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Abstract
The contribution of time to the encoding of information by the nervous system is still
controversial. The olfactory system is one of the standard preparations where this issue is
empirically investigated. For instance, output neurons of the antennal lobe or the olfactory
bulb display odor stimulus induced temporal modulations of their firing rate at a scale of
hundreds of milliseconds. The role of these temporal patterns in the encoding of odor stimuli,
however, is not yet known. Here, we use optical imaging of the projection neurons of the
moth antennal lobe to address this question. First, we present a biophysically derived model
that provides an accurate description of the calcium response of projection neurons. On the
basis of this model, we subsequently show that the calcium response of the projection
neurons displays a stimulus specific temporal structure. Finally, we demonstrate that an
encoding scheme that includes this temporal information boosts classification performance
by 60% as compared to a purely spatial encoding. Although the putative role of combinatorial
spatio-temporal encoding strategies has been the subject of debate, our results for the first
time establish quantitatively that such an encoding strategy is used by the insect brain.
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Introduction

The role of time in the encoding of information by the nervous system has been

debated for decades (deCharms and Zador 2000). In this debate, a distinction is

usually made between population and single cell encoding. At the level of neuronal

populations, it has been argued, going back to Milner (1974), that synchronous

neuronal activity could provide the substrate to functionally link information

encoded in spatially distributed activity patterns and therefore solve the, so called,

binding problem (Milner 1974; von der Malsburg 1981; Singer and Gray 1995).

Synchrony has been observed in a number of neuronal systems (Ritz and Sejnowski

1997) including the olfactory system where output neurons of the antennal lobe or

the olfactory bulb have been reported to display sequences of synchronized assembly

responses to odor stimulation (Laurent 2002). At the level of single neurons,

evidence from various sensory systems suggests that neurons can also show

temporally patterned responses to static sensory stimuli (McClurkin et al. 1991;

Middlebrooks et al. 1994; Katz et al. 2001; Panzeri et al. 2001; Laurent 2002;

Di Lorenzo and Victor 2003). In the olfactory system, the output neurons of the

antennal lobe/olfactory bulb display temporally patterned responses at a time scale

of hundreds of milliseconds (Friedrich and Laurent 2001; Laurent 2002).

Previously, we and others have shown that this temporal patterning is accompanied

by a decrease of the similarity between spatial odor representations in the antennal

lobe/olfactory bulb with time (Friedrich and Laurent 2001; Carlsson et al. 2005).

Despite elaborate considerations on the putative role of these temporal patterns in

neuronal processing (Laurent 2002) and experimental data suggesting that their

structure depends on the stimulus (Friedrich and Laurent 2004), the information

content of these temporal patterns in the encoding of odor stimuli has so far not

been quantified. In the context of the olfactory system, both of the aforementioned

properties of projection neuron/mitral cell response, i.e., synchronization and

temporal patterning, have been referred to as ‘‘temporal coding’’. It is important to

emphasize that we only deal with the latter in this study. In particular, we assess and

quantify here the information content of the temporal patterns of projection neuron

activity in the encoding of odor stimuli. This study is in this context the first that

does not only argue for a role of time in neuronal encoding but quantifies this

contribution for the antennal lobe system of the moth. In earlier theoretical

investigations of the encoding and decoding of static stimuli into temporal patterns

of neuronal activity by a so-called temporal population code (Wyss et al. 2003a,

2003b; Knüsel et al. 2004), we have shown that the temporal structure of the

summed activity of a laterally coupled neuronal population can provide for a robust

and rapid encoding of static stimulus features. The current study was developed to

empirically validate our hypothesis that the temporal structure of neuronal activity

contains information about static stimuli.

We quantify and assess the accuracy and the speed of the encoding of odor stimuli

by the antennal lobe based on spatial, temporal, and spatio-temporal encoding

schemes, using optical imaging derived from the projection neurons of the moth

antennal lobe (Carlsson et al. 2005). Whereas optical imaging analysis methods

usually focus on extracting spatial activation patterns (Frostig 2002; Sornborger

et al. 2003), here, we propose a model-based analysis method that also allows for a

precise quantification of the temporal dynamics of the optical response. The optical

response we analyze is measured in the center of the glomeruli visible in the staining
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of the antennal lobe and visualizes the integrated inputs of the projection neurons

leaving the antennal lobe via the inner antenno-cerebral tract (Carlsson et al. 2005).

As most projection neurons of that tract are uniglomerular (Anton and Homberg

1999), we call this response the optical projection neuron response of a glomerulus

(or, the optical projection neuron response). We fit (Stetter et al. 2001) a

biophysically derived model function (Neher and Augustine 1992; Helmchen et al.

1996; Yasuda et al. 2004), a so-called alpha function, to the optical projection

neuron response. On the basis of this model, we quantitatively assess first to what

extent the temporal pattern of the optical projection neuron response is modulated

by odor stimuli and subsequently which properties of this response contain

information on odor stimuli. We show that the spatial and temporal components of

the optical projection neuron response to odor stimuli are uncorrelated and that a

combinatorial spatio-temporal encoding of odor stimuli renders a 60% improve-

ment in odor classification as compared to a purely spatial encoding scheme. Hence,

our results confirm our earlier prediction, and prove that the temporal dynamics of

neuronal activity, measured on a time scale of hundreds of milliseconds, contains a

significant amount of information about sensory stimuli.

Methods

Preparation of animals

Preparation of animals, dye loading, optical recordings, and odor delivery are

identical to Carlsson et al. (2005). Male Spodoptera littoralis were used 2–4 days

post-eclosion. The animals have been reared for several generations on a potato-

based diet (Hinks and Byers 1976). The pupae were separated according to sex and

kept in plastic boxes at 70% relative humidity, 23�C and a 16 h/8 h light/dark cycle.

Adult moths were supplied with water ad libitum until the start of experiment.

Animals were restrained in plastic pipette tips, with only the heads protruding.

Dental wax was used to secure the animal in the holder and to minimize

movements. The brain of the moth was uncovered by opening up a window in the

cuticle between the compound eyes and by removing muscles, glands, and tracheae.

Mouthparts and proboscis were also removed. The brain was superfused with moth

saline (Christensen and Hildebrand 1987).

Dye loading

Retrograde selective staining of projection neurons through the inner antenno-

cerebral tract was performed by injection of a dye-coated glass electrode (tip

diameter 10–20 mm) into the inner antenno-cerebral tract. The majority of

uniglomerular projection neurons leaving the antennal lobe have been shown to

exit through the inner antenno-cerebral tract in S. littoralis (Anton and Hansson

1994, 1995; Sadek et al. 2002), and about five to six projection neurons of the inner

antenno-cerebral tract innervate a single glomerulus (Anton and Homberg 1999).

Crystals of FURA-dextran (10000MW, Molecular Probes, Eugene, USA) were

dissolved in a 2ml bovine serum albumin (�5% solution) and the tip of the

electrodes was coated with the dye. The level of the moth saline was temporarily

Complementary encoding in the moth antennal lobe 37

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
E
T
H
]
 
A
t
:
 
1
5
:
0
1
 
3
1
 
M
a
y
 
2
0
1
0



lowered to prevent the dye from dissolving prior to injection in the brain. To aim for

the inner antenno-cerebral tract the electrode was manually inserted close to the

midline of the brain about halfway between the antennal lobe and the mushroom

bodies. The dye was allowed to diffuse for 10–20 s before the electrode was

removed. After rinsing with moth saline the preparation was incubated in a cold

(8–12�C) and dark chamber for about 3 h. This procedure results in a staining of

the antennal lobe as well as the inner antenno-cerebral tract (Carlsson et al. 2005).

The optical responses are odor dependent and reproducible with repeated

stimulations both within and between animals (Carlsson et al. 2005).

Optical recordings

We used a TILL Photonics air-cooled imaging system (Gräfelfing, Germany) with a

12 bit slow-scan CCD camera. Filter settings were dichroic: 410 nm; emission LP

440 nm and the preparation was alternately excited at 340 and 380 nm. Exposure

times were �20 and 60ms, respectively. Sequences of 70 double frames at a

sampling rate of 10Hz were recorded through an upright Olympus microscope with

a 20� (NA 0.50; Olympus, Japan) water immersion objective. On-chip binning

(2� 2) was performed, which resulted in a final image size of 320� 240 pixels. The

pixel size at 20� magnification corresponded to �1� 1mm2. Execution of protocols

was made using Till-vision 4.0 (TILL Photonics).

Odor delivery

A moistened and charcoal filtered continuous air stream (30ml s�1) was ventilating

the antenna ipsilateral to the recorded antennal lobe through a glass tube (7mm

ID). The glass tube ended �10mm from the antenna. An empty Pasteur pipette

attached to a plastic pipette tip (volume �4.5ml) was inserted through a small hole

in the glass tube, blowing an air stream of about 5ml s�1. Another air stream

(�5ml s�1) was blown through the odor-loaded pipette by a computer-triggered

puffer device (Syntech, The Netherlands) during 1 s (started at frame 20) into the

continuous stream of air. During stimulation the air stream was switched from the

empty pipette to the odor-loaded one, in order to minimize the influence of

mechanical stimulation.

In six animals, we used the odors 1-octanol, geraniol, (þ/�)-linalool and

phenylacetaldehyde (PAA) at doses of 50mg and 100 mg (except one animal where

only 1-octanol and PAA at both doses were tested). In a seventh animal, additionally

benzaldehyde, eugenol, E2-hexenal, and heptanol were used (all eight odors at

50 mg, heptanol at 17mg (Meijerink et al. 2003)). The odorants used are biologically

relevant to the animal as components of green leaves and flowers of host-plants or

emitted from larval frass (Anderson et al. 1993; Jönsson and Anderson 1999). The

purity of the compounds was between 95 and 99% and they were dissolved in

paraffin oil. Ten microlitre of the solvent containing 50mg of the respective odorant

were applied on filter papers (5� 15mm2). The filter papers were inserted in

Pasteur pipettes, attached to plastic pipette tips, sealed with Para-film (American

National Can., Chicago, USA) and stored in a freezer (� 20�C) until the start of

an experiment. Control stimuli consisted of filter paper with solvent (10 ml) only.
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Odorants and control were delivered in a randomized order. Each odor was

presented between 1 to 12 times, and we allowed at least 60 s between stimulations

to reduce adaptation effects.

Optical projection neuron response and its model

The optical projection neuron response is the bleaching corrected luminance

measured from the center of the glomeruli of the antennal lobe. We have fitted this

response with a biophysical model that essentially comprises an alpha function

(Figure 1 and Appendix A).

�ðt;S,B, �, t0Þ ¼ Bþ

0 if t < t0

S
t� t0
�

exp �
t� t0
�

� �
else

(
ð1Þ

The four parameters of the alpha function, the amplitude-coefficient, S, the

baseline, B, the time constant, �, and the response onset, t0, are found with, for

example, nonlinear regression. Following this approach we extract from the fitted

alpha function the response amplitude, A, and duration, D, of the optical projection

neuron response. We perform our further quantification of the information content

of the optical projection neuron response using these two measures. Appendix A

and B provide detailed descriptions of data preparation, the biophysical model, the

derivation of the alpha function model, its fit to the optical projection neuron

response and the further statistical procedures we have used.

Data analysis

Data analysis is done using Matlab (The MathWorks, Inc., Natick, MA, USA) and

SPSS (SPSS, Inc., Chicago, IL, USA). For analysis of variance (ANOVA),

Time (s)

F
ra

tio

0 t0t1 t0+t t2
0

B

B+S/2e

B+S/e

D

A

Figure 1. Alpha-function. The four parameters of the alpha function are the amplitude-
coefficient S, the baseline shift B, the response onset t0, and the decay time constant �. The
amplitude, A, is the difference between the peak and baseline activity of the alpha function,
and the duration, D, is the width of the alpha function at half maximum limited by t1 and t2.
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independent variables (factors) are either the glomerulus, the odor stimulus, or odor

identity and odor concentration. In case of glomeruli, ANOVAs are performed for

each animal individually to prevent use of possibly repeatedly sampled glomeruli

as independent variables. Dependent variables are either response amplitude or

duration. The dependent variables are weighted with the inverse square of their

standard deviation in order to correct for different accuracies in their estimates. The

significance level is always �¼ 0.05. In case of 2-way ANOVAs, the result is

discarded if a significant interaction is detected.

The effect sizes of the two factors odor identity and concentration are measured

using eta squared, �2. This measure is defined as

�2 ¼
S2
effect

S2
total

ð2Þ

with S2
effectthe weighted sum of squares of the effect (odor identity or concentration),

and S2
total the total weighted sum of squares. �2 thus measures the fraction of total

variability that is accounted for by each factor.

Predictive linear discriminant analysis (LDA) is used to predict the identity and

concentration of an odor sample. We assess the fraction of correct classifications,

i.e., the ratio of correctly classified samples vs. the total number of samples, with a

so-called leave-one-out test. In this test, each sample is left out once and classified

based on the discriminant functions derived from all remaining samples. Note that

for this test we exclusively use LDA as a linear transformation of the representation

of odors from one space to another, without computing any p-values. Thus, testing

the assumptions of LDA is not required.

In the classification analyses, each glomerulus represents the odor stimuli by

means of either one of two response parameters or their combination. Missing

values of the response parameters are replaced with the corresponding mean. We

assess the fraction of correct classifications using the response parameters of subsets

of glomeruli. As any read-out process is solely dependent on the information

available in a single animal, these subsets of glomeruli are formed for each animal

individually. The maximally possible size of these subsets depends on the number of

samples and is between three and seven (six animals). The number of variables for

the LDA corresponds either to the size or the doubled size of the subsets of

glomeruli (dependent on whether only one or both response parameters represent

the odor stimuli). In order to exclude those subsets of glomeruli that provide an

insufficient encoding of the odor stimuli, we use for each size of the subsets only

those 50 for which the fraction of correct classifications using the combined

response parameters is best. The six animals used for the classification analyses are

stimulated with eight odors except one where only four odors are tested and another

one where more than one repetition is acquired to five odors. In order to correct for

the different number of odor stimuli, fraction correct values are weighted with the

according number of odor stimuli divided by the mean number of stimuli. Of these

values, the median and the standard error of the median is computed. Tests showed

that using unweighted fraction correct values yields similar results.

We carry out two classification analyses. In a first analysis, odor samples are

represented using an encoding based on the response amplitude, duration, or

their combination (i.e., a combinatorial encoding). The second analysis is based

on instantaneous counterparts of these encoding schemes where either the

40 P. Knüsel et al.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
E
T
H
]
 
A
t
:
 
1
5
:
0
1
 
3
1
 
M
a
y
 
2
0
1
0



instantaneous amplitude of the model function, its derivative (i.e., the instantaneous

amplitude change), or their combination represent the odor.

The fraction correct values of the different encoding schemes are statistically

compared using Friedman’s test (�¼ 0.05). Post-hoc pair-wise comparisons are

performed using Wilcoxon’s rank sum test. We use the Dunn–Sidak correction to

adjust the significance level for the individual comparisons such that the significance

level for the complete set of comparisons is �E¼ 0.05. The corrected significance

level is given by �¼ 1� (1��E)
(1/N) where N is the number of comparisons.

Results

We will start by describing the fit of our alpha function model to the optical

projection neuron response. Subsequently we will assess to what extent its

characteristic parameters, amplitude, and duration, can be considered viable

encoding dimensions.

Optical projection neuron response and fit validation

We first illustrate the basic properties of the optical projection neuron response.

We observe that odor stimulation of the animal results in a fast increase of the

intracellular calcium concentration of projection neurons within 0.2–0.3 s (Figure 2b

and c, dotted lines). This increase is followed by a slow decay back to baseline.

(a) (b) (c)

M

D

Time (s)

F
ra

tio D

A

PN resp.

Fit

R2
adj=0.89

0 1 2 3

Time (s)

0 1 2 3
−0.5

0

0.5

1

1.5

2

D

A

PN resp.

Fit

R2
adj=0.86

Figure 2. Morphological view of the antennal lobe and time courses to stimulation with PAA
at 100 mg during 1 s. (a) Morphological view of the antennal lobe after staining with FURA-
dextran through the inner antenno-cerebral tract. Note that the borders of the glomeruli are
visible. These borders are used to position the sampling rectangles (white and colored
squares) in the centers of the glomeruli. The sampling rectangles are used to compute the
time course of the optical projection neuron response. The red and blue squares correspond
to the time courses of panel (b) and (c), respectively. Scale bar: 100 mm, D: dorsal, M: medial.
(b, c) Time courses of the optical projection neuron response of two glomeruli (dotted line,
larger dots indicate actual samples) including the fitted model function, an alpha function
(solid line, see ‘‘Methods’’ and Appendix A), and simultaneous prediction bounds (shaded
area) (Seber and Wild 1989). The two black lines with arrow heads indicate the response
amplitude (A) and the response duration (D). The light-grey bar indicates the stimulus,
the grey dashed line indicates baseline activity. R2

adj is the value of the adjusted R2 statistic
(Appendix B).
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The fit of our model to the optical projection neuron response shows that the

projection neuron calcium dynamics induced by odor stimulation is well

characterized by an alpha function (Figure 2b and c, solid lines). This is

further confirmed by an adjusted R2-squared statistic of the fit, R2
adj, close to 1

(Appendix B). Additional detailed graphical and analytical analyses of the goodness

of the fits showed that alpha functions provide a precise representation of the optical

projection neuron response in 85% of all cases (Appendix B). Hence, the optical

projection neuron response can be accurately described in terms of amplitude and

duration.

The optical projection neuron response displays a stimulus specific temporal structure

A necessary condition for an encoding scheme that incorporates both the amplitude

and the duration of the optical projection neuron response of a glomerulus is that

different glomeruli should display distinct values for these response parameters.

This condition is satisfied by the majority of our sample: seven animals for the

response amplitude and five for the response duration (total of seven animals,

weighted 1-way analyses of variance (ANOVAs), factor: glomerulus, between 12

and 18 glomeruli per animal, median p-value for amplitude: hpi � 5:7� 10�22���,

median p-value for duration: hpi � 0:002��). Hence, this shows that the amplitude-

time course of the optical projection neuron response to an odor stimulus is

different between glomeruli.

A second condition for an encoding scheme that takes into account both the

amplitude and the duration of the optical projection neuron response of a

glomerulus is that different odor stimuli should evoke distinct values for these

response parameters. Indeed, pooled across all glomeruli of all animals (seven

animals, 78 glomeruli), we find that odor stimuli have a significant effect on both the

response amplitude and duration (weighted 1-way ANOVAs, factor: odor stimulus,

amplitude: F(11, 1703)� 5.7, p� 3.7� 10�9���, duration: F(11, 1703)� 65.6,

p<<0.001���). When we analyze the data at the level of single glomeruli, we observe

that 26 glomeruli show significant simultaneous modulations of both amplitude

and duration, while 21 display modulations of only the duration and 6 show

modulations of only the amplitude (weighted 1-way ANOVAs, factor: odor

stimulus, �¼ 0.05, median of p-values for simultaneous modulation:

hpi � 2:6� 10�4, only duration: hpi � 0:007, only amplitude: hpi � 0:002). Thus,

response amplitude and duration of most glomeruli are modulated in a

combinatorial manner.

A third condition for an encoding scheme that is based on the amplitude and the

duration of the optical projection neuron response of a glomerulus is that these

response parameters should be linearly independent. The distribution of the

response duration and amplitude of two arbitrary glomeruli shows that the response

parameters to different odor stimuli are indeed clustered and are not significantly

correlated (Figure 3a–c). Across all glomeruli, we observe that amplitude and

duration show an arbitrary correlation structure and are almost as often negatively

correlated as positively (Figure 3d). Moreover, in 59 out of 78 glomeruli, the

observed correlation is statistically not significant (�¼ 0.05). Thus, amplitude and

duration of most glomeruli are linearly independent.
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In summary, these results show that for a majority of the glomeruli amplitude

and duration of the optical projection neuron response are uncorrelated and

significantly modulated by odor stimuli in a combinatorial manner. Thus, similar to

the temporal patterning of the projection neuron’s or the vertebrate’s mitral cell’s

firing rate (Friedrich and Laurent 2001; Laurent 2002; Stopfer et al. 2003; Friedrich

and Laurent 2004), the optical projection neuron response of most glomeruli

displays a stimulus specific temporal structure.

Contribution of stimulus to modulation

So far we have demonstrated that odor stimuli can induce significant modulations of

the duration and amplitude of the optical projection neuron response. To exclude

the trivial result that this modulation can be accounted for by the concentration

itself, i.e., a higher concentration could boost the amplitude or the duration of the

response, we assess the individual effect sizes of odor identity and concentration

using eta squared, �2 (‘‘Methods’’). We observe that the effect size of the odor

identity on both the amplitude and the duration of the optical projection neuron
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Figure 3. Correlation between response duration and amplitude. (a, b) Response duration vs.
amplitude for two glomeruli showing no significant correlation between amplitude and
duration. The correlation, r, and its p-value, p, are given in the figure. (c) Legend for panels
(a) and (b). (d) Distribution of correlation coefficients for all glomeruli. Statistically not
significant correlations indicate that amplitude and duration are linearly independent (black),
while significant correlations indicate a linear dependence (gray). Abbreviations: geraniol
(ger), linalool (lin), octanol (oct), phenylacetaldehyde (PAA).
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response is about twice as large as that for concentration. Moreover, each of

these stimulus properties has a practically constant effect on the response

parameters (Figure 4, 2-way ANOVA of �2, six animals, total of 65 glomeruli,

amplitude/duration: F(1, 65)� 0.7, p� 0.41, odor/concentration: F(1, 65)� 40.7,

p� 2.1� 10�8���, interaction: F(1, 65)� 4.3, p� 0.043�). Thus, the modulation of

the response duration by an odor stimulus is as strong as that of the amplitude and

most of this modulation is accounted for by the identity of an odor.

Encoding of odor stimuli

Since both the amplitude and the duration of the optical projection neuron response

depend on the odor stimulus, we want to assess to what extent these two response

parameters contain information on odor stimuli. We compute for subsets of

glomeruli the fraction of correct odor classifications using three encoding schemes:

an encoding based on amplitudes, an encoding based on durations, and an

encoding based on their combination, i.e., combinatorial encoding (Figure 5 and

‘‘Methods’’, six animals). We find that the average fraction of correct classifications

for the combinatorial encoding is significantly higher than for the two non-

combinatorial encodings for subset sizes larger than one (Friedman’s test for each

subset size, between 85 and 300 data points per condition, p � 0:001 for all sizes;

post-hoc Wilcoxon rank sum tests of all pair-wise comparisons for a fixed subset

size, �¼ 0.017 corrected for three consecutive comparisons, p>� for subset size

one, but p � 0:001 for all other subset sizes, see ‘‘Methods’’). Moreover, we observe

that an increased subset size contributes an additional and significant amount of

information as expressed in fraction of correct classifications (Wilcoxon’s rank sum

tests for each encoding scheme between consecutive subset sizes, p � 0:001 for all

comparisons). Thus, the encoding of odor stimuli into the amplitude and

the duration of the optical projection neuron response is complementary; their

0

0.2

0.4

0.6

0.8

1

Amplitude Duration

h2

14

19

24

12

Odor identity

Concentration

Figure 4. Mean effect size (�2, see ‘‘Methods’’). �2 is averaged for all four combinations of
odor identity/concentration with amplitude/duration. In the computation of the pooled
averages, only effect sizes are used for which a significant p-value was returned by the
weighted two-way ANOVAs of the amplitude and duration of the optical projection neuron
response of each individual glomerulus (factors for ANOVA: odor identity and odor
concentration, number of corresponding glomeruli that displayed significant effects given
above each bar). Error bars indicate the standard error of the mean.
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combination yields a higher information content than each of these components in

isolation.

An important issue in the encoding of odor stimuli into the combination of the

amplitude and the duration of the optical projection neuron response is how rapidly

the encoded information is available without having to compute the actual response

duration which would require integration over hundreds of milliseconds. To

investigate this question we use the alpha function model to replace the amplitude

and duration of the optical projection neuron response with their instantaneous

counterparts, i.e., the instantaneous amplitude of the model function and its

temporal derivative, the instantaneous amplitude change. The three instantaneous

encoding schemes we investigate are the encoding based on instantaneous

amplitudes, instantaneous amplitude changes, and their combination, the instanta-

neous combinatorial encoding. For each of these encoding schemes, we compute

the time course of the fraction of correct classifications for maximally sized subsets

of glomeruli (six animals, ‘‘Methods’’). This reveals that the peak classification

performance of the instantaneous combinatorial encoding scheme and the

instantaneous amplitude encoding method is reached at about 0.8 s and 0.9 s after

stimulus onset, respectively (Figure 6a). This time is significantly earlier compared

to the peak performance of the instantaneous amplitude change encoding reached

at 1.5 s (Friedman’s test, p � 0:001, n¼ 300 data points per condition, post-hoc

Wilcoxon rank sum tests with corrected �¼ 0.017). Excluding the latency of about

0.1–0.2 s due to the odor delivery system (Anton and Hansson 1994), peak

classification performance of the instantaneous combinatorial encoding is reached at

about 0.6–0.7 s after stimulus onset. Interestingly enough, the time of the

performance peak lies well within the stimulation period. In summary, with respect

Size of subsets of glomeruli

F
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n 
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0

0.2

0.4

0.6

Encoding based on durations

Encoding based on amplitudes

Combinatorial encoding

Figure 5. Median fraction of correct classifications vs. the size of subsets of glomeruli. For
each subset of glomeruli, odor stimuli are represented by either the according response
durations, response amplitudes, or their combination (yellow, red, and blue line,
respectively). The odor stimuli are classified with predictive LDA, and the fraction of
correct classifications is computed with a so-called leave-one-out test (‘‘Methods’’). Error
bars indicate the standard error of the median. The dashed grey line indicates chance level.
n¼ 6 animals.
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to encoding latency the instantaneous combinatorial encoding is at least as fast as

the instantaneous amplitude encoding and faster than the instantaneous amplitude

change encoding.

Finally, we want to assess the accuracy of the instantaneous encoding schemes.

We compute the peak fraction of correct classifications using the time course of the

fraction correct values described earlier. We observe that the instantaneous

combinatorial encoding yields a significantly higher fraction of correct classifications

with a maximum of about 87% compared to 54% for the instantaneous amplitude

and amplitude change encodings (Friedman’s test, p � 0:001, n¼ 300 data points

per condition, post-hoc Wilcoxon rank sum tests with corrected �¼ 0.017, see

Figure 6b). Thus, combining a purely spatial encoding based on a vector of

instantaneous response amplitudes with information about the temporal structure,

as provided by the change of the instantaneous response amplitudes leads to an

about 60% boost in the accuracy of the encoding.

Relation between optical response of projection neurons and their firing rate

The signal we analyzed, i.e., the optical projection neuron response, is the

intracellular calcium concentration of projection neurons as measured from
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Instantaneous amplitude change encoding

Instantaneous amplitude encoding

Instantaneous combinatorial encoding

Figure 6. Speed and accuracy of odor discrimination for subsets of glomeruli. The
instantaneous dynamics of the alpha functions fitted to the optical projection neuron
responses are defined by their instantaneous amplitudes and derivatives, i.e., the
instantaneous amplitude changes. At each point in time, these measures are used to classify
stimuli with predictive LDA using a leave-one-out test to determine the fraction of correct
classifications (‘‘Methods’’). The time course of the fraction correct is computed for an
encoding based on either the instantaneous amplitude change, the instantaneous amplitude,
or their combination. Based on these time courses, (a) the average time of the peak and
(b) the peak fraction correct are computed. The time in (a) is relative to stimulus onset, and
the dashed line indicates stimulus offset. The dashed line in (b) indicates the chance level.
The values shown are the median plus/minus the standard error of the median (n¼ 6 animals,
see ‘‘Methods’’). The medians are tested for significant differences (Wilcoxon’s rank sum
test, significance levels: p<0.001 (���), not significant (NS), �¼ 0.017, see text).
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the glomeruli. Each glomerulus is innervated by about five to six projection neurons

of the inner antenno-cerebral tract (‘‘Methods’’) (Anton and Homberg 1999). We

showed that this optical signal can be accurately described by an alpha function.

Following this approach we demonstrated that the temporal structure of the optical

projection neuron response carries significant additional stimulus specific informa-

tion. Hence, this raises the important question of how the projection neuron firing

rate relates to the optical projection neuron response. Previous studies of single

projection neurons and mitral cells suggested that their intracellular calcium

concentration can correspond to their spiking activity (Charpak et al. 2001; Galizia

and Kimmerle 2004). In this case, and since the measured calcium concentration,

i.e., the optical projection neuron response, is the convolution of the ‘‘true’’

intracellular calcium concentration with an exponential decay (Appendix A), the

optical projection neuron response can be best approximated by a spike train that is

convolved with an exponential decay. Indeed, when we inspect electrophysiological

recordings of moth projection neurons, we observe that the convolution of the

spikes with an exponential decay, the firing rate, is well represented by an alpha

function during the stimulation period (Figure 7). Hence, the firing rate of the

projection neurons and their optical signal may be connected with each other via
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Figure 7. Alpha functions fitted to the projection neuron firing rate. The instantaneous firing
rate (gray line) and spikes (vertical lines) of four projection neurons, measured in different
animals, is shown. The firing rate was computed by convolving the spike train with an
exponential decay (�¼ 100ms). Alpha functions (black dashed lines) were fitted to the firing
rate. The shaded area indicates the stimulus, and R2

adj is the value of the adjusted R2 statistic
(‘‘Methods’’).
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a convolution with an exponential decay. More support for this hypothesis comes

from a recent study of Friedrich, where the opposite direction was taken (Yaksi and

Friedrich 2006): It was shown that firing rate changes could be computed by

deconvolving the time course of the optically recorded calcium signal with an

exponential decay. Thus, this suggests that the observed calcium dynamics reflect

the electrical projection neuron response dynamics during stimulus presentation.

Discussion

We have investigated the role of the time in the encoding of sensory stimuli. In

particular we have shown that the optical projection neuron response to odor stimuli

can be described by an alpha function based biophysical model. Using this approach

we have demonstrated that the optical projection neuron response can be

characterized with only two parameters, amplitude and duration. Our analysis

revealed that the amplitude and duration of the optical projection neuron response

are uncorrelated and significantly modulated by the identity and concentration of

the odor stimuli. Thus, the optical projection neuron response displays a temporal

patterning that is stimulus specific. When we combined a spatial encoding scheme

with information on the temporal structure of the optical projection neuron

response, we observed a classification performance boost of 60%.

The imaged optical projection neuron responses in the moth antennal lobe

combine the activity of about five to six projection neurons (Anton and Hansson

1994). Electrophysiological recordings of single projection neurons showed that

they can respond with complex temporal patterns to odor stimulation (Anton and

Hansson 1994, 1995; Friedrich and Laurent 2001; Laurent 2002; Sadek et al. 2002;

Stopfer et al. 2003; Friedrich and Laurent 2004). These patterns can differ between

neurons for the same stimulus and for the same neuron between stimuli. Hence, the

single alpha function deployed here to quantify the information content of the

optical projection neuron response is likely to underestimate the information

content of the projection neuron responses. It is thus important to emphasize that

our results provide a lower bound for the information content of the optical

projection neurons responses, suggesting that the actual information that the

temporal structure of a projection neuron response conveys is actually higher than

the one identified here. This, however, only emphasizes the relevance of our

observation.

In our experiments, we measured the optical projection neuron response to make

inferences on the information processing by the antennal lobe, that is, we use the

intracellular calcium concentration of the projection neurons, measured in the

glomeruli, as a probe of the dynamics of the antennal lobe network. Our analysis

showed that this network, i.e., the conglomerate of olfactory receptor neurons, local

neurons, projection neurons, and modulatory projections (Anton and Homberg

1999), transforms the receptor response to odor stimuli into a representation where

both the instantaneous amplitude and the derivative of the calcium response of

projection neurons contain significant odor information. In order to assess whether

these two features are part of the actual code employed by the projection neurons,

we need to determine whether they are transduced by projection neurons and

decoded by downstream neurons.
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While the decoding question lies beyond the scope of this article we can address

the transduction question, i.e., whether – as suggested by our results – the projection

neuron firing rate and its derivative contain odor information. We already presented

evidence that the measured calcium dynamics reflect the underlying electrical

projection neuron response dynamics. In that case, and because we showed in this

article that there exists odor information in the instantaneous amplitude of the

optical signal, our results suggest that also the projection neuron firing rate contains

odor information. Indeed, there is ample evidence supporting this notion (Friedrich

and Laurent 2001; Stopfer et al. 2003; Friedrich and Laurent 2004; Mazor and

Laurent 2005). In addition, we demonstrated in this article that odor information is

also encoded in the derivative of the optical signal. Hence, this suggests that also the

derivative of the projection neuron firing rate contains information about odor

stimuli. However, this hypothesis has to the best of our knowledge not yet been

addressed and future work will need to evaluate this prediction.

The previously reported temporal pattern of projection neuron or mitral cell

responses to odor stimulation is different from the one found here. Locust

projection neurons or zebrafish mitral cells, for instance, can respond with complex

temporal patterns of increasing and decreasing firing rates to odors (Friedrich and

Laurent 2001; Laurent 2002; Friedrich and Laurent 2004; Brown et al. 2005;

Mazor and Laurent 2005). In contrast, the optical projection neuron response

analyzed here is much less complex. The time course of the optical signal we

analyzed in this study could be sufficiently characterized by a fast increase of

calcium concentration followed by a slow exponential decay, i.e., an alpha function.

Before discussing potential explanations for these differences, we first address

the relation between calcium concentration and electrical activity. In general, this

relation is subject to an ongoing debate. It has been suggested that calcium

concentration can correspond to spiking activity of projection neurons or mitral cells

(Charpak et al. 2001; Galizia and Kimmerle 2004) and that firing rate changes can

be computed by deconvolving the time course of the optically recorded calcium

signal (Yaksi and Friedrich 2006). However, despite these suggestions that calcium

activity can correspond to electrical activity, the literature disagrees on the exact

extent of this correspondence. Galizia and Kimmerle (2004), for instance,

emphasized that optically recorded projection neurons could display broader

response profiles compared to the electrophysiologically recorded response of the

same neuron. A potential explanation for this difference is that the measurement of

calcium concentration was performed in dendritic compartments and thus

potentially far away from the spike initiating zone of the neuron. Thus, the

difference between electrical and optical signal could be accounted for by dendritic

processes such as leak and/or inhibition of the neuron close to the spike initiating

zone which may not be visible in the optical signal.

A similar explanation could account for the differences in complexity of the

temporal pattern of the projection neuron response we analyzed here compared to

other species. Because we recorded projection neuron calcium concentration in the

center of the glomeruli, our recordings may be primarily dominated by calcium

influx controlled by olfactory receptor neurons. In other words, the optical

projection neuron response is derived from compartments of the cell that are not

subject to integration of inputs from local neurons and thus underly a less

pronounced temporal modulation than electrophysiological recordings of
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projection neurons. Hence, the optical recording technique itself could in part

account for the different complexity of the temporal pattern of the projection neuron

response. Thus, although we can safely predict that the temporal modulation of the

optical projection neuron response will be transduced into firing activity the details

of this transduction process demand further electrophysiological investigation.

The goal of this article was to assess as an external observer the information

content that lies in the temporal dynamics of the optical projection neuron

response. This way of ‘‘decoding by observers’’ is distinct from the question of

how a biological system does the actual decoding in one crucial aspect: While

‘‘decoding by observers’’ permits us to employ any possible technique to extract

all useful information from a data set, the latter question requires the decoding

process to be biologically realistic and thus prohibits many of the possible analysis

techniques. In order to allow a fair comparison between possible decoding

approaches, we list in the following the techniques that a biological substrate is

likely not to have access to and that therefore could give the external observer an

advantage. First, we as an observer defined a model of the optical projection

neuron response before knowing what the response will look like. Second, again as

an observer, we used the alpha function fitted to the entire response to measure at

each point in time the instantaneous amplitude and its change. Third, the

classification was performed piece-wise by recomputing the discriminant functions

for each time bin. Fourth, these discriminant functions were computed only after

selecting those subsets of glomeruli that provided the best results. While it is

obvious that these techniques prevent us from concluding that the insect brain

decodes those same signals using the same methods, it is important to emphasize

again that the decoding question is distinct from the encoding question addressed

here. Hence, our conclusion that temporal patterns of projection neuron calcium

signals contain odor information remains valid and now warrants the question of

the decoding of this information by structures downstream from the projection

neurons.

Imaging techniques are a standard and well-established recording method in

modern neuroscience (Frostig 2002). Imaging has contributed an immense amount

of information to the understanding of brain function (Culham and Kanwisher

2001; Logothetis 2003), last but not least also to the encoding of odors in the

antennal lobe or the olfactory bulb (Korsching 2002). Several recent studies have

investigated encoding principles of projection neurons based on imaging experi-

ments using the same technique as applied in this paper (Sachse and Galizia 2002,

2003; Galán et al. 2004; Carlsson et al. 2005). The technique we employed has the

advantage that it allows to simultaneously measure from an identified neuronal

population; the projection neurons. By combining this imaging technique with a

model-based analysis of the obtained optical signal, we were able to completely

quantify its amplitude-time course. This model-based analysis of optical imaging

data allowed us to show that the temporal dynamics of calcium as measured

optically provide a substantial amount of information beyond what is encoded in

spatial activation patterns alone. Hence, it will be interesting to see whether model

based analysis methods will provide the means to also extract and quantify in other

preparations information contained in the temporal dimension of imaging data.

One important aspect of the imaging technique we employed is that the measured

optical signal also depends on the intracellular concentration of the dye. This issue,
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however, is irrelevant to our conclusion because we compared in our analysis of the

encoding performance only responses of the same glomerulus to different odor

stimuli. Hence, all the responses considered have the same dye-induced distortion,

and any differences between those responses can only be due to the different stimuli.

In previous studies of related system, it has been shown that the temporal

sequence of synchrony across projection neurons is stimulus dependent (Laurent

et al. 1996; Wehr and Laurent 1996) and that their desynchronization causes

information loss in downstream neurons (MacLeod et al. 1998). Spike counts or

instantaneous (and optically measured) response amplitudes of populations of

projection neurons or mitral cells were used to show that the discrimination of odor

stimuli improves with time (Friedrich and Laurent 2001; Stopfer et al. 2003;

Friedrich and Laurent 2004; Galan et al. 2004; Mazor and Laurent 2005).

Moreover, stimulus induced temporal modulations of the projection neuron/mitral

cell response have been reported for a range of stimulus durations, from 0.1 to 2.4 s

(Friedrich and Laurent 2001; Laurent 2002; Stopfer et al. 2003; Friedrich and

Laurent 2004; Lei et al. 2004; Carlsson et al. 2005). Such a temporal modulation of

projection neuron/mitral cell responses on a hundreds of milliseconds time scale has

been reported in various species (Laurent 1996; Friedrich and Laurent 2001;

Stopfer et al. 2003; Galán et al. 2004; Mazor and Laurent 2005; Lei et al. 2004;

Carlsson et al. 2005). These temporal modulations were found to depend on odor

identity and concentration. Thus, the idea that these temporal patterns may contain

information about odor stimuli exists already for a long time in the literature.

However, so far a proof of this idea in terms of a quantification of the information

content of these temporal patterns has been missing. Here we extended these results

by showing that both temporal and spatial components of the optical signal contain

odor information. Specifically, we demonstrated that the discrimination of odor

stimuli can be more accurate if the instantaneous response amplitudes of the optical

responses of a population of projection neurons are combined with a measure of

their temporal dynamics. Hence, the temporal patterns of the optical projection

neuron response contain information about odor stimuli. In other words, we proved

the long-standing idea that these temporal modulations of projection neuron

activity, measured on a hundreds of milliseconds time scale, contain information

about odor stimuli. This encoding of odor stimuli is distinct from an earlier

proposed temporal encoding into sequences of synchronized projection neuron

assemblies (Laurent 2002).

In general, our results show that temporal modulations of neuronal activity at a

time scale of hundreds of milliseconds contain stimulus-specific information. Such

a temporal population code was identified earlier using theoretical means (Wyss

et al. 2003a, 2003b; Knüsel et al. 2004). In this article we provide empirical

evidence that internally generated dynamics of the nervous system – in our case

the antennal lobe – transform static stimulus features in a representation where

temporal dynamics of neuronal activity could provide an additional channel to

transmit information. On the basis of our results we predict that this

transformation of static stimulus features into a representation where temporal

patterns contain stimulus-specific information is a generic property of densely

laterally coupled neuronal structures. We theoretically investigated this hypothesis

in a simulated model of the moth antennal lobe (Knüsel and Verschure 2006) in

the paper following this article (Knüsel and Verschure 2006).
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Appendix A: Optical projection neuron response and its model

Optical projection neuron response

The optical projection neuron response is the bleaching corrected luminance

measured from the center of the glomeruli of the antennal lobe. A well-known

problem with optical imaging using calcium-sensitive dyes is that the data must be

corrected for bleaching. In case of FURA-dextran, this correction must be

performed independently for both the 340nm and 380 nm sequences since the

time constant of the bleaching is different (as will be shown subsequently). Here, we

correct for bleaching by fitting a function to the fluorescence response of all frames

excluding the 30 frames after stimulus onset. Subsequently, these two functions are

used to correct all frames in the sequence. We capture the bleaching effect using an

exponential

Bðti;A,B, �bleachÞ ¼ Aþ B exp �
ti

�bleach

� �
ð3Þ

where the fitting parameters are the offset, A, the amplitude, B, and the time

constant, �bleach. For each illumination wavelength, this procedure results in two

exponentials, b340(ti) and b380(ti) where h�340i ¼ 6:9� 3:1 and h�380i ¼ 9:4� 5:9
(median and halved interquartile range). The bleaching-corrected ratio, Fratio, is

computed following

Fratioðti, xÞ ¼
Fraw, 340ðti, xÞ � b340ðtiÞ �mini b340ðtiÞ½ 	

Fraw, 380ðti, xÞ � b380ðtiÞ �mini b380ðtiÞ½ 	
ð4Þ

where x denotes a pixel, and ti, i¼ 1, 2, . . . , 70 the frame. Fraw,340 and Fraw,380

are the raw responses to illumination with 340 nm and 380 nm respectively, and

mini(.) is the minimum value of the argument over i.

Borders of glomeruli are visible in the fluorescence image and quadratic regions of

interest of size 10� 10 pixels (about 10 mm� 10mm) are drawn in the centers of the

glomeruli. The size of the regions of interest fits well within the size of a glomerulus

(50 mm) and the position in the center limits light scattering from neighboring

glomeruli. Smaller regions render noisier time courses and larger regions do

not further improve the signal-to-noise ratio. Subtracting the mean fluorescence

before stimulation (frame 2–20) from Fratio(ti, x) for each frame, i, and averaging

over all pixels, x 2 S, of a region of interest, S, yields the optical projection neuron

response,

FPNðtiÞ ¼ hFratioðti, xÞ � hFratioðtj, xÞij¼2,..., 20ix2S, ð5Þ

where h:i denotes the average value over the specified variables and ranges.
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Model function of projection neuron response

In order to fit the optical projection neuron response we need a biophysical model

that accurately describes the intracellular calcium dynamics due to both stimulus-

and dye-dependent effects. Usually, single synaptic calcium input currents are

modeled using exponential decays or alpha functions (Dayan and Abbott 2001).

Here, however, we need to describe the calcium dynamics that results from many

synaptic events over a number of seconds. Our model is based on the assumption

that first order kinetics govern the increase of the intracellular calcium concentration

in the projection neurons upon odor stimulation (Stetter et al. 2001). In this case,

the total ionic calcium input current to a projection neuron is given by an

exponential decay

IðtÞ /

0 if t < s

exp �
t� s

�I

� �
else

8<
: ð6Þ

where t is time, s denotes stimulus onset, and �I is the time constant. If the validation

of the model function derived here shows that it provides an accurate description of

the optical projection neuron response, this suggests that our assumption of first

order kinetics may be correct (see subsequently for a validation of our model).

Using single compartment models, the dynamics of the intracellular calcium

concentration in the presence of a dye have been described with first-order

differential equations (Neher and Augustine 1992; Helmchen et al. 1996), the

general solution of which is that the free intracellular calcium concentration is

described as the convolution of the input current with an exponential decay

(Yasuda et al. 2004). Here, we assume that all processes of the projection neuron

that are imaged using FURA-dextran can be considered as one compartment,

i.e., influx, efflux, and buffering is uniform throughout. Combining these

models of the dynamics of the free intracellular calcium concentration, [Ca2þ]i(t),

with our assumption of an exponentially decaying input current (Equation 6)

renders

½Ca2þ	iðtÞ / exp �
t� s

�D

� �
� exp �

t� s

�I

� �
: ð7Þ

�D is the decay time constant of [Ca2þ]i to a brief impulse of calcium input current

(impulse response), and �I is the time constant of the projection neuron input

current (Equation 6). Thus, the free intracellular calcium concentration, [Ca2þ]i(t),

is proportional to the difference of two exponentials with time constants �D and �I.
For �D ! �I, this difference can be approximated by a so-called alpha function

(Figure 1 and Appendix C)

�ðt;S,B, �, t0Þ ¼ Bþ

0 if t < t0

S
t� t0
�

exp �
t� t0
�

� �
else

(
ð8Þ

if �D>�I. In case of �D< �I, the difference is ��(t; S, B, �, t0). The four parameters

of the alpha function, the amplitude-coefficient, S, the baseline, B, the time

constant, �, and the response onset, t0, are found with, for example, nonlinear

regression.
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The fluorescence intensity after bleaching-correction, F̂ðtÞ, depends linearly on

[Ca2þ]i(t) if the dissociation constant of FURA-2, KD, is much smaller than the

intracellular calcium concentration, that is, ½Ca2þ	iðtÞ � KD (Yasuda et al. 2004).

Indeed, there is evidence that this assumption is satisfied. In Drosophila motor

neurons, the intracellular calcium concentration was determined to be about

23� 11nM (Macleod et al. 2002) while the dissociation constant of FURA-2 is

around 140nM (Molecular Probes, Inc., Eugene, OR, USA). Thus, since the

bleaching-corrected fluorescence depends linearly on the intracellular calcium

concentration, it can be approximated with an alpha function,

F̂ðtÞ ¼ F̂0 þ �ðt;S,B, �, t0Þ, ð9Þ

where F̂0 is the constant background fluorescence. (We always use the capital letter

F for the measured fluorescence response whereas the modeled fluorescence response

will have a hat, F̂.)
We now showed that the fluorescence response can be approximated with an

alpha function. In case of FURA-2, the probe is illuminated with two frequencies

(340 nm and 380 nm) resulting in two fluorescence responses, one of which has a

positive, the other a negative peak (Figure 8) (Grynkiewicz et al. 1985). Thus, with

F̂340 and F̂380 the bleaching-corrected responses at 340 nm and 380 nm, we obtain

F̂340ðtÞ ¼ F̂0, 340 þ �340ðt;S340,B340, �340, t0, 340Þ ð10Þ

F̂380ðtÞ ¼ F̂0, 380 � �380ðt;S380,B380, �380, t0, 380Þ ð11Þ

where F̂0, 340 and F̂0, 380 are the background fluorescences defined as the mean

fluorescence of frames 2–20. The parameters S, B, �, and t0 are defined above. Note

the minus sign of the 380 nm response which is due to the properties of the dye. The

ratio of these sequences is the modeled optical projection neuron response, F̂PN,

F̂PNðtÞ ¼
F̂340ðtÞ

F̂380ðtÞ
ð12Þ

¼
F̂0, 340 þ �340ðtÞ

F̂0, 380 � �380ðtÞ
: ð13Þ

F0,340

Time (s)

F
34

0

F
38

0

(a) (b)

−1 0 1 2 3 4 5

Time (s)

−1 0 1 2 3 4 5
1440

1450

1460

1470 F0,380

2100

2120

2140

2160

Figure 8. Bleaching-corrected response of an arbitrary glomerulus to geraniol (100 mg) upon
illumination of the antennal lobe with light at (a) 340 nm and (b) 380 nm. Note the high
background fluorescence (F0,340 and F0,380), indicated by the grey horizontal line. The
shaded area indicates the stimulus.
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For simplicity, we omitted the parameters of the alpha function. It is important to

note that the average background fluorescence is much greater than the stimulus-

evoked change in fluorescence (Figure 8), that is, F̂0, z 
 maxtð�zðtÞÞ, z 2 f340, 380g.

Thus, Equation 13 can be approximated by its Taylor series, resulting in

(Appendix C)

F̂PNðtÞ �
F̂0, 340

F̂0, 380

þ
1

F̂0, 380

�340ðtÞ þ
F̂0, 340

F̂2
0, 380

�380ðtÞ: ð14Þ

The sum of the two alpha functions in Equation 14 can be replaced by a single

alpha function if � and t0 are about equal. In order to show that, we note that the

dynamics of the fluorescence response to illumination with 340 nm or 380 nm only

depend on the odor-evoked fluctuations of the intracellular calcium concentration

and not on the illumination wavelength. Therefore, the time constants �340 and �380
and the response onset times t340 and t380 are approximately equal and the sum of

the two alpha functions in Equation 14 simplifies to

F̂PNðtÞ �
F̂0, 340

F̂0, 380

þ
F̂0, 340S380 þ F̂0, 380S340

F̂2
0, 380

�ðt;S,B, �, t0Þ ð15Þ

¼ �ðt;S � k2,Bþ k1, �, t0Þ: ð16Þ

� is an alpha function with an appropriately chosen set of parameters S, B, �, and t0
determined with nonlinear regression (Seber and Wild 1989), and k1 ¼ F̂0, 340=F̂0, 380

and k2 ¼ F̂0, 340S380 þ F̂0, 380S340=F̂
2
0, 380 are two constants. Hence, under the

assumption of an exponential calcium influx to the projection neurons of a single

glomerulus (Equation 6), this analysis predicts that the measured optical projection

neuron response, FPN (Equation 5), can be approximated by a single alpha function

(Equation 16).

Response amplitude and duration

In our further analysis we only want to consider those parameters of the alpha

function that define the temporal dynamics of the response. Hence, out of the four

parameters of the alpha function, we focus here on only two of them, the amplitude-

coefficient and the time constant, or their linearly dependent counterparts, the

projection neuron response amplitude and duration.

The response amplitude, A, is defined as the maximum value of the alpha

function minus the baseline shift, B. Since the alpha function is maximal at time

t¼ t0þ � (Figure 1), we have

A ¼ �ðt0 þ �;S,B, t0, �Þ � B ¼ S expð�1Þ ¼
S

e
ð17Þ

where e� 2.72 is the base of the natural logarithm. Thus, the response

amplitude equals the amplitude-coefficient of the alpha function, S, divided

by e. The response duration, D, is defined as the width of the alpha function at

half maximum, that is ðS=2eÞ þ B (Figure 1). The width is delimited by two
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points in time, t1 and t2, where the alpha function equals ðS=2eÞ þ B. Thus, t1
and t2 have to satisfy

�ðt1=2;S,B, t0, �Þ¼
! S

2e
þ B ð18Þ

,
t1=2 � t0

�
exp �

t1=2 � t0
�

� �
¼
! 1

2e
ð19Þ

, x1=2 expð�x1=2Þ ¼
! 1

2e
ð20Þ

where we set x1=2 :¼ ðt1=2 � t0Þ=�. Equation 20 has two solutions x1 and x2 that can

be found numerically. The duration is then given by

D ¼ t2 � t1 ¼ �ðx2 � x1Þ � � � 2:45 ð21Þ

where � is the time constant of the alpha function. Thus, the response amplitude

only depends on the amplitude-coefficient of the alpha function, and the response

duration only depends on its time constant.

Appendix B: Fit validation

Methods

The accuracy of the fits is validated by combining both graphical and analytical

methods. Model fits that do not satisfy the analytical conditions are rejected.

In order to assess the accuracy of the fit we use three measures, the adjusted R2

statistic, the amplitude-to-noise ratio and the t-statistic. The adjusted R2 statistic,

R2
adj, is based on the sum of squared residuals, S2

err, and the total sum of

squares around the mean, S2
tot. With Fi¼FPN(ti) the measured optical projection

neuron response and F̂i ¼ F̂PNðtiÞ, i¼ 1, 2, . . . , n the fitted optical projection neuron

response, the sums are expressed as

S2
err ¼

Xn
i¼2

ðFi � F̂iÞ
2

ð22Þ

S2
tot ¼

Xn
i¼2

ðFi � hFiÞ2 ð23Þ

where n¼ 70 is the number of data points, and hFi is the mean of Fi. Then, R2
adj,

which measures the fraction of S2
tot explained by the function F̂PN is expressed as

R2
adj ¼ 1�

S2
errðn� 1Þ

S2
totðn� pÞ

ð24Þ

where n is the number of data points and p the number of parameters of the model

function. The value of R2
adj is always lower or equal to 1, and a value closer to 1

indicates a better fit.
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The second measure, the amplitude-to-noise ratio, compares the response

amplitude, A, to the standard deviation of the residuals (noise), �. According to the

assumptions of nonlinear regression (Seber and Wild 1989), the residuals

"i � FPNðtiÞ � F̂PNðtiÞ ð25Þ

are Gaussian with zero mean and variance �2, "i ¼ Nð0, �2Þ. Thus, we consider the

ratio

� ¼
A

�
ð26Þ

to test whether � is not from Nð0, 1Þ, the standard normal distribution, at

significance level of �. As A> 0, we use a one-sided test, that is,

Prð� > �Þ > � ð27Þ

defines a threshold, �, for which � is from Nð0, 1Þ with probability �. � can be

computed using the cumulative distribution function of the standard normal

distribution. For �> �, the response amplitude is significantly larger than a value

randomly drawn from the distribution of the residuals, N ð0, �2Þ. Thus, the

projection neuron response cannot be due to random noise in the fluorescence

signal with probability 1� �.
Finally, we use the t-statistic to verify whether the estimated amplitude-

coefficient, S, and the time constant, �, of the alpha function are significantly

different from zero. The t-statistic is defined as the ratio between the estimated

parameter value and its standard error where n¼ 69 is the number of data points.

At a significance level of 0.05, the estimated values are significantly larger than zero

if the ratio is larger than 1.67 (inverse of the Student’s cumulative distribution

function with n� 1 degrees of freedom).

Results

A standard measure to validate fits is the adjusted R2 statistic, R2
adj. Generally, this

measure suffers from one central problem: neither do large values of R2
adj guarantee

a good fit, nor do low values of R2
adj allow the conclusion of a bad fit. Thus, verifying

fits by only reporting R2
adj is not enough. Therefore, as a first evaluation of the ability

of our model to describe the data, we visually inspect the goodness of the fit for a

broad range of R2
adj-values (Figure 9). We observe that the model follows the optical

projection neuron response well for all values of R2
adj while the prediction bounds are

wider for lower values of R2
adj compared to the other fits (Figure 9, first column).

This demonstrates that our alpha function model is valid for a broad range of values

of R2
adj, with lower values corresponding to optical projection neuron responses with

lower amplitudes, and, therefore, to fits that are intuitively worse. In order to further

validate the sufficiency of our model, we test whether the residuals of the fit follow a

normal distribution with constant standard deviation and zero mean. The scatter

plots of the residuals vs. the predictor variable time (Figure 9, second column)

indeed show a constant standard deviation and zero mean. Finally, projecting the

residuals against a normal distribution shows that they fall on a straight line, i.e.,

they follow a normal distribution (Figure 9, third column). This is further confirmed
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by a statistical test of the goodness-of-fit (Kolmogorov–Smirnov test) of the

residuals to a normal distribution (p-values given in Figure 9, third column). In

summary, this verification demonstrates that, for a broad range of values of R2
adj, our

model fits the optical projection neuron responses well while, in addition, R2
adj scales

with the intuitive notion of a good fit.
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Figure 9. Graphical evaluation of goodness of fit. First column: Fitted alpha function (solid
line) including simultaneous prediction bounds (shaded area) overlayed on the optical
projection neuron response (dashed line). The grey rectangle indicates the stimulus.
Additionally, the adjusted R2 statistic ðR2

adjÞ and the amplitude-to-noise ratio (�) is given in
each plot (‘‘Methods of Appendix B’’). Second column: Residuals (dots) computed from
the plots in the first column vs. time. The dashed line indicates zero. The grey rectangle
indicates the experimental region. Third column: Normal probability plot of the residuals of
only the experimental region (grey rectangle in second column) and line joining the first and
third quartiles of the residuals (solid line) including an extrapolation out to the extreme values
of the residuals (dash–dotted line). The probability value, p, is for testing the hypothesis of a
normal distribution of the data (Kolmogorov–Smirnov test). (a–e) Each row shows the same
three plots for a different glomerulus with a descending order of R2

adj.
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In our further analysis we only want to consider those fits that give a statistically

significant value for the amplitude. Hence, we impose a threshold for the R2
adj

statistic (Figure 10a). In order to establish this threshold we evaluate the amplitude-

to-noise ratio (Figure 10b). We consider an amplitude-to-noise ratio of 2 which

gives us a significance level of 0.023. This threshold is equivalent to an R2
adj statistic

of 0.3 (i.e., if a fit satisfies R2
adj > 0:3 then �> 2 is satisfied as well). This procedure

results in about 85% of the fits being accepted. Additionally, to confirm that this

choice of threshold provides us with a conservative selection of fits, we inspect the

t-statistics of the alpha function time constant and amplitude-coefficient (Figure 10c

and d). We observe that all values of � and S are significantly above zero. Thus, this

demonstrates that our model provides an accurate description of the optical

projection neuron response, that R2
adj is a valid measure to verify fits, and that the

chosen threshold is reasonable. Hence, the optical projection neuron response can

be accurately described in terms of amplitude and duration.

Appendix C: Mathematical relations

The following shows that the difference of two exponentials can be approxi-

mated with an alpha function in the limit of an infinitesimal difference of the
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Figure 10. Analytical evaluation of goodness of fit. (a) Distribution of R2
adj for all fits

carried out. The vertical black line at 0.3 is the threshold above which fits are accepted.
(b) Distribution of the amplitude-to-noise ratio of all fits for which R2

adj > 0:3. The values of
the amplitude-to-noise ratio are always larger than 2, corresponding to a significance level of
0.023 (‘‘Methods’’ of Appendix B). (c,d) t-statistic of the estimated values for the alpha
function (c) time constant, �, and (d) amplitude-coefficient, S. The t-statistic is the estimated
parameter value divided by its own standard error. The value of the t-statistic is always larger
than 10, corresponding to a significance level of about 2.78�10�15 (68 degrees of freedom).
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time constants. Consider two exponentials with time constants �1>�2 in the limit of

�1 ! �2. Using the series expansion of the exponential function yields

bð�1, �2Þ ¼ exp �
t

�1

� �
� exp �

t

�2

� �
ð28Þ

¼
X1
n¼0

1

n!
�

t

�1

� �n

� �
t

�2

� �n� �
ð29Þ

¼
X1
n¼1

ð�tÞn

n!

�n2 � �n1
ð�1�2Þ

n

� �
ð30Þ

Note that the term for n¼ 0 is zero and therefore the sum starts at 1. The term in the

square brackets of Equation 30 can be approximated by setting x:¼ �2� �1 and

computing its Taylor series around x0¼ 0 for n ¼ 1, . . . ,1,

dnðxÞ ¼
ð�1 þ xÞn � �n1
�n1ð�1 þ xÞn

ð31Þ

�
n

�nþ1
1

x ð32Þ

¼
n

�nþ1
1

ð�2 � �1Þ: ð33Þ

Substituting this in Equation 30 yields

bð�1, �2Þ �
X1
n¼1

ð�tÞn

n!

nð�2 � �1Þ

�nþ1
1

ð34Þ

¼
m¼n�1 tð�1 � �2Þ

�21

X1
m¼0

1

m!
�

t

�1

� �m

ð35Þ

¼
tð�1 � �2Þ

�21
exp �

t

�1

� �
ð36Þ

Thus, in the limit of �1 ! �2, �1 > �2, the difference of the two exponentials is an

alpha function. It can easily be shown that for �1 ! �2, and �1 < �2 the difference is

an alpha function multiplied by minus 1.

Finally, we subsequently use the Taylor series expansion to simplify

hðx, yÞ ¼
Aþ x

B� y
ð37Þ

in the case of x � A, x � B, y � A, and y � B. The Taylor series of h(x, y) around

(x0, y0)¼ (0, 0) is

hðx, yÞ � hðx0, y0Þ þ
@hðx0, y0Þ

@x
ðx� x0Þ þ

@hðx0, y0Þ

@y
ðy� y0Þ þ � � � ð38Þ

�
A

B
þ

1

B
xþ

A

B2
y: ð39Þ

Thus, for values of x and y that are small compared to A and B, the ratio 37

can be approximated by Equation 39.
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Carlsson M, Knüsel P, Verschure P, Hansson B. 2005. Spatio-temporal Ca2þ dynamics of moth

olfactory projection neurons. Eur J Neurosci 22:647–57.

Charpak S, Mertz J, Beaurepaire E, Moreaux L, Delaney K. 2001. Odor-evoked calcium signals in

dendrites of rat mitral cells. Proc Natl Acad Sci USA 98:1230–4.

Christensen T, Hildebrand J. 1987. Male-specific, sex pheromone-selective projection neurons in the

antennal lobes of the moth Manduca sexta. J Comp Physiol A 160:553–69.

Culham J, Kanwisher N. 2001. Neuroimaging of cognitive functions in human parietal cortex. Curr Opin

Neurobiol 11:157–63.

Dayan P, Abbott L. 2001. Theoretical neuroscience: Computational and mathematical modeling of

neural systems. Cambridge, Massachusetts: The MIT Press.

deCharms R, Zador A. 2000. Neural representation and the cortical code. Annu Rev Neurosci

23:613–47.

Di Lorenzo P, Victor J. 2003. Taste response variability and temporal coding in the nucleus of the solitary

tract of the rat. J Neurophysiol 90:1418–31.

Friedrich R, Laurent G. 2001. Dynamic optimization of odor representation by slow temporal patterning

of mitral cell activity. Science 291:889–94.

Friedrich R, Laurent G. 2004. Dynamics of olfactory bulb input and output activity during odor

stimulation in zebrafish. J Neurophysiol 91:2658–69.

Frostig R, editor. (2002). In vivo optical imaging of brain function. CRC Press LLC.

Galán RF, Sachse S, Galizia C, Herz A. 2004. Odor-driven attractor dynamics in the antennal lobe allow

for simple and rapid olfactory pattern classification. Neural Comput 16:999–1012.

Galizia C, Kimmerle B. 2004. Physiological and morphological characterization of honeybee olfactory

neurons combining electrophysiology, calcium imaging and confocal microscopy. J Comp Physiol A

190:21–38.

Grynkiewicz G, Poenie M, Tsien R. 1985. A new generation of Ca2þ indicators with greatly improved

fluorescence properties. J Biol Chem 260:3440–50.

Helmchen F, Imoto K, Sakmann B. 1996. Ca2þ buffering and action potential-evoked Ca2þ signaling in

dendrites of pyramidal neurons. Biophys J 70:1069–81.

Hinks C, Byers J. 1976. Biosystematics of the genus Euxoa (Lepidoptera: Noctuidae). V. Rearing

procedures and life cycles of 36 species. Can Entomol 108:1345–57.

Jönsson M, Anderson P. 1999. Electrophysiological response to herbivore-induced host plant volatiles in

the moth Spodoptera littoralis. Physiol Entomol 24:377–85.

Katz D, Simon S, Nicolelis M. 2001. Dynamic and multimodal responses of gustatory cortical neurons

in awake rats. J Neurosci 21:4478–89.
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Knüsel P, Wyss R, König P, Verschure P. 2004. Decoding a temporal population code. Neural Comput

16:2079–100.

Korsching S. 2002. Olfactory maps and odor images. Curr Opin Neurobiol 12:387–92.

Laurent G. 1996. Dynamical representation of odors by oscillating and evolving neural assemblies.

Trends Neurosci 19:489–96.

Laurent G. 2002. Olfactory network dynamics and the coding of multidimensional signals. Nat Rev

Neurosci 3:884–95.

Complementary encoding in the moth antennal lobe 61

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
E
T
H
]
 
A
t
:
 
1
5
:
0
1
 
3
1
 
M
a
y
 
2
0
1
0



Laurent G, Wehr M, Davidowitz H. 1996. Temporal representations of odors in an olfactory network.

J Neurosci 16:3837–47.

Lei H, Christensen T, Hildebrand J. 2004. Spatial and temporal organization of ensemble

representations for different odor classes in the moth antennal lobe. J Neurosci 24:11108–19.

Logothetis N. 2003. MR imaging in the non-human primate: Studies of function and of dynamic

connectivity. Curr Opin Neurobiol 13:630–42.

Macleod G, Hegström-Wojtowicz M, Charlton M, Atwood H. 2002. Fast calcium signals in Drosophila

motor neuron terminals. J Neurophysiol 88:2659–63.
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