
Fast sensory motor control based on event-based hybrid
neuromorphic-procedural system

T. Delbruck, P. Lichtsteiner
Inst. of Neuroinformatics, UNI-ETH Zurich

tobi@ini.phys.ethz.ch

Abstract—Fast sensory-motor processing is challenging when
using traditional frame-based cameras and computers. Here we
show how a hybrid neuromorphic-procedural system consisting
of an address-event silicon retina, a computer, and a servo motor
can be used to implement a fast sensory-motor reactive controller
to track and block balls shot at a goal. The system consists of a
128x128 retina that asynchronously reports scene reflectance
changes, a laptop PC, and a servo motor controller. Components
are interconnected by USB. The retina looks down onto the field
in front of the goal. Moving objects are tracked by an event-
driven cluster tracker algorithm that detects the ball as the
nearest object that is approaching the goal. The ball’s position
and velocity are used to control the servo motor. Running under
Windows XP, the reaction latency is 2.8±0.5 ms at a CPU load of
<10% with a minimum observed latency of 1.8 ms. A 2 GHz
Pentium M laptop can process at >1 million events per second
(Meps), although fast balls only create ~30 keps. This system
demonstrates the advantages of hybrid event-based sensory
motor processing.

I. INTRODUCTION
High speed vision is demanding if high frame rate

traditional cameras are used. For example, at 1 kHz frame
rate, a low resolution 128x128 monochrome image sensor
(16k pixels) with 8 bits gray resolution (only 48 dB dynamic
range) produces 16 MBps data rate. A contemporary PC
running at a realistic usable instruction rate of 109 operations
per second can perform only 60 machine instructions per pixel
per frame. At this frame rate useful processing is demanding
even for the fastest contemporary PCs.

In this paper we describe the results of experiments in low-
latency vision using an address-event transient silicon
retina [1] as the input sensor, a standard PC as the processor,
and a servo motor as the output. The general idea is that the
retina produces only a small amount of informative low-
latency data and this data is immediately useful for tracking
objects. By forming a hybrid of this sensor with a computer
and a servo motor, we can do experiments in fast sensory
motor control that retain the advantages of both the powerful
neuromorphic event-based sensor and the flexible procedural
computer. We were particularly interested in measuring
latency in this hybrid architecture using a standard operating
system on the computer. These preemptive multitasking

operating systems like Windows or Linux are widely used on
personal computers and increasingly on embedded systems
and they greatly reduce development time for complex
applications.

II. APPLICATION
In this example application, we built a soccer goalie robot

(Fig. 1). This robot blocks balls shot at a goal using a
single-axis arm. Although fast visually guided control has
been studied for many years (e.g. [2]), previous work has used
frame based image sensors and has often tracked objects based
on distinctive color cues. Our approach uses pixel events
rather than frames and these events represent scene reflectance
change. This approach is inspired by the transient pathway of
biological visual systems that motivates the design of the
silicon retina.

Fig. 1 System architecture and a photo of the setup, showing the

placement of retina, servo motor and goal. The white balls have a diameter of
3 cm (smaller than table tennis balls) and are viewed against the gray
cardboard ramp. The reflectance ratio between balls and gray area is
about 1.3. The retina view extends out to just past the tape (80 cm).

tobi
Text Box
Submitted to IEEE 2007 International Symposium on Circuits and Systems (ISCAS 2007), New Orleans

A. Silicon retina vision sensor
In this section we summarize the properties of the silicon

retina vision sensor. [1] (Fig. 2 and Table 1). Each address-
event [3] that is output from a retina pixel signifies the
identity of pixel that has seen a change in log intensity as
given in Eq. (1)

 log I TΔ > (1)
where I is the pixel illumination and T is a global threshold.

Each event thus means that logI changed by T since the last
event and specifies in addition the sign of the change. Another
way of saying this is that there was a relative change of a
factor of T (or 1/T). Because this “relative” property discards
illumination, it generally encodes scene reflectance change.
Because this computation is based on a compressive
logarithmic transformation in each pixel, it also allows for
wide dynamic range operation (120 dB, compared with e.g.
60 dB for a high quality traditional image sensor). This wide
dynamic range means that the sensor can be used with
uncontrolled natural lighting. The asynchronous response
property also means that the events have the timing precision
of the pixel response rather than being quantized to the
traditional frame rate. Thus the “effective frame rate” is
typically several kHz. If the scene is not very “busy”, then the
data rate can easily be a factor of 100 lower than from a
frame-based image sensor of equivalent time resolution. The
unique design of the pixel also allows for unprecedented
uniformity of response. The mismatch between pixel contrast
thresholds is a modest 2.1% contrast. The event threshold can
be set to 10% contrast, allowing the device to sense real-world
contrast signals rather than only artificial high contrast
stimuli. The vision sensor also has integrated digitally-
controlled biases that greatly reduce chip-to-chip variation in
parameters and temperature sensitivity. And finally, the
system we built has a USB2.0 interface that delivers time-
stamped address-events to a host PC. This combination of
features has meant that we have had the possibility of
developing algorithms for using the sensor output and testing
them easily in a range of real-world scenarios.
Table 1 Tmpdiff128 transient vision sensor specifications

Functionality Asynchronous temporal contrast
Pixel size um (lambda)

Fill factor (%)
40x40 (200x200)
9.4% (PD area 151µm2)

Fabrication process 4M 2P 0.35um
Pixel complexity 26 transistors (14 analog), 3 capacitors

Array size 128x128
Interface 15-bit word-parallel AER; USB2.0 time-

stamped address-event interface
Power consumption Chip : 24mW @ 3.3V. USB system : 80 mA.

Dynamic range 120dB ; 2 lux to > 100 klux scene
illumination with f/1.2 lens

Response latency 15µs @ 700mW/m2

Max Events/sec ~1M events/sec
Event threshold matching 2.1% scene contrast

Fig. 2 Summarizes characteristics of Tmpdiff128 transient vision sensor.
a) shows the vision sensor with its lens and USB2.0 interface; b) shows a die
photograph labeled with the row and column from a pixel that generates an

event with x,y,type output; c) shows an abstracted schematic of the pixel that
responds with events to fixed-size changes of log intensity; d) illustrates how

the ON and OFF events are internally represented and output in response to an
input signal. Figure adapted from [1].

B. Tracking algorithm
The balls are tracked using the cluster tracker algorithm

described in [1, 4] (Fig. 3). Each “cluster” models a moving
object as a source of events. Visible clusters are indicated by
the boxes in Fig. 3. Events that fall within the cluster move the
cluster position, and a cluster is only considered supported
(“visible”) when it has received a threshold number of events.
Clusters that lose support for a threshold period are pruned.
Overlapping clusters are merged after each event packet. All
cluster parameters (e.g. position, velocity) are updated by
using a mixing factor that mixes the old value with the new
measurement using fixed factors. Thus the time constant is not
constant, but rather gets shorter as the event rate increases and
there is more evidence; likewise lack of evidence (events)
increases the time constant.

The key advantages of the cluster tracker are: 1) There is no
frame correspondence problem. 2) Only pixels that generate

events need to be processed and the cost of this processing is
dominated by the search for the nearest existing cluster, which
is typically a cheap operation because there are few clusters.
3) Memory cost is low because there is no frame memory,
only cluster memory.

In the application described here the clusters have a fixed
size, although modifications that allow size modeling based
on perspective or data are possible [1, 4].

More detailed steps for the cluster tracker are outlined as
follows. For each packet of events:
1. For each event, find the first cluster than contains the

event. (This will also be the oldest cluster if several
contain the event because the cluster list is ordered by
creation.)
a) If the event is within the cluster, add the event to the

cluster by pushing the cluster a bit towards the event
and updating the last event time of the cluster. The
new cluster location 1nx + is given by mixing the old
location nx with the event location e using an
adjustable mixing factor 0.01α ≈ :

 1 (1)n nx x eα α+ = − + (1)
Other parameters like cluster velocity are also
updated by mixing, but with different mixing factors.

b) If the event is not in any cluster, seed a new cluster if
there are spare unused clusters to allocate. (We
typically use 10 potential clusters in this application.)

2. Iterate over all clusters, pruning out those clusters that
have not received sufficient support. A cluster is pruned if
it has not received an event for a “support” time, typically
5 ms in this application.

3. Iterate over all clusters to merge clusters that belong to
the same object. This merging operation is necessary
because new clusters can be formed when an object
increases in size or changes aspect ratio. This iteration
continues until there are no more clusters to merge and
proceeds as follows: For each cluster that touches another
cluster, merge the two clusters into a new cluster and
discard the previous clusters. The new cluster takes on the
history of the older cluster and the location of the new
cluster is the weighted average of the locations of the
source clusters, where the weights are given by the
number of events in each source cluster. (This weighting
greatly reduces the jitter in the cluster location caused by
merging.) Continue this iteration over all clusters until
there are no more clusters to merge.

A cluster is not marked as “visible” until it receives a
certain number of events (typically 30 in this application).

The goalie robot uses the nearest cluster (lowest in the
image) that is moving towards the goal as the ball object.

The ball cluster’s location and velocity measurement are
used to position the servo to intercept the ball. No account is
presently taken of the goalie’s arm dynamics and thus the
controller is strictly proportional. A gain and offset parameter

are used to adjust for optics and alignment. To reduce gear
wear, the servo motor is only enabled when an approaching
ball is detected. Thus the goalie “relaxes” between shots.

Velocity
vector

Goalie

Ball

Ball
(rolling away)

Ball
(further away)

Fig. 3 Shows 4.4 ms of data (256 events) from the retina view showing

four tracked balls. The closest ball rolling towards the goal (and being
blocked) is marked with a circle; other balls are tracked but ignored. The

velocity vectors of each ball are also shown. The goalie servo is moved to the
bar shown. The balls generate average event rates of 3-30 keps. The mean

event rate for this packet was 56 keps.

C. USB interfaces and servo control
The system runs inside a large Java software infrastructure

for AER (INI-AE-Biasgen) that has >200 classes and >30k
non-comment lines of code (NCLOC). The cluster tracker and
goalie, however, consist of only 1k NCLOC.

For both the retina and the servo controller we used the
Java interface to the excellent Thesycon USB driver
development kit for Windows (www.thesycon.de). The servo
commands are sent to the microcontroller in a separate writer
thread that takes commands placed in a queue by the retina
event processing thread. This writer thread decouples the
servo communication from the event processing so that the
retina processing can proceed independently from the
relatively slow writes to the full-speed (12 Mbps) USB1.0
servo interface. Likewise, the retina events are captured in
128-event transfers and processed in a high priority thread that
runs independently from the GUI or rendering threads. The
USB interface threads were set to high priority, with highest
priority given to the servo writing thread. Java’s maximum
priority is equivalent to Windows TIME_CRITICAL
priority [5].

We used a Futaba S9253 servo to move the goalie arm
(http://www.futaba-rc.com). This fast hobby digital servo,
which is targeted to helicopter tail rudder control, accepts
pulse-width modulation (PWM) input at several hundred Hz
and is rated to rotate 60° with no load in 60 ms. It can move
the arm across the goal in about 100 ms. We used a Silicon
Labs C8051F320 USB1.0 microcontroller (www.silabs.com)
to interface between the PC and the servo motor. The

http://siliconretina.ini.unizh.ch/
http://www.thesycon.de/
http://www.futaba-rc.com/
http://www.silabs.com/

microcontroller accepts commands over a USB bulk
endpoint [6] that specify up to two servo motor position
signals that it loads into internal counter-timer registers that
program the PWM output width. The small servo motor is
also powered directly by the 5V USB VBUS. The servo arm is
constructed from a paint stirrer stick with a plastic “hand”
stuck on its end. The goal and ramp are raised about 4 cm to
allow the hand to protrude into the gap in order to better cover
the corners of the goal (Fig. 1).

III. RESULTS
The robot achieves a success rate of 80-90% in blocking

balls that are shot with >150 ms time to impact. Misses
increase as the limits of servo acceleration are reached. The
cluster tracker algorithm is effective for ignoring distracters
(Fig. 3). Events are processed for ball tracking at a rate of
1.4 Meps (700 ns/event) on a 2.1 GHz Pentium M laptop
running Windows XP, Java server JVM version 1.5.

Response latency mostly depends on whether the events are
processed in USB interface transfers (maximum of 128
events) or screen rendering packets. If processed at screen
rendering rates, the latency is about the same as the frame
interval, e.g. 33 ms for 30 Hz frame rate. When processed at
the event packet level, latency is much shorter. A single ball
that produces events at 30 keps causes a 128-event USB
packet every 4 ms. Paradoxically, more retina activity
actually reduces this latency, but this is only because the
buffers are filled more rapidly.

Fig. 4 Shows latency measurements. a) Oscilloscope traces showing

response latency in LED burst experiment for a single trial. Top trace shows
the LED burst. Second trace shows 128-event transfers of events from retina

to PC. Third trace show when servo command is received by the main loop on
the microcontroller. Last trace shows resulting PWM output to servo motor.

b) shows histogram of latencies; mean 2.8±0.5 ms, median 2.8 ms.

To study latency, we set up an artificial stimulus consisting
of a flashing LED that could be activated in bursts, thus
mimicking an instantaneously-appearing ball. We then
programmed the servo motor microcontroller to turn on an
output pin when it received a servo motor command. The time
delay between the beginning of the LED flashing and the
microcontroller output is a measure of response latency that
leaves out the latency of the random PWM phase and the
servo motor. This measurement is shown in Fig. 4. The
latency is 2.8±0.5 ms. This latency was achieved by setting
the device interrupt polling interval to 1 ms in the device’s
USB descriptor [6]; using the default polling interval of 10 ms
resulted in substantially higher median latency of 5.5 ms.

IV. CONCLUSION
The main achievement of this work is the concrete

demonstration of a hybrid neuromorphic-procedural system
for low latency object tracking and sensory motor processing.
Secondary achievements are refinements of existing object
tracking algorithms and the development of a reusable,
convenient USB servo-motor interface. The goalie robot can
successfully block balls even when these are low contrast
white-on-gray objects and there are many background
distracters. Progress in neuromorphic engineering will result
from combining powerful neuromorphic sensors with the
flexibility of procedural computation.

ACKNOWLEDGEMENTS
This work was funded by the UNI-ETH Zurich, EU project

CAVIAR, and ARCs Seibersdort research. We thank P. Pyk
for comments.

REFERENCES
[1] P. Lichtsteiner, C. Posch, and T. Delbruck, "A 128×128

120dB 30mW Asynchronous Vision Sensor that Responds
to Relative Intensity Change," in ISSCC Dig. of Tech.
Papers, Visuals Supplement, San Francisco, 2006, vol., pp.
508-509 (27.9).

[2] R. L. Andersson, A robot ping-pong player: experiment in
real-time intelligent control: MIT Press, 1988.

[3] M. Mahowald, An Analog VLSI System for Stereoscopic
Vision. Boston: Kluwer, 1994.

[4] M. Litzenberger, C. Posch, D. Bauer, P. Schön, B. Kohn,
H. Garn, and A. Belbachir, "Embedded Vision System for
Real-Time Object Tracking using an Asynchronous
Transient Vision Sensor," in IEEE Digital Signal
Processing Workshop 2006, Grand Teton, Wyoming, 2006,
vol.

[5] S. Oaks and H. Wong, Java Threads: O'Reilly, 2004.
[6] J. Axelson, USB Complete: Lakeview Research, 2001.

	I. Introduction
	II. Application
	A. Silicon retina vision sensor
	B. Tracking algorithm
	C. USB interfaces and servo control

	III. Results
	IV. Conclusion
	Acknowledgements
	References

