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Abstract—The growing interest in pulse-mode processing by
neural networks is encouraging the development of hardware im-
plementations of massively parallel networks of integrate-and-fire
neurons distributed over multiple chips. Address-event represen-
tation (AER) has long been considered a convenient transmission
protocol for spike based neuromorphic devices. One missing,
long-needed feature of AER-based systems is the ability to acquire
data from complex neuromorphic systems and to stimulate them
using suitable data. We have implemented a general-purpose
solution in the form of a peripheral component interconnect (PCI)
board (the PCI-AER board) supported by software. We describe
the main characteristics of the PCI-AER board, and of the related
supporting software. To show the functionality of the PCI-AER
infrastructure we demonstrate a reconfigurable multichip neuro-
morphic system for feature selectivity which models orientation
tuning properties of cortical neurons.

Index Terms—Address event representation (AER), asyn-
chronous, cooperative–competitive, neural chips, neural networks,
neuromorphic, orientation tuning, peripheral component inter-
connect (PCI)-AER, VLSI, winner take all (WTA).

I. INTRODUCTION

NETWORKS of integrate-and-fire (I&F) neurons have
been shown to exhibit a wide range of useful compu-

tational properties, including feature binding, segmentation,
pattern recognition, onset detection, input prediction, etc. [1].
Implementing these functionality in VLSI circuits could lead
to the construction of efficient hardware systems capable of
solving complex sensory processing tasks in real-time. I&F
neuron circuits are very well suited for VLSI implementation
[2]–[8]. Large VLSI networks of I&F neurons can already
be implemented on single chips, using today’s technology.
However implementations of pulse-based neural networks on
multichip systems offer greater computational power and higher
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flexibility than single-chip systems. As inter-chip connectivity
is limited by the small number of input-output connections
available with standard chip packaging technologies, it is
necessary to adopt time-multiplexing schemes for constructing
large multichip networks.

A. Address Event Representation (AER)

In recent years, we have witnessed the emergence of new
asynchronous communication protocols that allow aVLSI neu-
rons to transmit their activity across chips using pulse-frequency
modulated signals (in the form of events, or spikes). One of the
most common asynchronous communication protocols used in
these types of systems is the so-called address-event represen-
tation (AER) communication protocol [9]–[12]. In this repre-
sentation, input and output signals are real-time digital events
that carry analog information in their temporal relationships
(inter-spike intervals). Each event is represented by a binary
word encoding the address of the sending node.

The activity of biological neurons is sparse in time, with typ-
ical firing rates ranging from a few per second to a few hundred
per second. The speed of digital buses (tens of megahertz) al-
lows the outputs of many VLSI neurons firing at these biologi-
cally typical rates to be multiplexed over one AE bus. To further
reduce the bandwidth required on the AE bus, local connectivity
can be hardwired on-chip [4], [8]. To handle cases in which mul-
tiple sending nodes attempt to transmit their addresses at exactly
the same time (event collisions) on-chip arbitration schemes can
be used [9], [13]–[15].

Chips that communicate using the AER communication pro-
tocol can be divided into senders with AER output only (e.g.,
silicon retinas [16], [17], or silicon cochleas [18]), receivers
with AER input only [19], and transceiver chips, which are both
senders and receivers [2], [7], [8]. Systems containing more
than one AER sender chips can be assembled using off-chip
arbitration.

One of the earliest multichip systems using the AER commu-
nication protocol, a silicon model of stereoscopic vision, was
implemented by Misha Mahowald [9]. The system, consisting
of three silicon chips interconnected with asynchronous digital
buses, was able to extract, in real-time, depth information from
visual stimuli detected by two silicon retinas. At that time and
since, logic analyzers were and are often used to monitor AE
buses. While still useful for debugging problems with AE pro-
tocol communication they suffer from several disadvantages for
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monitoring purposes. Good logic analyzers are typically bulky
and heavy and therefore not very portable, and too expensive
to equip every researchers’ bench with one. They also do not
usually permit on-line real-time monitoring, since data cannot
be downloaded at the same time that it is being acquired into
acquisition memory. This makes logic analyzers unsuitable for
experiments in which it is desired to incorporate conventional
software-based algorithms into the processing loop, e.g., for
certain on-line learning experiments. General purpose data ac-
quisition (digital I/O) boards are also not ideal, since most in-
expensive boards are not designed for use with asynchronous
buses and each individual event handshake must therefore be
handled by software which makes such boards very slow. On
the AE generation side, the counterpart of the logic analyzer
is the pattern generator. These are also not designed with asyn-
chronous buses in mind and cannot wait for a handshake to com-
plete but can only emit a fixed programmed pattern. Like logic
analyzers, pattern generators can also not take part in on-line
software-in-the-loop experiments and are also very expensive.
The joint consideration of the needs for AE input and output
suggests that a single special-purpose device, natively suited
to asynchronous communication, would provide a more conve-
nient, cheaper solution.

B. AER Communication Infrastructures

Infrastructures for constructing multichip pulse-based neuro-
morphic systems based on AER have been further developed by
several researchers [10], [13], [20]–[23]. A wide range of exam-
ples of multichip AER systems have been presented in the past.
These examples have used AER infrastructures that range from
very bulky and highly complex general purpose solutions [19],
[20], [24], to custom solutions in the form of dedicated printed
circuit boards (PCBs) with microcontrollers and/or look-up ta-
bles [6], [25], [26]. In addition, a new set of general purpose
AER boards with USB and USB2 interfaces have been recently
proposed [23], [27], [28]. These boards represent a good com-
promise between general-purpose functionality, and compact-
ness. However, as they are typically placed between AER chips
in the signal processing path, they often do not have access to
the address events of all chips present in the system. Further-
more each individual board has often a limited set of function-
alities (e.g., to monitor AEs from a sender, to generate and send
synthetic AEs to a receiver, to merge AEs from two senders into
a receiver input, to map AEs from one address space to another,
etc.), or require reprogramming at the field-programmable gate
array (FPGA)/VHDL level in order to assume one of these par-
ticular functions. In this paper, we present a general-purpose so-
lution in the form of a peripheral component interconnect (PCI)
board (the PCI-AER board) that has all of these functionalities,
with the possibility of connecting up to four senders with up to
four receivers, that has access to the global AER address space
used by the system, and that has a well-defined software inter-
face. The approach of using one single PCI-AER board rather
than many smaller USB-AER boards has the disadvantages of
requiring a PC workstation to be present, even when only map-
ping is required, and limiting to some extent the overall size
of the AER system that can be constructed. But it has the ad-
vantage of allowing convenient and rapid prototyping (e.g., by

stimulating, monitoring and/or experimenting with different ad-
dress-space mappings), and of allowing seamless integration of
software algorithms [29] (e.g., that implement learning or that
change the network topology based on the system’s activity).
The PCI-AER board is therefore an ideal tool for developing
AER neuromorphic models of biological sensors and neocor-
tical processing structures. Specifically, we propose to use the
board to study a computational module based on a network of
spiking neurons with cooperative-competitive interactions.

C. Computational System Overview

We are ultimately interested in developing neuromorphic
systems that reproduce some characteristics of neocortical
processing modules. Despite significant differences in func-
tion across the various cortical areas, the pattern of neuronal
connections within each area is remarkably similar [30]. This
regular structure suggests that the cortex may use a common
core processing circuit, or canonical microcircuit, that can
be tuned to perform specific tasks and used in a modular
fashion for implementing different functionalities [30], [31].
The canonical microcircuit, and its later extensions, emphasize
the role of first order recurrent connections between cortical
neurons. These recurrent connections between neurons support
soft winner-take-all (WTA) mechanisms, in which networks
of neurons participate collectively in the generation of an
appropriate interpretation of their input.

The computational abilities arising from soft WTA mecha-
nisms are especially useful for feature extraction and pattern
classification problems. In the second half of this paper, we
describe an application example comprising an AE temporally
differentiating vision sensor interfaced to a VLSI device with
a cooperative-competitive network of spiking neurons via the
PCI-AER board. We apply this AER-based vision system to the
implementation and comparison of two models of orientation
selectivity. The models of mechanisms responsible for orien-
tation selectivity have been controversial since its discovery
by Hubel and Wiesel [32]. Originally it was believed that the
primary origin of the orientation selectivity of simple cells
was due to feedforward convergence of thalamic input (feed-
forward model). Subsequent experimental studies suggested
that this contribution alone is insufficient to account for all
properties of orientation tuning observed in the visual cortex
[33]–[35], leading to the proposal for the involvement of re-
current intracortical excitation and inhibition (feedback model)
in orientation selectivity. The origin of orientation selectivity
in primary visual cortex has been extensively studied as a
means to understand cortical circuitry and cortical computation
[34], [36]–[39], and several hardware models of orientation
selectivity have been proposed in the past and fabricated with
monolithic [40]–[42] or multichip configurations [4], [7],
[43]–[47]. An advantage of multichip configurations is that
the computational stage is decoupled from the sensing stage.
In this way the orientation selectivity computational devices
can be designed to be modular and expandable. Within the
multichip configuration approaches there are two main streams:
[4], [43], [45] and [46] implement specific architectures with
local or hardwired connectivity for processing signals obtained
from vision sensors, while [7] and [47] propose using general
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Fig. 1. PCI-AER board and header board. (a) PCI-AER PCI board. The devices involved in the implementation of the three major functional blocks (see Fig. 2)
are highlighted: monitor, sequencer, and mapper FIFOs, the two FPGAs, and the SRAM used to hold the mapper’s look-up table. A connector is used to connect
to the header board [see Fig. (1b)] via a cable. The PCI interface chip controls the interface to the host PC. (b) PCI-AER header board. The header board connects
to the PCI board via a ribbon cable. Cable drivers are used to ensure the integrity of the signals passing over this cable. The board can draw power either from the
PCI board or from an external power supply. (The connector and associated components for this are highlighted.) The board provides connectors for up to four
AER senders and four AER receivers plus a dedicated connector from the sequencer. The header board has five status LEDs: a “power on” LED, three LEDs which
indicate whether each of the three functional blocks (monitor, sequencer and mapper) are enabled, and three FIFO full indicator LEDs (one each for the monitor,
sequencer and mapper FIFOs).

purpose transceivers that rely on the AER communication
infrastructure to construct receptive fields tuned to different
orientations. The multichip system we designed is a hybrid of
the approaches proposed in these two main streams, as it has
local hardwired connections and supports arbitrary connec-
tivity patterns via additional AER synapses. Specifically, in
our system, we can map different types of sensory inputs (e.g.,
obtained from a silicon retina, a silicon cochlea, or other AER
sensory systems) onto the network’s AER synapses in a way to
implement cooperation and competition across different types
of feature maps. The computational part of the system is not
explicitly designed for orientation selectivity. Instead, it models
a more generic computational module (which represents a
portion of a cortical module [30], [31]) that can be applied to
the detection of other features, and to other sensory modalities.
In our specific application example the receptive fields emerge
both from the inter-chip feedforward connectivity [32] and the
intra-chip recurrent cooperative-competitive connectivity.

In the next section, we describe the PCI-AER board and its
supporting software. In Section III, we present the application
example on orientation tuning, and in Section IV, we present a
discussion and concluding remarks.

II. COMMUNICATION INFRASTRUCTURE

A. Hardware: PCI-AER Board

The PCI-AER board takes the form of a 33 MHz, 32-bit, 5-V
PCI bus add-in card Fig. 1(a). It was designed by Dante and
the PCBs were manufactured by Ermes Technology S.R.L. (Via
Ivrea 18, 10080 San Benigno Canavese, Italy). Most of the two
dozen or so boards in existence were assembled by SMTEC AG
(Gewerbestrasse 5, 8451 Kleinandelfingen, Switzerland). When

the board is installed in a host PC, a ribbon cable is used to con-
nect it to a small header board Fig. 1(b) which can be conve-
niently located on the bench-top and provides connectors for up
to four AER receivers and four AER senders. The header board
also electrically buffers the signals to and from the receivers and
senders. If only one receiver is used, all 16 bits of the AER bus
can be used by that receiver. If two receivers are used, the top-
most bit is used to distinguish between them and only 15 bits of
address are available to each receiver. If all four receiver chan-
nels are used then the two topmost bits are used to distinguish
between them and only 14 bits of address are available to each
receiver. The number of channels to be used (1, 2, or 4) can be
configured by software. Similarly the senders may use 16, only
15 or only 14 bits of address according to whether the board
is configured for 1, 2, or 4 sender chips. Senders must use the
so-called “SCX” multisender AER protocol [48] in which re-
quest and acknowledge signals are active low and the bus may
only be driven while the acknowledge signal is active. Receivers
may use either this “SCX” protocol, or they may choose to use
a point-to-point protocol [11] in which request and acknowl-
edge are active high and the bus is driven while request is ac-
tive. Which protocol is generated by the board may be selected
under software control.

As illustrated in Fig. 2, the PCI-AER board can perform three
functions which are executed by blocks we refer to as the mon-
itor, sequencer, and mapper. These blocks are implemented in
two FPGAs on the board. The division of the functionality be-
tween the two FPGAs is a consequence of the data flow. One
FPGA deals with all incoming events, whether from external
sources or from the PCI bus and optionally passes these events
on to the mapper. Hence, this FPGA implements the monitor
and sequencer functions, as well as handling the input to the
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Fig. 2. Block diagram of the PCI-AER interface board showing its three major functional blocks, i.e., the MONITOR, the SEQUENCER, and the mapper (divided
into MAPPER-IN and MAPPER-OUT). These (and other blocks) are implemented in two FPGAs. Also shown are the FIFOs, the interface from the PCI bus to
the local bus provided by an AMCC S5920 chip [50], the SRAM used to hold the mapper’s look-up table, and the interconnecting buses.

mapper. The other FPGA performs the mapper function proper
(including managing the interface to the mapper’s SRAM) and
manages communication with the AER receivers.

The monitor can capture and timestamp events coming from
the attached AER senders via an arbiter1 and makes those events
available to the PC for storage or further on-line processing. A
timer is implemented in one of the FPGAs, and when an in-
coming AE is read, a timestamp is stored along with the address
in a first-in first-out (FIFO) memory. This FIFO decouples the
management of the incoming AEs from read operations on the
PCI bus, the bandwidth of which must be shared with other pe-
ripherals in the PC such as the network card. The FIFOs fitted
to the current boards are all 8-KWords deep (and 18-bit wide)
and since the addresses occupy one word and the timestamps
two words each, this is sufficient to hold 2730 complete events.2

Interrupts to the host PC can be generated when the FIFO be-
comes half-full and/or full, and in the ideal case, the driver will
read time stamped AEs from the monitor FIFO whenever the
host CPU receives a FIFO half-full interrupt, at a rate sufficient
that the FIFO never fills or overruns, given the rate of incoming
AEs. If the CPU fails to empty the FIFO at a sufficient rate, the
FIFO will fill up, the FIFO full light-emitting diode (LED) on
the header board will light, and a FIFO full interrupt will be
generated. At this point, incoming events will be lost until such
time as the CPU can once again read from the FIFO. In the ap-
plication example we present in Section III the monitor is used
to record the activity of a sender and a transceiver chip.

1The arbiter is a binary-tree arbiter in which each binary cell is a priority
based arbiter.

2The monitor can also be run without storing timestamps, in which case the
FIFO can hold up to 8 K event addresses.

The sequencer allows events originated by the host PC to be
sent out to the attached AER receivers. These events may for
example represent a pre-computed, buffered stimulus pattern,
but they might also be the result of a real-time computation.
This allows for instance software simulations of VLSI devices
to provide input to real VLSI hardware while the former VLSI
devices are still under development. As soon as the real device
is available, the software simulation can be seamlessly replaced.
Like the monitor, the sequencer is decoupled from the PCI bus
using an 8-KWord FIFO. The host writes a sequence of words
representing addresses and time delays to the sequencer FIFO.
The sequencer then reads these words one at a time from the
FIFO and either emits an AE or waits the indicated number of
microseconds. Since addresses and time delays are represented
in the sequencer by one word each, and a stream of AEs usually
consists of alternating addresses and time delays representing
inter-spike intervals, the 8-KWord FIFO can typically hold up
to 4096 events. FIFO half empty interrupts can be generated to
signal the CPU to supply further data to the sequencer. If the
CPU fails to supply data to the sequencer at a rate sufficient to
prevent the sequencer FIFO becoming empty, this may indicate
a failure of the system to generate the desired sequence of events
with the desired timing. In this case a sequencer FIFO empty
interrupt is raised to signal the underrun. The address events
generated by the sequencer pass through the mapper and can
therefore be transmitted on any of the four output channels.

The mapper implements programmable inter-chip synaptic
connectivity. It maps incoming AEs from attached AER
senders and/or the sequencer to one or more outgoing ad-
dresses for transmission to the attached AER receivers. It can
operate in pass-through, one-to-one, or one-to-many modes. In
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pass-through mode, the outgoing addresses are the same as the
incoming addresses. In one-to-one mode, each incoming ad-
dress is mapped to one outgoing address by using the incoming
addresses as the index into a look-up table stored in on-board
SRAM. This look-up table then holds the corresponding target
output addresses. In one-to-many mode, each incoming address
may be mapped to one or more outgoing addresses. This is
achieved by using the contents of the look-up table as pointers
to lists of output addresses, also stored in the 2 MWords of on
board SRAM.3 The mapper too has a FIFO which decouples
the asynchronous reception of the incoming AEs from the
generation of outgoing AEs. Should this FIFO become full,
it is possible that events will be lost, and this eventuality can
be signaled to the CPU by means of an interrupt. The mapper,
once it has been configured and the look-up table filled with
the required mappings, operates entirely independently of the
host CPU, since all of the necessary operations, including table
look-up are performed by one of the FPGAs. To implement the
multichip system described in Section III we used the mapper
in one-to-many mode.

A detailed description of the hardware (the Hardware User
Manual) is available at [49].

B. Supporting Software

To enable the functionality of the board to be accessed robustly
and conveniently, we have provided a Linux device driver and,
on top of this, a C library. Both are fully documented and this
documentation is available together with the source code at [49].
The open-source driver provides full integration of the PCI-AER
board under Linux following the Unix “everything-is-a-file”
model. This allows AE data streams to be accessed using stan-
dard Unix read and write calls and supports the use of standard
shell redirection and command-line tools. The driver provides
separate logical devices for each of the major functional blocks
of the board: mapper; monitor; and sequencer, and supports
multiple boards. It ensures that the AE data streams remain
coherent by serializing accesses from multiple programs running
simultaneously. It also forces word-multiple sized access to
prevent corruption of the data streams due to misalignment.
While read and write calls are used to read and write the AE data
streams from and to the board’s FIFOs, IOCTL (input/output
control) calls are provided to set and get configuration states,
and user programs are prevented from putting the board into an
inconsistent state. The driver also manages the mapper look-up
table memory to relieve users of the task of performing the
necessary but onerous and error-prone table indexing and pointer
arithmetic and so prevents the mapping table from becoming
corrupted. Statistics (number of words read or written, number
of interrupts, number of FIFO overruns or underruns etc.) are
also maintained by the driver for each logical device and made
available to user programs.

The library consists mainly of thin, fast wrapper functions
around the driver open, close, read, write, flush and ioctl calls.
Functions are also provided to convert from the PCI-AER hard-
ware-specific format to a generic inter-spike interval/AE format
for reading, and vice versa for writing. The conversion function

3In order to send the same address to more than one output channel, the ap-
propriate target addresses must be listed serially in the output address lists.

for reading also attempts recovery when data are received out
of order because of monitor FIFO overruns or other (hardware)
errors.

C. Performance

The performance of the PCI-AER hardware and driver must
be considered together since the board is unusable without a
driver. Once the board has been initialised and configured, and
desired mappings established in the mapper, mapping continues
to operate without intervention from the driver, but a driver
is necessary to perform those initialization and configuration
steps, and to read and change mappings later, if so desired. For
the sequencer, the driver can be used to fill the 4 K-events FIFO
and may play no role until the FIFO empties. However it is not
possible to know that the FIFO has emptied without using the
driver, and such a one-shot, 4 K-events-only mode of use is not
very interesting for many applications in which it is desirable to
stimulate AER devices continuously. Similarly, events can be
collected in the monitor until its FIFO fills up, but they cannot
be read without the driver, nor again is it usually very useful to
constrain data capture to 2 2/3 K events.

Some of the various aspects of the performance are highly
dependent on the type of PC in which the board is installed and
on which the driver is running, and on the version and config-
uration of the Linux kernel in use. Nonetheless the driver is in-
strumented for measuring the throughput of the monitor and se-
quencer and measurements have been performed using version
2.30 of the driver on a 1-GHz, 512-MB, AMD Athlon based
machine running a SuSE 9.1 Linux distribution with kernel ver-
sion 2.6.5. The PCI-AER board FPGA revisions used were 4202
(FPGA1) and 4203 (FPGA2). In order to eliminate as many out-
side influences as possible and obtain reproducible results, mea-
surements were made with no graphical display system and no
network stack running. The results of these measurements are
shown in Table I. Data for the monitor was obtained by con-
necting one monitor input channel to a circuit which produces
AE requests at a rate determined by a function generator input,
while a test program runs a loop which does nothing but read
from the driver into a static buffer. The AE rate was then grad-
ually increased until FIFO overruns began to occur. The se-
quencer data was obtained by connecting together the AE re-
quest output and acknowledge input pins on one of the receiver
chip connectors on the header board, thus providing the fastest
possible acknowledgement of a request, and running a test pro-
gram which configured the board for single channel output with
the mapper in pass-through mode, and which then continuously
writes the contents of a pre-prepared buffer to the driver. The
inter-spike intervals were specified to be 0 s. The test software
is available, along with the driver, at [49]. Minimum cycle times
were measured by observing the request and acknowledge sig-
nals at the header board using an oscilloscope. Performance data
obtained when using a more sophisticated software framework
on top of a slightly earlier version of the driver on a different
machine were presented in [29].

The limiting factors are various. The sequencer maximum
sustainable rate lies in the region between using inter-spike in-
tervals of 1 s and inter-spike intervals of 0 s, but since the
best available resolution of the timer controlling the emission of
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TABLE I
PCI-AER BOARD AND DRIVER PERFORMANCE DATA

events from the sequencer is 1 s, the timer resolution represents
the limiting factor here. Were the resolution of the timer better,
then the data transfer rate would become the limiting factor. The
monitor maximum sustainable rate is determined principally by
the speed at which the AE stream can be read from the board
over the PCI bus and buffered in the PC’s memory. Due to the
lack of support for direct memory access (DMA) in the current
design, this in turn depends on many factors—CPU speed, cache
size and organization, PCI bus chipset, Linux kernel version etc.

The present board is unable to perform DMA to shift AE
data across the PCI bus because the AMCC S5920 PCI inter-
face chip [50] used does not support it, but later generations of
hardware should certainly use DMA, not only to achieve greater
throughput across the PCI bus, but also to offload the CPU,
see for example [51]. Alternatively, with the present board, use
might in future be made of the forthcoming Intel I/O Acceler-
ation Technology (I/OAT)4 in which the CPU includes a DMA
subsystem.

Minimum AE cycle times on both the inputs from senders
and on the outputs to receivers depend only on the frequency of
the clock on the board (20 MHz on the present board) and the
requirement to remain within the AER protocol specifications.
They do not depend on the number of channels in use, although
the latency before acknowledging a request on one arbiter input
channel may of course be influenced by the presence of events
on other channels if other input channels are in use.

Since the limiting factors are principally on the PC side and
not on the AER side, it is clear that the overall bandwidth avail-
able for say monitoring remains constant irrespective of the
number of channels in use, and that therefore if multiple chan-
nels are being monitored, they must share the available band-
width. Note however that when not monitoring or sequencing,
the bandwidth available on the PCI bus plays no role in the map-
ping performance, since the data-path is then from FPGA1 to
Mapper FIFO to FPGA2 and does not even involve the Local
Bus on the board (refer again to Fig. 2).

The throughput of the mapper depends on whether it is being
operated in pass-through, one-to-one or one-to-many modes,
and in the latter case, on the length of the target address lists
being used. In measuring the sequencer rates given in Table I,
the mapper is being used in pass-through mode, thus it is clear
that at least in this mode it can sustain rates of .
This would allow neurons to be actively firing at a rate of
100 Hz. Assuming no more than 10% of neurons are active at
one time, a network of the order of neurons could be sup-
ported by one PCI-AER card, but address space considerations

4http://www.intel.com/technology/ioacceleration/.

Fig. 3. AER orientation selectivity system setup. The PCI-AER board routes
output events of the TMPDIFF chip in response to visual stimuli to the IFWTA
chip and monitors the activity of both chips. The PC controls the LCD screen
for stimulus presentation, the PCI-AER board and the DAC board.

restrict us to supporting a maximum of 65536 neurons on the
sender side and a maximum of 65536 synapses on the receiver
side. If the network produces more spikes than can be processed
by the mapper in real-time, then when the mapper FIFO fills,
spikes will eventually be lost, but this will have no influence on
the AE protocol cycle times observed on the sender side.

Although the driver supports the use of more than one PCI-
AER board in one PC, the user inevitably remains limited by
the characteristics of that host PC and in particular the band-
width available for monitoring and/or sequencing within the
host system must then be shared between all of the boards which
are fitted to that system. However as noted above, when boards
are only being used for mapping, there is no impact on the host,
so several boards fitted to the same PC might easily be used for
mapping in larger AE systems while for instance only one board
at a time performs a monitoring function. AEs do not need to be
routed from one PCI-AER board to another via the PC but rather
one of the output channels of one board could be connected to
one of the input channels of another board, or perhaps to the
input of a transceiver chip the output of which goes to the input
of another board.

III. APPLICATION EXAMPLE: ORIENTATION SELECTIVITY

USING A SILICON RETINA AND A WTA NETWORK

A. Orientation Selectivity System Components

The orientation selectivity system consists of two neuromor-
phic aVLSI AER chips, a PCI-AER board and supporting hard-
ware (see Fig. 3). The neuromorphic chips are an AE tempo-
rally differentiating (TMPDIFF) vision sensor chip [52] and a
recurrent competitive network of I&F neurons and short-term
dynamic synapses (IFWTA chip) [53].

The AEs generated by the TMPDIFF chip and sent to the
WTA chip are routed by the PCI-AER board mapper. The
PCI-AER board monitor is used to read all AEs (generated by
the two chips), timestamp them and log them on the host PC
(see Fig. 3).
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Fig. 4. (a) Chip architecture. Squares represent excitatory (E) and inhibitory (I) synapses, small unlabeled trapezoids represent I&F neurons. The I&F neurons
can transmit their spikes off-chip and/or to locally connected synapses (see text for details). (b) Schematic representation of the connectivity pattern implemented
by the internal hardwired connections (closed boundary condition). Empty circles represent excitatory neurons and the filled circle represents the global inhibitory
neuron. Solid/dashed lines represent excitatory/inhibitory connections. Connections with arrowheads are monodirectional, all the others are bidirectional. Only
eight excitatory neurons are shown for simplicity; the actual chip contains 31 excitatory neurons.

The supporting hardware comprises a custom digital–analog
converter (DAC) board [54] for setting the analog biases of the
neuromorphic chips, a liquid crystal display (LCD) screen for
presenting visual stimuli, and a workstation for hosting and con-
trolling the PCI-AER board, programming the DAC board and
controlling the LCD screen.

The PCI-AER board mapper functionality was critical in this
application example, as it allowed us to (re-)configure the map-
ping between the TMPDIFF pixels and the IFWTA synapses.
Similarly, the board’s monitoring function allowed us to store
arbitrarily large numbers of AEs generated by the system for
off-line analysis. The multichip system was not developed to
process real images, rather it was designed to validate models
of orientation selectivity and illustrate the functionalities of the
PCI-AER board.

1) TMPDIFF Chip: The TMPDIFF chip implements the
sensing stage of our system. The chip produces asynchronous
AEs in response to temporal changes in logarithmic intensity.
The stream of events encodes contrast change rather than abso-
lute illumination change. The retinal computation is optimized
to deliver relevant information and to discard redundancy using
high temporal and low spatial resolution, similar to the biological
magnocellular pathway. Because the TMPDIFF chip responds
only to temporal changes in logarithmic intensity, static scenes
produce no output. AEs represent relative changes in image
intensity that usually are generated by viewpoint or object
movement. The TMPDIFF pixel front end photoreceptor circuits
independently compute the temporal derivative of the logarithm
of the pixel illumination in continuous time. The output of the
photoreceptor circuit consists of an ON current for increasing
intensities and an OFF current for decreasing intensities. The ON

and the OFF currents are proportional to the temporal derivative
of . The ON current is fed as an input current into an I&F
neuron circuit that communicates quantized logarithmic changes

as ON-events. The OFF current is fed into another I&F neuron that
produces OFF-events. As long as the temporal frequency of the
visual stimulus is higher than the corner frequency of the input to
the neuron circuits (2 Hz), each event means that the logarithmic
intensity changed by a certain fixed amount since the last event. If
the absolute pixel illumination is , then each event represents
a quantized change in

(1)

Thus, the temporal derivative is self-normalized. Pixel output
consists of the stream of ON and OFF events. This vision sensor,
more thoroughly described in [55] and [52], consists of an array
of 32 32 pixels, a y-arbiter, an x-arbiter and a common ad-
dress bus with two encoders [12]. An event occurring in a pixel
is communicated to the outside of the chip as an 11-bit address
that encodes the pixel X-Y location and the polarity (ON or OFF)
of the event. Events are processed asynchronously in order of
their arrival time. In case of colliding events the later events are
queued. The vision sensor is a real-time device, as events are
typically communicated within 100 ns of their occurrence. The
AER communication system is particularly well suited for this
application because it dedicates the full communication band-
width to the active pixels of the vision sensor and preserves
timing information. In response to a flashed bar, for example,
within the first few milliseconds after presentation or removal
of the bar a burst of a few hundred events is typically emitted;
these bursts are preceded and followed by zero activity. The
maximum event rate is about 2 . With sparse acti-
vation a very high temporal resolution is achievable, comparable
with frame rates of several kilohertz.

2) The IFWTA Chip: The architecture of the IFWTA chip
is shown in Fig. 4(a). It is a two-dimensional array containing
a row of 32 I&F neurons, each connected to a column of af-
ferent synaptic circuits. Each column contains 14 AE excita-
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tory synapses, 2 AE inhibitory synapses and 6 locally connected
(hardwired) synapses. When an AE is received, the synapse with
the corresponding row and column address is stimulated. If the
synaptic current resulting from the AEs routed to the neuron in-
tegrates to the neuron’s voltage threshold for spiking, then that
neuron generates an AE which is transmitted off-chip. The AE
input synapses can be used to implement arbitrary network ar-
chitectures, by (re)mapping AEs via the PCI-AER board.

Synapses with local hardwired connectivity are used to re-
alize a cooperative-competitive network with recurrent interac-
tions [see Fig. 4(b)]: 31 neurons of the array send their spikes
to 31 local excitatory synapses on the global inhibitory neuron;
the inhibitory neuron, in turn, stimulates the local inhibitory
synapses of the 31 excitatory neurons; each excitatory neuron
stimulates its first and second neighbors on both sides using
two sets of locally connected excitatory synapses. The first and
second neighbor connections of the neurons at the edges of
the array are connected to pads. This allows us to leave the
network open, or implement closed boundary conditions (to
form a ring of neurons [56]), using off-chip jumpers. The local
synapses are nonlinear integrators which produce analog cur-
rents in response to digital input spikes. The local hardwired
connectivity was implemented as described above in order to
reduce AER bandwidth usage, while trying to keep the addi-
tional area occupied small with respect to the overall network
size. Furthermore, it provides the flexibility to use the chip as a
standalone module for single-chip experiments in which there
is no need for mapping.

All of the synapses on the chip can be switched off by ap-
propriately setting the external bias voltages that control their
synaptic weights; the local and AER synapses are controlled by
independent bias voltages. This allows us to inactivate either the
local or the AE synaptic connections, or to use them in some ar-
bitrary combination. A detailed description of the IFWTA chip
was presented in [53], [57].

B. Orientation Selectivity Experiments

In our application example, broad orientation selectivity is
achieved by appropriately mapping feedforward connections
from the TMPDIFF pixels to the IFWTA chip neurons (via the
PCI-AER board), and it is sharpened by activating the local
recurrent connections on the IFWTA chip. The feedforward
mapping is set so that each IFWTA neuron collects all the
TMPDIFF ON and OFF events that belong to a bar with a
specific orientation and position (discarding polarity), as shown
in Fig. 5. We mapped 31 different groups of TMPDIFF pixels
onto 31 neurons of the IFWTA chip so as to form 31 differently
oriented receptive fields. The orientations of these receptive
fields are indicated by the bars shown as insets in Fig. 6(a).

In our experiments we displayed to the TMPDIFF chip ori-
ented white bars on a dark background, flashing on an LCD
screen. The activity of the TMPDIFF chip was monitored by the
PCI-AER board and transmitted (via the PCI-AER board map-
ping tables) to the IFWTA chip. Using the PCI-AER board, we
time-stamped and logged both the TMPDIFF and IFWTA AEs
for data analysis. To characterize the system we collected the
system’s activity in response to bars of 30 different orientations
(6 degrees apart from each other) chosen independently of the

Fig. 5. Sketch representative of the mapping from the TMPDIFF chip to the
IFWTA chip. The TMPDIFF retina is represented by a twelve by twelve array
of pixels, lines represents excitatory connections from the TMPDIFF chip to
neurons of the IFWTA chip (represented by circles).

set of pre-wired preferred orientations. Each oriented bar was
flashed at a rate of about 2.5 Hz, producing one ON and one OFF

transition per cycle and the AE data was monitored for 25 sec-
onds. Because it was not easy to synchronize the stimulus onset
with the start of the monitoring, we decided to start the mon-
itoring 5 s after executing the command to start the stimulus.
In this way, we were sure that the stimulus was already present
when we started monitoring.

We repeated the same experiment for two different condi-
tions in terms of the local connectivity of the WTA chip. In
the first condition the biases of the WTA chip were set to im-
plement a purely feedforward model: local recurrent synapses
were inactive and the neurons’ inputs were completely deter-
mined by the activity of the retinal pixels. Subsequently, we
activated the recurrent connectivity to implement the feedback
model maintaining all other parameters unchanged. Three sets
of local synapses were used to implement the feedback model:
1) first neighbor excitatory to excitatory synapses to simulate
the mutually excitatory connections among cells with similar
preferred orientations; 2) inhibitory and 3) excitatory synapses
connecting the global inhibitory neuron to the excitatory neu-
rons and vice versa to simulate the mutual inhibition among
cells with different preferred orientations [see Fig. 4(b)]. The
effect of competition alone is described in [57].

Orientation tuning curves (i.e., graphs of neural response
versus stimulus orientation) are typically measured in experi-
ments related to the characterization of orientation selectivity
in visual cortical neurons. We applied the same analysis to our
data: the recorded activity of the WTA neurons was used to
compute the mean firing rate of each neuron in response to the
stimuli and tuning curves were obtained by plotting these data
for each neuron as a function of stimulus orientation. Fig. 6(a)
shows the computed tuning curves for each neuron of the
IFWTA. Each sub-figure represents the mean response of the
neuron to different orientations. The inset in each sub-figure
represents the retinal pixels mapped to that particular neuron.
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Fig. 6. Tuning curves for the feedforward (dashed line) and the feedback (solid line) model of orientation selectivity. (a) The mean frequency (hertz) of each neuron
is plotted as a function of stimulus orientation [the scales are the same for all plots and can be seen in (b)]. The top left graph shows the activity of the inhibitory
neuron, the other graphs show the activity of the excitatory neurons (a bar representing the retinal pixels mapped to the neuron, i.e., its preferred orientation, is
shown in each plot). The tuning curves of the feedforward model have a larger amplitude and a smaller half-width at half-height compared to the tuning curves
of the feedback model. (b) Tuning curves for the feedforward (dashed line and filled circles) and the feedback (solid line and empty circles) model of orientation
selectivity for the neuron with vertical preferred orientation [enlargement of the second from left panel in the first row of (a)]. The lines represent the von Mises
functions fitted to the data, represented by circles and error bars (standard deviation over the measured mean frequency.)

The TMPDIFF central pixels are mapped to all neurons,
therefore each WTA neuron is also receiving input events when
its nonpreferred orientation is presented to the retina. The effect
of this “base line” input is clearly visible in the feedforward
model, where the activity of the WTA neurons simply reflects
the input from the retina. In this case, the frequencies in the
tuning curves are greater than zero for all orientations and
a maximum is observed at the preferred orientation. In the
feedback model the “base line” activity is suppressed and the
activity in response to the preferred orientation is amplified.

We fitted the tuning curves to quantitatively estimate the ef-
fect of recurrent connectivity on the response of the orientation
selective neurons. We used a von Mises function as the fitting
function [58], defined as

(2)

where is the value of the function at the preferred orientation
, and is a width parameter, from which the half-width at

half-height may be calculated (in radians) as:

(3)

The von Mises function approximates a Gaussian in shape over
a biologically likely range of values of . A least-squares fit of
the data to the von Mises function was used to estimate the pa-
rameters of the tuning curve of each selective oriented neuron.
Fig. 6(b) shows the tuning curve of the neuron tuned to vertical
orientation: the data and the von Mises fitted function are plotted
for both the feedforward and feedback model. The data points
used to perform the fits are the mean frequencies of the neurons
computed over the 25 s of data acquisition. The IFWTA chip
is stimulated only during and shortly after the appearance and
disappearance of the bar, when the ON and OFF pixels of the TM-
PDIFF chip are activated by the visual stimulation. High vari-
ability is then induced in the pattern of activity of the TMPDIFF

Fig. 7. Raster plot of the response of the TMPDIFF pixels and IFWTA neu-
rons to a vertical bar. The graphs in the top row show the ON (black dots) and
OFF (grey dots) response of the TMPDIFF chip (top) and the response of the
IFWTA chip (bottom) to two cycles of the flashing stimulus. The graphs in the
bottom row show a magnified versions of one of the bursts of the top row graphs.
In the left column the IFWTA is configured to implement the purely feedfor-
ward model. In the right column the IFWTA chip implements the recurrent net-
work described in the text. This graphs show how the orientation selectivity
system produces bursts of activity in response to the appearing/disappearing of
the flashing bars and no activity when the stimulus is static. As shown by the
two graphs in the second row, the response delays of the feedforward network
and feedback network are comparable.

and IFWTA chips (see Fig. 7), with bursts of events during the
appearance and disappearance of the flashing bar and gaps of
no activity in between. Ideally, the spike rate during each single
burst should be measured and considered as a single measure-
ment. The mean and standard deviation over many repetitions of
this measurement would provide a good estimation of the mean
frequency and its variation. To allow a simpler manipulation of
the data and start from a more reliable “single” measurement
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Fig. 8. Population data for the amplitude of the tuning curve at the preferred
orientation (feedback versus feedforward model).

Fig. 9. Population data for the half-width at half-height of the tuning curve
(feedback versus feedforward model).

we decided to divide our 25-s acquisition time into five 5-s in-
tervals, and consider the means over these intervals as single
measurements of the neurons’ mean frequencies in response to
the stimulus. The variability of our data [shown as error bars in
Fig. 6(b)] is then computed as the standard deviation over the
five measured frequencies.

To evaluate the goodness of the fits we used the R-square
value (the square of the correlation between the measured values
and the values predicted by the fit). It can take on any value
between 0 and 1, with a value closer to 1 indicating a better
fit. We calculated R-square for all the fits: the mean of all the
computed values is 0.982 with a standard deviation of ,
which indicates that on average the fits can explain 98% of the
total variation in the data.

Figs. 8 and 9 show the estimated amplitude and half-width
at half-height respectively, for all the neurons in the network in
the feedback versus the feedforward configuration. All neurons
lie above the diagonal in Fig. 8, showing that the response to
the preferred orientation is amplified in the feedback network
with respect to the response in the purely feedforward network.
Sharpening of the tuning is shown in Fig. 9, where neurons tend

TABLE II
PARAMETERS OBTAINED BY LEAST-SQUARES FITTING OF THE DATA TO THE

VON MISES DISTRIBUTION. THE MEAN AND STANDARD DEVIATION OVER THE

POPULATION OF 31 ORIENTATION SELECTIVE NEURONS

to lie below the diagonal. The population mean values of these
parameters plus the baseline activity and the preferred orienta-
tion error are listed in Table II. On average the peak activity in
the feedback network is twice the peak activity in the feedfor-
ward network and the ratio between the half-width at half-height
for the two configurations is 0.9 (feedback over feedforward).

IV. CONCLUSION AND OUTLOOK

We have presented a flexible hardware/software infrastructure
for building complex neuromorphic systems using the AER. It
provides monitoring, sequencing and mapping functions easily
accessible through the software interface and it allows conve-
nient and rapid prototyping (e.g., by stimulating, monitoring
and/or experimenting with different address-space mappings).
The PCI-AER board is therefore an ideal tool for developing
single and multichip AER systems. Additional application
examples that rely on this PCI-AER board have been recently
presented in [2], [29], [59]–[61]. This infrastructure and its
documentation has reached the point at which it can be easily
used by researchers and labs which were not involved in its
development. At the time of writing, five such labs have acquired
one or more boards each. Some users have written small C or
C++ applications for spike-train generation and data logging
directly using the library Application Programming Interface
(API). A Matlab toolbox [62] has been developed for the off-line
generation of spike trains to be sent to the PCI-AER board via
the library and driver. A client-server architecture [29] has also
been developed on top of the library to enable the use of the board
on-line from within Matlab, including real-time data display.

Future developments should include a refinement of this
client-server architecture to enable multiple data-sinks to read
the monitored AE stream concurrently in a coordinated way.
Other possible future developments include Java support, and a
stimulation tool for the on-line generation of AE patterns to drive
the sequencer. The instrumentation of the driver and consequent
availability of performance data will aid the assessment of the
present communication infrastructure, and can be used to guide
future driver optimization work. The library could also be ported
to other AER monitoring, mapping and sequencing hardware
providing cross-platform compatibility for higher level software.

We presented the implemented orientation selectivity system
composed of a sensing stage (the TMPDIFF chip) and a com-
putational module (the IFWTA) not explicitly designed for this
purpose by using a specific mapping between the two chips.
We showed how the recurrent connectivity in the computa-
tional module has an effect on the response to oriented stimuli
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similar to those described in theoretical models of orientation
selectivity.

This experiment demonstrates the feasibility of real-time
AER-based inter-chip communication through the PCI-AER
interface. The orientation selectivity system was assembled
exploiting the monitoring and mapping functionality of the
PCI-AER board, thereby demonstrating the capabilities of
the board. Other experiments exploiting the monitor and se-
quencing functionality have been described elsewhere (e.g.,
[2], [63]–[65]).
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