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Abstract—Fast sensory-motor processing is challenging when 
using traditional frame-based cameras and computers. Here we 
show how a hybrid neuromorphic-procedural system consisting 
of an address-event silicon retina, a computer, and a servo motor 
can be used to implement a fast sensory-motor reactive controller 
to track and block balls shot at a goal. The system consists of a 
128x128 retina that asynchronously reports scene reflectance 
changes, a laptop PC, and a servo motor controller. Components 
are interconnected by USB. The retina looks down onto the field 
in front of the goal. Moving objects are tracked by an event-
driven cluster tracker algorithm that detects the ball as the 
nearest object that is approaching the goal. The ball’s position 
and velocity are used to control the servo motor. Running under 
Windows XP, the reaction latency is 2.8±0.5 ms at a CPU load of 
<10% with a minimum observed latency of 1.8 ms. A 2 GHz 
Pentium M laptop can process at >1 million events per second 
(Meps), although fast balls only create ~30 keps. This system 
demonstrates the advantages of hybrid event-based sensory 
motor processing. 

I. INTRODUCTION 
High speed vision is demanding if high frame rate 

traditional cameras are used. For example, at 1 kHz frame 
rate, a low resolution 128x128 monochrome image sensor 
(16k pixels) with 8 bits gray resolution (only 48 dB dynamic 
range) produces 16 MBps data rate. A contemporary PC 
running at a realistic usable instruction rate of 109 operations 
per second can perform only 60 machine instructions per pixel 
per frame. At this frame rate useful processing is demanding 
even for the fastest contemporary PCs. 

In this paper we describe the results of experiments in low-
latency vision using an address-event transient silicon 
retina [1] as the input sensor, a standard PC as the processor, 
and a servo motor as the output. The general idea is that the 
retina produces only a small amount of informative low-
latency data and this data is immediately useful for tracking 
objects. By forming a hybrid of this sensor with a computer 
and a servo motor, we can do experiments in fast sensory 
motor control that retain the advantages of both the powerful 
neuromorphic event-based sensor and the flexible procedural 
computer. We were particularly interested in measuring 
latency in this hybrid architecture using a standard operating 
system on the computer. These preemptive multitasking 

operating systems like Windows or Linux are widely used on 
personal computers and increasingly on embedded systems 
and they greatly reduce development time for complex 
applications. 

II. APPLICATION 
In this example application, we built a soccer goalie robot 

(Fig. 1). This robot blocks balls shot at a goal using a 
single-axis arm. Although fast visually guided control has 
been studied for many years (e.g. [2]), previous work has used 
frame based image sensors and has often tracked objects based 
on distinctive color cues. Our approach uses pixel events 
rather than frames and these events represent scene reflectance 
change. This approach is inspired by the transient pathway of 
biological visual systems that motivates the design of the 
silicon retina. 

 
Fig. 1 System architecture and a photo of the setup, showing the 

placement of retina, servo motor and goal. The white balls have a diameter of 
3 cm (smaller than table tennis balls) and are viewed against the gray 
cardboard ramp. The reflectance ratio between balls and gray area is 
about 1.3. The retina view extends out to just past the tape (80 cm). 
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A. Silicon retina vision sensor 
In this section we summarize the properties of the silicon 

retina vision sensor. [1] (Fig. 2 and Table 1). Each address-
event [3] that is output  from a retina pixel signifies the 
identity of pixel that has seen a change in log intensity as 
given in Eq. (1) 

 log I TΔ >  (1) 
where I is the pixel illumination and T is a global threshold. 

Each event thus means that logI changed by T since the last 
event and specifies in addition the sign of the change. Another 
way of saying this is that there was a relative change of a 
factor of T (or 1/T). Because this “relative” property discards 
illumination, it generally encodes scene reflectance change. 
Because this computation is based on a compressive 
logarithmic transformation in each pixel, it also allows for 
wide dynamic range operation (120 dB, compared with e.g. 
60 dB for a high quality traditional image sensor). This wide 
dynamic range means that the sensor can be used with 
uncontrolled natural lighting. The asynchronous response 
property also means that the events have the timing precision 
of the pixel response rather than being quantized to the 
traditional frame rate. Thus the “effective frame rate” is 
typically several kHz. If the scene is not very “busy”, then the 
data rate can easily be a factor of 100 lower than from a 
frame-based image sensor of equivalent time resolution. The 
unique design of the pixel also allows for unprecedented 
uniformity of response. The mismatch between pixel contrast 
thresholds is a modest 2.1% contrast. The event threshold can 
be set to 10% contrast, allowing the device to sense real-world 
contrast signals rather than only artificial high contrast 
stimuli. The vision sensor also has integrated digitally-
controlled biases that greatly reduce chip-to-chip variation in 
parameters and temperature sensitivity. And finally, the 
system we built has a USB2.0 interface that delivers time-
stamped address-events to a host PC. This combination of 
features has meant that we have had the possibility of 
developing algorithms for using the sensor output and testing 
them easily in a range of real-world scenarios. 
Table 1 Tmpdiff128 transient vision sensor specifications 

Functionality Asynchronous temporal contrast 
Pixel size um (lambda) 

Fill factor (%) 
40x40 (200x200) 
9.4%  (PD area 151µm2) 

Fabrication process 4M 2P 0.35um 
Pixel complexity 26 transistors (14 analog), 3 capacitors 

Array size 128x128 
Interface 15-bit word-parallel AER; USB2.0 time-

stamped address-event interface 
Power consumption Chip : 24mW @ 3.3V. USB system : 80 mA.

Dynamic range 120dB ; 2 lux to > 100 klux scene 
illumination with f/1.2 lens 

Response latency 15µs @ 700mW/m2 

Max Events/sec ~1M events/sec 
Event threshold matching 2.1% scene contrast 

 
Fig. 2 Summarizes characteristics of Tmpdiff128 transient vision sensor. 
a) shows the vision sensor with its lens and USB2.0 interface; b) shows a die 
photograph labeled with the row and column from a pixel that generates an 

event with x,y,type output; c) shows an abstracted schematic of the pixel that 
responds with events to fixed-size changes of log intensity; d) illustrates how 

the ON and OFF events are internally represented and output in response to an 
input signal. Figure adapted from [1]. 

B. Tracking algorithm 
The balls are tracked using the cluster tracker algorithm 

described in [1, 4] (Fig. 3). Each “cluster” models a moving 
object as a source of events. Visible clusters are indicated by 
the boxes in Fig. 3. Events that fall within the cluster move the 
cluster position, and a cluster is only considered supported 
(“visible”) when it has received a threshold number of events. 
Clusters that lose support for a threshold period are pruned. 
Overlapping clusters are merged after each event packet. All 
cluster parameters (e.g. position, velocity) are updated by 
using a mixing factor that mixes the old value with the new 
measurement using fixed factors. Thus the time constant is not 
constant, but rather gets shorter as the event rate increases and 
there is more evidence; likewise lack of evidence (events) 
increases the time constant.  

The key advantages of the cluster tracker are: 1) There is no 
frame correspondence problem. 2) Only pixels that generate 



events need to be processed and the cost of this processing is 
dominated by the search for the nearest existing cluster, which 
is typically a cheap operation because there are few clusters. 
3) Memory cost is low because there is no frame memory, 
only cluster memory. 

In the application described here the clusters have a fixed 
size, although modifications that allow size modeling based 
on perspective or data are possible [1, 4]. 

More detailed steps for the cluster tracker are outlined as 
follows. For each packet of events: 
1. For each event, find the first cluster than contains the 

event. (This will also be the oldest cluster if several 
contain the event because the cluster list is ordered by 
creation.) 
a) If the event is within the cluster, add the event to the 

cluster by pushing the cluster a bit towards the event 
and updating the last event time of the cluster. The 
new cluster location 1nx + is given by mixing the old 
location nx  with the event location e using an 
adjustable mixing factor 0.01α ≈ : 

 1 (1 )n nx x eα α+ = − +  (1) 
Other parameters like cluster velocity are also 
updated by mixing, but with different mixing factors. 

b) If the event is not in any cluster, seed a new cluster if 
there are spare unused clusters to allocate. (We 
typically use 10 potential clusters in this application.)  

2. Iterate over all clusters, pruning out those clusters that 
have not received sufficient support. A cluster is pruned if 
it has not received an event for a “support” time, typically 
5 ms in this application. 

3. Iterate over all clusters to merge clusters that belong to 
the same object. This merging operation is necessary 
because new clusters can be formed when an object 
increases in size or changes aspect ratio. This iteration 
continues until there are no more clusters to merge and 
proceeds as follows: For each cluster that touches another 
cluster, merge the two clusters into a new cluster and 
discard the previous clusters. The new cluster takes on the 
history of the older cluster and the location of the new 
cluster is the weighted average of the locations of the 
source clusters, where the weights are given by the 
number of events in each source cluster. (This weighting 
greatly reduces the jitter in the cluster location caused by 
merging.) Continue this iteration over all clusters until 
there are no more clusters to merge. 

A cluster is not marked as “visible” until it receives a 
certain number of events (typically 30 in this application). 

The goalie robot uses the nearest cluster (lowest in the 
image) that is moving towards the goal as the ball object. 

The ball cluster’s location and velocity measurement are 
used to position the servo to intercept the ball. No account is 
presently taken of the goalie’s arm dynamics and thus the 
controller is strictly proportional. A gain and offset parameter 

are used to adjust for optics and alignment. To reduce gear 
wear, the servo motor is only enabled when an approaching 
ball is detected. Thus the goalie “relaxes” between shots. 
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Fig. 3 Shows 4.4 ms of data (256 events) from the retina view showing 

four tracked balls. The closest ball rolling towards the goal (and being 
blocked) is marked with a circle; other balls are tracked but ignored. The 

velocity vectors of each ball are also shown. The goalie servo is moved to the 
bar shown. The balls generate average event rates of 3-30 keps. The mean 

event rate for this packet was 56 keps. 

C. USB interfaces and servo control 
The system runs inside a large Java software infrastructure 

for AER (INI-AE-Biasgen) that has >200 classes and >30k 
non-comment lines of code (NCLOC). The cluster tracker and 
goalie, however, consist of only 1k NCLOC. 

For both the retina and the servo controller we used the 
Java interface to the excellent Thesycon USB driver 
development kit for Windows (www.thesycon.de). The servo 
commands are sent to the microcontroller in a separate writer 
thread that takes commands placed in a queue by the retina 
event processing thread. This writer thread decouples the 
servo communication from the event processing so that the 
retina processing can proceed independently from the 
relatively slow writes to the full-speed (12 Mbps) USB1.0 
servo interface. Likewise, the retina events are captured in 
128-event transfers and processed in a high priority thread that 
runs independently from the GUI or rendering threads. The 
USB interface threads were set to high priority, with highest 
priority given to the servo writing thread. Java’s maximum 
priority is equivalent to Windows TIME_CRITICAL 
priority [5]. 

We used a Futaba S9253 servo to move the goalie arm 
(http://www.futaba-rc.com). This fast hobby digital servo, 
which is targeted to helicopter tail rudder control, accepts 
pulse-width modulation (PWM) input at several hundred Hz 
and is rated to rotate 60° with no load in 60 ms. It can move 
the arm across the goal in about 100 ms. We used a Silicon 
Labs C8051F320 USB1.0 microcontroller (www.silabs.com) 
to interface between the PC and the servo motor. The 

http://siliconretina.ini.unizh.ch/
http://www.thesycon.de/
http://www.futaba-rc.com/
http://www.silabs.com/


microcontroller accepts commands over a USB bulk 
endpoint [6] that specify up to two servo motor position 
signals that it loads into internal counter-timer registers that 
program the PWM output width. The small servo motor is 
also powered directly by the 5V USB VBUS. The servo arm is 
constructed from a paint stirrer stick with a plastic “hand” 
stuck on its end. The goal and ramp are raised about 4 cm to 
allow the hand to protrude into the gap in order to better cover 
the corners of the goal (Fig. 1). 

III. RESULTS 
The robot achieves a success rate of 80-90% in blocking 

balls that are shot with >150 ms time to impact. Misses 
increase as the limits of servo acceleration are reached. The 
cluster tracker algorithm is effective for ignoring distracters 
(Fig. 3). Events are processed for ball tracking at a rate of 
1.4 Meps (700 ns/event) on a 2.1 GHz Pentium M laptop 
running Windows XP, Java server JVM version 1.5.  

Response latency mostly depends on whether the events are 
processed in USB interface transfers (maximum of 128 
events) or screen rendering packets. If processed at screen 
rendering rates, the latency is about the same as the frame 
interval, e.g. 33 ms for 30 Hz frame rate. When processed at 
the event packet level, latency is much shorter. A single ball 
that produces events at 30 keps causes a 128-event USB 
packet every 4 ms.  Paradoxically, more retina activity 
actually reduces this latency, but this is only because the 
buffers are filled more rapidly.  

 
Fig. 4 Shows latency measurements. a) Oscilloscope traces showing 

response latency in LED burst experiment for a single trial. Top trace shows 
the LED burst. Second trace shows 128-event transfers of events from retina 

to PC. Third trace show when servo command is received by the main loop on 
the microcontroller. Last trace shows resulting PWM output to servo motor. 

b) shows histogram of latencies; mean 2.8±0.5 ms, median 2.8 ms. 

To study latency, we set up an artificial stimulus consisting 
of a flashing LED that could be activated in bursts, thus 
mimicking an instantaneously-appearing ball. We then 
programmed the servo motor microcontroller to turn on an 
output pin when it received a servo motor command. The time 
delay between the beginning of the LED flashing and the 
microcontroller output is a measure of response latency that 
leaves out the latency of the random PWM phase and the 
servo motor. This measurement is shown in Fig. 4. The 
latency is 2.8±0.5 ms. This latency was achieved by setting 
the device interrupt polling interval to 1 ms in the device’s 
USB descriptor [6]; using the default polling interval of 10 ms 
resulted in substantially higher median latency of 5.5 ms. 

IV. CONCLUSION 
The main achievement of this work is the concrete 

demonstration of a hybrid neuromorphic-procedural system 
for low latency object tracking and sensory motor processing. 
Secondary achievements are refinements of existing object 
tracking algorithms and the development of a reusable, 
convenient USB servo-motor interface. The goalie robot can 
successfully block balls even when these are low contrast 
white-on-gray objects and there are many background 
distracters. Progress in neuromorphic engineering will result 
from combining powerful neuromorphic sensors with the 
flexibility of procedural computation. 
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