∈ [0, π/3] [no unit]
µ ∈ [0, 1] [no unit]
N = 90 [cell]
Nx = 10 [cell]
Ny = 9 [cell]
τ = 0.8 [no unit]
I = 0.3 [no unit]
σ = 0.24 [meter]
T = 0.05 [no unit]

vmax = 0.0275 [meter/time step]
M = 625 [cell]
Mx = 25 [cell]
My = 25 [cell]
γ = 0.1 [meter]
η = 0.005 [no unit]
λ = 0.01 [no unit]

function is given in this study, no parameter search
was performed.

3. Results

3.1. Regular triangular tessellations

To analyze the activity of the model grid cells, we
first computed their mean activity maps, i.e. the
mean activity of a cell as a function of the virtual
rat’s position. These maps showed a stable activity
at multiple regions of the environment (Fig. 5). To
determine whether these regions were organized in
regular triangular tessellations, we fitted the mean
activity maps to regular triangular tessellations com-
posed of Gaussian subfields. The maps were nor-
malized such that the maximum and the minimum
intensity were 1 and 0 respectively.

We computed the mean square residuals over all
the network cells, and found a mean square residual
value of 0.0028±0.0004 (mean± s.d.), indicating the
correct organization of the activity regions in regular
triangular grids. For each cell this value was always
smaller than 0.005. The stability of these patterns
was confirmed by running the experiments over an
extended number of time steps (1 million, data not
shown).

3.2. Gain and bias

An interesting feature of our model is the possibil-
ity to vary the spacing and the orientation of the
grids by just changing the gain and bias parame-
ters. As shown in Figs. 5 and 6, higher gain val-
ues lead to denser grids (and therefore smaller grid
spacing) whereas higher bias values rotate the grids.
We performed a regression analysis to determine
the relationship between the gain (respectively bias)
parameter and the grid spacing (resp. orientation).
For the gain, we found a logarithmic relationship, i.e.
y = a+b log2(x) where a = 1.02 and b = −0.42, with
mean least square residuals of 0.00007 and where x

and y are respectively gain and grid spacing. For the
bias, we found a linear relationship, i.e. y = a + bx

where a = 0.00 and b = 1.00, with mean least square
residuals of 0.00004 and where x and y are respec-
tively bias and grid orientation.

3.3. Calibration

The addition of noise in the idiothetic inputs with-
out calibration disrupted the organization of the
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Gain values [no unit]

(a)

 0.00  0.10  0.21  0.31  0.42

 0.52  0.63  0.73  0.84  0.94

Cell 21/90

 0.00  0.10  0.21  0.31  0.42

 0.52  0.63  0.73  0.84  0.94

Cell 24/90

Bias values [rad]

(b)

Fig. 5. (a) Mean activity maps of two grid cells with
different gain values (here, the bias value is set to zero).
Dark and light regions represent high and low mean activ-
ity respectively. These maps were computed over 50000
time steps. (b) Mean activity maps of two grid cells with
different bias values (here, the gain value is set to 2).
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Fig. 6. (a) Spacing of the grid as a function of the gain
parameter. (b) Orientation of the grid as a function of
the bias parameter.

subfields in regular triangular grids (Fig. 7b, without
calibration). However, when the calibration mecha-
nism was activated, we could again observe the char-
acteristic mean activity maps of grid cells (Fig. 7b,
with calibration). Hence the place cell input that
was associated with the grids was fully correcting
the errors of path integration.

Interestingly, we observed that the synaptic
weights of the model were intrinsically coding for the
grid cell mean activity maps (Fig. 7). We computed
the median correlation between the grid mean activ-
ity maps and the synaptic weights of the network
to determine their similarity. For this experiment,
we used noise, gain and bias values of respectively
0.5, 2.3 and 0. After growing very fast in the first 2K
time steps, the median correlation slowly stabilized
after about 6K time steps at a value of 0.84 ± 0.04
(mean±s.d.), ensuring that the grid patterns remain
stable over time. In fact, a shifting of the grids would
produce a mismatch between the grid cells and their
associated place cells, leading to a decrease of the cor-
relation between the grids and the synaptic weights.
As observed in the dynamics of the synaptic patterns
(Fig. 7b), the network associates place cells with
a first grid subfield very early in the learning pro-
cess. Subsequently, the positions of other subfields
are learned, which increases the correlation between
the grid mean activity maps and the synaptic weights
(Fig. 7a).

To determine whether the system remains stable
with higher noise values, we increased progressively
the value of the noise parameter µ. We observed
that even high path integration errors were corrected
by the system, and, in particular, that the synaptic
patterns remained correlated with the mean activity
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Fig. 7. Correlation between the synaptic weights con-
necting place cells to grid cells and the grid cell mean
activity maps. For this experiment, gain, bias and noise
values were set to 2, zero and 0.5 respectively. (a) Corre-
lation as a function of the learning time. (b) First row :
mean activity map of a representative grid cell (with
added noise, left : with, right: without calibration). Sec-
ond row : Synaptic weight patterns connecting the place
cell population to this grid cell (each square represents a
snapshot taken at a specific learning time indicated under
the plot).

maps at higher noise values (Fig. 8). For noise values
higher than 1, the calibration could not anymore cor-
rect these errors, and no triangular structure could
be observed in the grid cell mean activity maps.
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Fig. 8. Correlation between the synaptic weights and
the mean grid cell activity maps as a function of the
path integration error. The boxes have horizontal lines at
the lower quartile, median, and upper quartiles. Whiskers
show the extent of the rest of the data, black dots depict
outliers.

4. Discussion

In this article, we have addressed the question of how
grid cells can be generated in the MEC and how their
activity can be calibrated against accumulated errors
of path integration. We have presented a model of
grid cells based on a twisted torus topology that gen-
erates regular triangular tessellations, as observed in
MEC grid cells. In this model, the grids share the
same orientation and spacing as observed in physio-
logical recordings of neighboring MEC grid cells. We
showed that a simple gain and bias mechanism can
control in a log-linear and linear relationship the grid
spacing and orientation respectively. Thus our model
provides a parsimonious explanation of how cortical
circuits can give rise to grid cells with different spac-
ings and orientations using a single algorithm. In the
MEC, the spacing of the grid isometrically increases
along the dorsoventral axis.1 Our model predicts that
this effect is due to an exponential increase of the
velocity gain along this axis.

Many studies present the implementation of
path integration mechanisms based on attractor
dynamics.14–17 The idea to apply these methods to
grid cells was first presented in Ref. 1 and described
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further in Ref. 4. It has been implemented in Ref. 18,
as a symmetric locally connected neural network.
We provided the first model of such a system that
is explicitly described and implemented on a cycli-
cally connected map.19 We have shown that this
synaptic architecture that can be represented by a
twisted torus generates regular triangular tessellat-
ing patterns. The advantages of our model is that it
allows implementing a representation of space cover-
ing large environments using a relatively small pop-
ulation of cells. Moreover, because of this particular
circular synaptic connectivity, all network cells have
regular triangular tessellating subfields.

Our model of grid cells may be used as the pro-
prioceptive element of a robust, modulatory and
biologically based navigational system combining
idiothetic and allothetic information. The classic
problem of purely allothetic systems is their inabil-
ity to disambiguate between two similar inputs. For
instance, realistic models of place cells of the hip-
pocampus, based on visual inputs (e.g. see our pre-
vious work20) are not able to distinguish between
two visually similar places. Their combination with
an idiothetic system is thus useful: the allothetic
information of place cells can be used to recalibrate
the grid cell activity in the case of path integration
errors, which, in turn, can be used to generate place
cells (using a simple supervised Hebbian mechanism
as proposed in Ref. 4), allowing disambiguating two
visually similar places. The location of the MEC,
upstream of the hippocampus, which is, in turn, an
afferent of the entorhinal cortex, provides an anatom-
ical basis for such a modulatory system, suggesting a
calibrating role of the hippocampal back-projections
to the entorhinal cortex.

Importantly, our model can be used to explain
one of the possible advantages of the triangular pat-
terns of grid cells. Indeed, a regular triangular tes-
sellation represents the densest of all possible circle
plane packings.21 Therefore each place cell is associ-
ated with a maximum number of grid cells, i.e. all the
grid cells that own a grid subfield at the same posi-
tion as the place field. Consequently, when a path
integration error occurs in the grid cell population,
the allothetic hippocampal input can very efficiently
correct the mismatch, since, as we saw, it projects to
a large number of neurons. This ensures very robust-
to-noise calibration.
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