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Abstract— As the number of VLSI implementations of spike-
based neural networks is steadily increasing, and the development
of spike-based multi-chip systems is becoming more popular it is
important to design spike-based learning algorithms and circuits,
compatible with existing solutions, that endow these systems
with adaptation and classification capabilities. We propose a
spike-based learning algorithm that is highly effective in clas-
sifying complex patterns in semi-supervised fashion, and present
neuromorphic circuits that support its VLSI implementation.
We describe the architecture of a spike-based learning neural
network, the analog circuits that implement the synaptic learning
mechanism, and present results from a prototype VLSI chip
comprising a full network of integrate-and-fire neurons and
plastic synapses. We demonstrate how the VLSI circuits proposed
reproduce the learning model’s properties and fulfill its basic
requirements for classifying complex patterns of mean firing
rates.

I. INTRODUCTION

VLSI implementations of networks of spiking neurons offer
promising solutions to problems involving real–time sensory
processing and on–line classification of complex patterns. A
wide range of devices comprising silicon neurons and synapses
has been developed. These range from sensory devices such
as silicon retinas and silicon cochleas [1]–[3], to VLSI
implementations of conductance-based models of neurons [4],
[5], reconfigurable arrays of integrate and fire neurons [6]–[8],
and learning chips implementing detailed models of spike-
based synaptic plasticity [7], [9]–[12].

In parallel with the development of pulse-based VLSI
devices, there have also been significant advancements in
the development of asynchronous event-based communication
infrastructures based on the “Address-Event Representation”
(AER) [8], [13], [14]. These two factors combined led to
the construction of an impressive set of pulse-based multi-
chip systems. Recent examples include vision-based systems
that emulate the orientation selectivity functions of the visual
cortex [2], [6], [8], or large-scale systems that can per-
form convolution, segmentation and object tracking in natural
scenes [15].

As large scale multi-chip VLSI networks of spiking neurons
are becoming more and more diffuse, the development of
robust spike-based learning algorithms and circuits compatible
with these systems is even more important. These learning
circuits should enable the multi-chip neural systems they are
embedded in to adapt to the statistics of their input signals,

to learn and classify complex sequences of spatio-temporal
patterns (e.g. arising from visual or auditory signals), and
eventually to interact with the user and the environment.

This latter feature implies that the learning circuits should
have biologically plausible time constants (i.e. of the order
of milliseconds), so that they are matched to the signals
they process, and are inherently synchronized with the real
world events. In addition if the spike-based systems need
to operate in real-world scenarios, with large variation in
the input signals, in the ambient temperature, and over long
periods of time, it would be desirable if the learning circuits
were governed by mechanisms that operate over a multitude
of time-scales (ranging from fractions of milliseconds to days
or even months), similar to the short/long term plasticity and
homeostatic plasticity mechanisms found in biological neural
systems [16].

Plasticity and learning mechanisms involving physical
synapses, either biological or electronic, have to cope with two
main problems: 1) how to modify the synapses in order to learn
associations and generate memories, and 2) how to protect
memories against the passage of time and the over-writing
due to the storage of new memories. Memory protection
is a serious problem because the typical memory lifetimes
of realistic synapses, which have weights that vary within
finite bounds, grow only logarithmically with the number of
synapses [17]. Increasing the number of states each synaptic
weight has, within its bounds, leads to an improvement which
grows only linearly with the states, or at most quadratically
if fine tuning is allowed [18]. Therefore an efficient strategy
for protecting previously stored memories is to use just two
stable synaptic efficacy states per synapse, rather than many,
but dramatically reducing the average number of transitions
made from one stable state to the other. By modifying the
synaptic weight of only a small random subset of synapses,
memory lifetimes increase by a factor inversely proportional
to the probability of synaptic modification [17].

Problem #1, of how to modify the synapses in spiking
networks of neurons, has been the subject of renewed interest
and has recently led to the definition of a promising class of
spike-driven learning rules that are particularly well suited to
VLSI implementation. A popular mechanism among these is
Spike Timing Dependent Plasticity (STDP) [19]. In STDP the
relative timing of pre- and post-synaptic spikes determine how
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to update the efficacy of a synapse. It has been shown, both
in theoretical models and VLSI implementations, that STDP
can be effective in learning to classify spatio-temporal spike
patterns [10], [20]. However STDP in its simplest form is not
suitable for learning patterns of mean firing rates [19].

We implemented in VLSI a spike-driven learning rule, based
on the timing of the pre-synaptic spike, on the membrane
potential of the post-synaptic neuron and on a slow Calcium
proportional to the post-synaptic neuron’s mean firing rate.
Such a model has been shown [21] to be able to classify
patterns of mean firing rates, to capture the rich phenomenol-
ogy observed in neurophysiological experiments on synaptic
plasticity (see refs. therein), and to reproduce the classical
STDP phenomenology. Moreover, if the patterns of firing rates
are noisy, as those observed in cortical recordings in vivo or
those obtained from AER sensors in response to real-world
stimuli, this model modifies only a randomly selected subset
of synapses, thus ensuring memory protection.

Here we describe the basic principles of this spike-driven
learning rule (fully characterized in [21]) and present its
neuromorphic VLSI implementation. The circuits developed
are compatible with the ones used in the pulse-based multi-
chip systems recently proposed, use the same asynchronous
event-based communication infrastructure, and support long-
term homeostatic plasticity mechanisms [22].

II. THE SPIKE-BASED LEARNING RULE

In our model every synapse has just two stable states, and
each neuron is used as a classifier that learns to classify
patterns of mean firing rates in a semi-supervised fashion.
During training, the patterns to be classified are presented
to the pre-synaptic synapses together with a teacher signal
that steers the activity of the post-synaptic neuron toward
the desired response. If the signal generated by the neuron
in response to the input pattern, weighted by the learned
synaptic weights, produces the desired response then the
synapses are not modified. Otherwise the synaptic weights
are updated upon the occurrence of the pre-synaptic spikes,
in a stochastic manner. Specifically, if the neuron’s output
is low and the teacher signal is high, the synaptic efficacy
is pushed toward its potentiated state, and if the neuron’s
output is high and the teacher signal is low, the synapse
is driven toward its depressed state. In these conditions the
synapse makes a transition to one of its two stable states
with a probability that is proportional to the pre-synaptic
firing rate. This behavior is the result of the interplay between
the spike-triggered weight-update mechanism and sustained
bistable synaptic dynamics, by which the synaptic efficacy is
actively driven to its “low” stable state if it is below a threshold
Vwth, and to its “high” state if it is above the same threshold.
This bi-stability mechanism guarantees memory preservation
in the absence of stimuli, or when the pre-synaptic activity is
very low. The direction of the spike-triggered weight-update
jumps (up-wards or down-wards) depend on the state of the
post-synaptic membrane potential, at the time of the pre-
synaptic spike arrival. Specifically, up-ward jumps are possible

if the post-synaptic membrane potential is high and down-
ward jumps are possible if it is low. As the state of the
post-synaptic membrane potential correlates with the neuron’s
activity, the synapse tends to get potentiated when the neuron
fires at a high rate, and depressed when it fires at a low rate.
For a given pair of pre and post-synaptic firing rates, the
synaptic modifications are consolidated only if the threshold
Vwth is crossed during the presentation of the stimulus. If
the pre-synaptic activity is noisy (e.g. a Poisson spike train),
then memory consolidation occurs only with some probability,
which guarantees the stochasticity of the transitions [17].

In order to determine when to stop updating the synaptic
weight, we introduced a ”Calcium” variable, proportional
to the neuron’s mean firing rate. When a neuron classifies
correctly an input pattern, its Calcium variable will be either
very high or very low. In these conditions we switch off
the weight-update mechanism and stop learning. Indeed both
conditions indicate that the input generated by the plastic
synapses and the teacher signal are in agreement (e.g. both the
weighted input and the teacher are high, and their currents sum
up to drive the post-synaptic neuron to elevated mean activity).
Conversely if the Calcium variable is in an intermediate range
we enable learning.

Both the stochasticity supported by the synaptic dynamics,
and this stop learning mechanism allow our model neurons to
linearly classify separable patterns of mean firing rates [23].
Non-linearly separable patterns can be classified by simply
using more than one output unit per class [21].

III. THE NEUROMORPHIC VLSI IMPLEMENTATION

To test the learning capabilities of a real physical imple-
mentation of the model described in Section II we fabricated
an AER trans-ceiver chip comprising an array of 16 integrate-
and-fire (I&F) neurons and 2048 synaptic circuits: 128 per
neuron, of which 120 are plastic, 4 excitatory non-plastic and
4 inhibitory, non-plastic. The chip, produced using a standard
0.35µm CMOS technology, occupies an area of 6.1mm2.

Input spike patterns are provided to the synapses via the
asynchronous AER interfacing circuits [14]. Each synapse
circuit uses a diff-pair integrator (a recent current-mode low-
pass filter described in [24]) to generate an output current
proportional to the mean rate of its input spike train, modulated
by its synaptic weight. The I&F neurons (described in [7])
integrate the input currents produced by the synapses and
generate output spike trains with mean firing rates proportional
to their input currents. The teacher signal is provided to the
neurons by using one of the 4 non-plastic excitatory synapses,
with a fixed synaptic weight.

The spike-based learning circuits that implement the model
of Section II can be subdivided into two main blocks: a post-
synaptic stop-learning control module, present in the neu-
ron’s soma, and a spike-triggered weight-update module with
bistable synaptic dynamics, present in each plastic synapse.

The post-synaptic stop-learning control module, shown in
Fig. 1(a), is responsible for generating the two global signals
VUP and VDN , shared among all synapses belonging to the same
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Fig. 1. (a) Post-synaptic weight control module. This module comprises a low-power I&F neuron circuit, a diff-pair integrator low-pass filter, a voltage
comparator and a current comparator. (b) Pre-synaptic weight update module. An AER input block comprises the interfacing circuits that generate the pre and
∼ pre pulses. An amplifier in positive-feedback configuration drives the weight voltage VWi toward one of the two stable states Vwlow or Vwhi. The transistors
driven by the signals pre and ~pre, and the ones controlled by V ′

UP and V ′
DN form the weight-update circuit. The diff-pair integrator block generates the final

synaptic current Isyn, summed to the currents generated by all other synapses into the Vmem node of the I&F circuit.

Fig. 2. Post-synaptic circuit data. (a) State of the VUP and VDN voltages are
active only if the VCa signal is in an intermediate range.

dendritic tree, that enable positive and negative weight updates
respectively. Post-synaptic spikes Vspk, generated by the I&F
neuron are integrated by a diff-pair integrator. The integrator
produces a VCa signal, related to the Calcium concentration
in real neurons, that is compared to three different thresholds
(Vth1, Vth2, and Vth3) by a comparator block made using three
winner-take-all circuits. In parallel, the neuron’s membrane
potential Vmem is compared to a fixed threshold Vmth. The
values of VUP and VDN depend on the state of the neuron’s
membrane potential and its Calcium concentration (see Fig. 2).
Specifically if Vth1 <VCa <Vth3 and Vmem >Vmth then increases
in synaptic weights (VUP < Vdd) are enabled. And if Vth1 <
VCa <Vth2 and Vmem <Vmth, then decreases in synaptic weights
(VDN > 0) are enabled. Otherwise no changes in the synaptic
weights are allowed (VUP = Vdd , and VDN = 0).

The pre-synaptic weight-update module is shown in
Fig. 1(b). It comprises four main blocks: an input AER
interfacing circuit [14], a bi-stability weight refresh circuit,
a spike-triggered weight update circuit and a current-mode

diff-pair integrator circuit [24]. Upon the arrival of an input
address-event, the AER circuits produce an active-high pulse
pre, and a complementary active-low pulse ~pre. These pulses
trigger the weight update block. The pre pulse is also used
to drive the plastic synapse’s diff-pair integrator. This circuit
generates an output current Isyn with exponential temporal
dynamics, proportional to the input firing rate, modulated by
its weight bias VWi [24]. The bi-stability weight refresh circuit
is a positive-feedback amplifier with very small “slew-rate”
(set by the Vilk bias) that compares the weight voltage VWi

to a set threshold Vwth, and slowly drives it toward one of
the two rails Vwhi or Vwlow, depending whether VWi > Vwth or
VWi < Vwth respectively. This bistable drive is continuous and
its effect is superimposed to the one from the spike-triggered
weight update circuit.

If during a pre-synaptic spike the VUP signal from the post-
synaptic stop-learning control module is enabled (VUP < Vdd),
the synapse’s weight VWi undergoes an instantaneous increase.
Similarly, if during a pre-synaptic spike the VDN signal from
the post-synaptic weight control module is high, VWi undergoes
an instantaneous decrease. If the weight increases bring VWi

above the Vwth threshold, the bi-stability block will slowly
drive VWi toward Vwhi (thus consolidating the potentiated state
of the synapse). Conversely, if the weight decreases bring VWi

below the Vwth threshold, the bi-stability block will consolidate
the synapse’s depressed state, driving VWi to the Vwlow stable
state.

IV. WEIGHT-UPDATE MEASUREMENTS

To test the weight update mechanism, we made the post-
synaptic neuron fire at an average frequency of 80Hz, using
one of the non-plastic synapses, and stimulated the pre-
synaptic synapse with Poisson distributed spike trains with
a mean firing rate of 100Hz for a period of 250ms. Figure 3
shows an example of a stimulation session where the weight
was increased several times during the trial, but never crossed
the Vwth threshold, and therefore never made an Long Term
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Fig. 3. Synaptic weight updates. Depending on the state of Vmem, the
weight Vw is either increased or decreased with every pre-synaptic spike.
Simultaneously, the bi-stability circuit drives Vw to the synapse’s low stable
state as long as Vw < Vwth (Vwth = 2.5V in this example).

Potentiation (LTP) transition. Due to stochastic nature of the
pre- and post-synaptic spiking activity, some instances of pre-
and post-synaptic spiking patterns with the same mean firing
rates can induce an LTP transition, while others don’t. The
stochastic nature of LTP is an essential feature of the learning
model described in Section II that our circuits fulfill. The
probability of inducing long-term potentiation, or long-term
depression can be easily controlled by acting on the bias
parameters of the learning circuits (such as Vwth, Vmth, etc.), as
well as the mean frequencies of the input and teacher signals.

V. CONCLUSIONS

We proposed a set of circuits for implementing an elaborate
spike-driven synaptic learning rule and presented its neuro-
morphic VLSI implementation. We verified experimentally the
functional behavior of the model proposed in [21] and showed
how the plasticity circuits proposed, meet the specifications of
the model. As all requirements necessary for learning complex
patterns are met by the circuits proposed, the chip described
is well suited to classification tasks on real-world problems
using real-time spike data, e.g. obtained from AER sensory
devices such as silicon retinas or silicon cochleas [1], [3].
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