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Birdwell JA, Solomon JH, Thajchayapong M, Taylor MA,
Cheely M, Towal RB, Conradt J, Hartmann MJZ. Biomechani-
cal models for radial distance determination by the rat vibrissal
system. J Neurophysiol 98: 2439 –2455, 2007. First published June
6, 2007; doi:10.1152/jn.00707.2006. Rats use active, rhythmic
movements of their whiskers to acquire tactile information about
three-dimensional object features. There are no receptors along the
length of the whisker; therefore all tactile information must be
mechanically transduced back to receptors at the whisker base.
This raises the question: how might the rat determine the radial
contact position of an object along the whisker? We developed two
complementary biomechanical models that show that the rat could
determine radial object distance by monitoring the rate of change
of moment (or equivalently, the rate of change of curvature) at the
whisker base. The first model is used to explore the effects of taper
and inherent whisker curvature on whisker deformation and used to
predict the shapes of real rat whiskers during deflections at differ-
ent radial distances. Predicted shapes closely matched experimen-
tal measurements. The second model describes the relationship
between radial object distance and the rate of change of moment at
the base of a tapered, inherently curved whisker. Together, these
models can account for recent recordings showing that some
trigeminal ganglion (Vg) neurons encode closer radial distances
with increased firing rates. The models also suggest that four and
only four physical variables at the whisker base—angular position,
angular velocity, moment, and rate of change of moment—are
needed to describe the dynamic state of a whisker. We interpret
these results in the context of our evolving hypothesis that neural
responses in Vg can be represented using a state-encoding scheme
that includes combinations of these four variables.

I N T R O D U C T I O N

Rats use their mystacial vibrissae during navigation and
exploratory behaviors to extract three-dimensional (3D) object
features, including size, shape, orientation, location, and tex-
ture (Andermann et al. 2004; Brecht et al. 1997; Carvell and
Simons 1990, 1995; Guic-Robles et al. 1989; Polley et al.
2005; Vincent 1912). To extract these complex 3D features, the
rat must at least implicitly estimate the distance from the base
of the whisker to the point of object contact. However, the
mechanism for radial distance encoding by a single whisker
seems problematic, because mechanoreceptors are located only
at the base of the whisker, within the follicle (Ebara et al. 2002;
Mosconi et al. 1992; Rice et al. 1997). This means that object

position cannot be directly measured by the location of contact
on the whisker. Instead, the whisker’s interaction with the
environment must be transduced into parameters that can be
measured at the whisker base.

It is well known that the length of the rat’s whiskers varies
from long to short along the caudal-rostral dimension (Brecht
et al. 1997; Hartmann et al. 2003; Neimark et al. 2003). Thus
one plausible mechanism for radial distance encoding is for the
rat to compare the identity of whiskers that contacted an object
with those that did not. If a whisker of length L touched an
object, but a whisker of length L � �L did not, the rat could
infer that the object was located at a distance between those
two values (after accounting for different whisker base loca-
tions). Behavioral studies have shown, however, that rats can
determine aperture width with only one whisker remaining on
each side of the face (Krupa et al. 2001). This suggests that
cross-whisker comparisons cannot fully explain the rat’s dis-
tance discrimination capabilities.

A preliminary analysis of the whisker as a cantilever beam
suggested that the stiffness properties of the whisker might
provide a mechanical explanation for the rat’s ability to per-
form accurate radial distance discriminations. We specifically
hypothesized that information about moment at the whisker
base is critical for determining radial object distance. To test
this hypothesis, we developed two closely related biomechani-
cal models of the whisker. Both models were deliberately
developed in analytic form, so that researchers could easily
calculate moment at the whisker base during experiments. The
analytical models were tested against numerical simulations to
quantify limits on their application and together confirmed our
hypothesis: by correlating movement to changes in moment at
the whisker base the rat could determine the radial distance of
an object.

This work continues our characterization of vibrissa dynam-
ics (Hartmann et al. 2003) and suggests some useful ways to
represent the mechanical information encoded in the primary
sensory neurons of the trigeminal ganglion (Vg). We interpret
these results in the context of our evolving hypothesis that
neural responses in Vg can be comprehensively represented
using a state-encoding scheme that includes combinations of
four and only four mechanical variables at the whisker base:
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angular position, angular velocity, moment, and rate of change
of moment.

M E T H O D S

Whisker preparation for static and dynamic experiments

This analysis is based on a total of seven vibrissae obtained from
three female Sprague-Dawley rats that had been euthanized in unre-
lated experiments. All procedures were approved in advance by
Northwestern University’s Animal Care and Use Committee. Each
whisker was grasped firmly at the base and plucked out of the follicle
for testing. Visual examination of the whisker revealed that there was
a qualitative difference in appearance between approximately the first
millimeter of the whisker and the remainder of the whisker. Closer
examination under the microscope additionally suggested that this
first millimeter is approximately the portion of the whisker that would
reside in the follicle, and we therefore used this portion to rigidly
attach the whisker to the test stand or load cell during experiments.

Static experiments to determine whisker flexural
characteristics

A micromechanical force tester (Mach-1, BioSyntech, Montreal,
Canada), was used to impose small vertical displacements on the
whisker at known horizontal distances from the base and to measure
the associated force. The Mach 1 has a positional accuracy of 1.5 �m,
and we used a 50-g load cell to achieve a load resolution of 0.0025 g.
This allowed us to characterize force-bending relationships for all but
the smallest whiskers. Images of the whiskers as they were deflected
during the experiment were acquired with a high-resolution (3,088 �
2,056 pixels) digital camera (Digital EOS Rebel, Canon).

Figure 1A shows the experimental set up used to perform the static
force measurements. Whiskers were rigidly fixed at their base to a
cylindrical metal test stand using cyanoacrylate (superglue). All whis-
kers were mounted concave down. A shallow groove 1 mm in length
was etched in the top face of the stand. The whisker was placed
directly in the groove to ensure that exactly the first millimeter of the
whisker was rigidly attached to the stand. As described above, this
first millimeter is likely to correspond to the portion of the whisker
that would normally reside inside the follicle. Miniature scales (Mini-
tool, Los Gatos, CA) with 100-�m tick-marks were attached both
vertically and horizontally to the side of the cylindrical stand. These

scales provided an independent measure of displacement that could be
compared with the positions given by the Mach-1 micromechanical
tester. The inset of Fig. 1A shows a close-up view of the stimulator
used to deflect the whisker. The stimulator was custom-machined to a
fine taper so that the width that ultimately contacted the whisker was
�500 �m.

At the beginning of each static experiment, the stimulator was
rigidly attached to the Mach-1 load cell and carefully positioned in
both x- and y-directions. In the x-direction, the stimulator was posi-
tioned at the rightmost edge of the test stand, and this position was
defined as x � 0. In the y-direction, the stimulator was positioned just
above the surface of the whisker as close as possible while measuring
zero load. This position was defined as y � 0. The stimulator was
lowered in small (100 �m) intervals in the y-direction (computer-
controlled using the Mach-1 micromechanical tester) to precisely
displace the stationary whisker. The stimulator was lowered until the
whisker had been deflected 1,500 �m (1.5 mm). Forces from the load
cell were recorded at every step for every whisker, and digital pictures
of the whisker’s bending were taken at every step for all seven
whiskers. Note that in these static experiments, the load cell measured
the vertical force necessary to displace the whisker a known vertical
distance, at a particular distance from the whisker base. It did not
measure the force at the base of the whisker.

After the whisker had been deflected through a full 1,500 �m, the
stimulator was moved back to y � 0 so that it no longer contacted the
whisker. The stimulator was moved in the positive x-direction to a
different horizontal distance from the base of the whisker. We typi-
cally moved the stimulator in 2,000-�m increments in the x-direction,
but for some whiskers we moved in 1,000-�m intervals. The stimu-
lator was again positioned carefully just barely above the surface of
the whisker, this position was defined as a new y � 0, and the
stimulator was lowered to displace the whisker at this new x-location.
We continued moving the stimulator further out horizontally from the
base of the whisker until we reached the resolution of the force
measurement capabilities of the Mach 1 tester.

Dynamic experiments to determine whisker flexural
characteristics

In dynamic experiments, the whisker base was mounted directly to
the load cell and moved using the Mach-1 tester to hit the tapered
stimulator, which was held fixed in position. This experimental setup

FIG. 1. Experimental measurement of static and dynamic forces. A: in static experiments, the first 1 mm of each plucked whisker was glued rigidly to a
cylindrical post with horizontal and vertical scales fixed to the left side. A tapered stimulator (inset: side view) attached to a load cell was gradually lowered into
the whisker at different distances from the whisker base. Load cell thus directly measured force necessary to displace the whisker a known vertical distance (y),
at a particular radial distance (x). B: in dynamic experiments, the base of the whisker was mounted directly to the load cell and translated into the tapered
stimulator. Note that the y-axis is reversed for directional consistency. Tapered stimulator was held fixed and positioned at different radial distances from the
whisker base. Under these conditions, the load cell directly measured force at the whisker base as the whisker was increasingly deflected over time, at a particular
radial distance. In both static and dynamic experiments, the contact width of the stimulator on the whisker was �500 �m.
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is shown in Fig. 1B and allowed us to continuously monitor the force
at the base of the whisker as it deflected into the stimulator. We
lowered each whisker into the stimulator at two different velocities
(50 and 500 �m/s) and at five different horizontal locations away from
the whisker base (3, 5, 7, 9, and 11 mm). Note that the y-direction is
opposite that in Fig. 1A for directional consistency with respect to the
whisker.

Analysis of experimental data

Force and displacement data (from the Mach-1 tester), along with
the digital images of the whiskers, were imported into MATLAB (v
7.0 2004, The Mathworks, Nattick, MA). As is the convention for load
cells, the load measurements from the Mach-1 were provided in
grams. These measurements were multiplied by a factor of 9.8 m/s2 to
obtain the force in millinewtons (mN). Whisker-stimulator contact
forces were always assumed to be normal to the whisker because the
contribution of force from friction was assumed to be negligible. The
load cell in the Mach-1 tester measured only vertical force, and we
therefore divided the measured force by the cosine of the whisker
angle at the contact point to obtain the actual force applied.

To extract the geometrical shapes of the whiskers from the high-
resolution photographs, the upper and lower outlines of the whisker
were located using semiautomated image processing techniques in
MATLAB. The shape of the whisker was defined as the average of the
upper and lower outlines. For each extraction the averaged points
were overlaid on top of the photographed whisker to visually confirm
that the averaging technique yielded data points that fell within the
upper and lower outlines of the whisker, thus giving an excellent
match to the overall shape.

Fundamentals of elasticity: cantilever beam theory

Our goal in this research was to develop an accurate but simple
biomechanical model of the rat whisker as a cantilevered beam.
Cantilever beam models are derived from elasticity theory (Euler
1744; Love 1944; Timoshenko 1970; Young and Budynas 2001),
which can be used to relate the curvature, �, of a straight cantilever
beam to the moment, M, at each point along its length, x

��x� �

d2y

dx2

�1 � �dy

dx
�2�

3
2

�
M�x�

EI
(1)

In Eq. 1, y(x) is the displacement of the beam at each x location along
the length, E is Young’s modulus (also called the elastic modulus),
and I is the area moment of inertia. In general, Eq. 1 can only be
solved numerically, but for small angle deflections (less than �14°),

the term �dy

dx
�2

in the denominator is negligible and Eq. 1 can be

linearized as

��x� �
d2y

dx2 �
M�x�

EI
, (2)

where

M�x� � �F�a � x�, 0 � x � a
0, a � x � L

In Eq. 2, F is the force exerted normal to the beam at a distance along
the whisker, a, from the base of the beam. The linearization assumes
that the beam is initially straight and that it deflects only through small
angles. This means that the arc length distance a, is essentially the
same as a horizontal distance.

If we now assume that the beam is cylindrical with a radius of r
then the area moment of inertia I � �r4/4 and Eq. 2 can be solved
analytically for y(x)

y�x� � �
F

6EI
�3x2a � x3�, x � a

F

6EI
�3a2x � a3�, x � a

(3)

Note that y(x) is linear with horizontal position x for values of x
greater than a. We adapted this model of the cylindrical beam into a
model for the tapered beam (see RESULTS and APPENDIX A) to more
accurately represent the morphology of real rat whiskers.

It is important to note that elasticity theory itself is very general,
simply relating curvature to moment. However, for biological mate-
rials, Young’s modulus (E) is an approximation at best, because these
materials are typically anisotropic, heterogeneous, and nonuniform.
For a material whose value of E is roughly 5 GPa, the best one might
expect is to obtain a value correct to within a few gigapascals.

Comparing results of model 1 with experimental results

Our analysis required a comparison of the shape of the whisker as
predicted by our tapered beam model (RESULTS, model 1) with the
shape of the real whisker obtained experimentally with high resolution
photography. However, real rat whiskers have an inherent curvature.
We therefore made the approximation that the deflection of the real
whisker (under a force F at a particular arc length location, a) could
be expressed as the deflection of a straight tapered cantilever beam
(under that same force F, imposed at the same location a), summed
with the inherent curved shape of the undeflected whisker (under
conditions of zero force). This approximation is schematized in Fig. 2.
This analysis is valid as long as the assumptions of the linearized
beam model are not violated, namely that the deflections and inherent
whisker curvature are sufficiently small. The first part of RESULTS

identifies the conditions in which these assumptions are valid.
Summing the deflection of the tapered cantilever beam (from

analytical equations) with the inherent curvature of the undeflected
whisker (from photography) required some careful geometrical anal-
ysis. The summation process involved three steps and is schematized
in Fig. 2. First, thousands of nodes along the (real, undeflected)
whisker were placed at constant arc length (Fig. 2A). Second, the arc
lengths from the base of the whisker to each of the nodes were used
as the x-values in the deflection equation to analytically solve for the
small-angle deflection of a tapered cantilever beam (RESULTS, Eq. 5).
Figure 2B shows the magnitude of the vertical deflection for each
node. For small angles, the path of deflection can be assumed to
follow a vertical translation instead of an arc (Young and Budynas
2001). Third, the resulting deflection values were added to each node
along the undeflected whisker in an inward-pointing normal direction
to the whisker at each node (Fig. 2C). This three-step procedure has
a very intuitive underpinning: it simply ensured that equivalent
deflections were summed between the theoretical model and the
experimentally obtained photographs.

Note that for this model, nodes beyond the point of whisker-
stimulator contact deflect linearly, as can be seen mathematically in
Eq. 3. In the model, we could therefore assume that the portion of the
whisker past the stimulator contact point was translated in the same
direction as the last node before the stimulator contact. This portion of
the whisker was thus aligned to match the tangent of the deflected
whisker at the point of contact.

Numerical simulations

Numerical simulations of whisker bending were performed to
identify the limitations on and validate the results of the two analytical
models. These numerical simulations also accounted for large angle
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deflections and inherent whisker curvature. All simulations were
performed in MATLAB, and were based on the following principle:
if a force F� acts at an arc-length a from the base of a beam, the
resulting beam shape can be found through repeated application of
d�i � (r�i � F� )/EIi, where d�i is the change in curvature, r�i is the
vector connecting node i to a, and Ii is the area moment of inertia at
node i. F� always acts normal to the whisker as long as there is no
friction.

R E S U L T S

We began by considering how best to realistically model a
rat whisker. We noted three inadequacies of the analytical
model of the cylindrical cantilever beam presented in Eqs. 2
and 3: 1) the model assumes a cylinder, but the real whisker is
tapered, as a cone; 2) the model assumes a straight beam, but
the real whisker has inherent curvature; and 3) the model is
linearized, assuming only small angle deflections (no more
than �14°), but the real whisker can bend through very large
angles during object contact.

The results below account for each of these three complex-
ities and are divided into three parts. In part 1, we develop an
analytical model (model 1) to describe the bending of a rat
whisker. The model uses the magnitude and location of the
imposed force to determine the resultant shape of the whisker
after deflection. The model accounts for both whisker taper and
inherent whisker curvature and limits on its applicability are
tested using numerical simulations.

In part 2, we validate model 1 against experimental data
obtained from real rat whiskers, showing an excellent match
between theory and experiment. Finally, in part 3, we develop
a second analytical model (model 2) that describes the rela-
tionship between the rate of change of moment at the whisker
base and radial object distance. Numerical simulations are used
to show that the inherent curvature of the whisker has a
negligible effect on this relationship. We show that measuring
changes in moment at the whisker base would permit the rat to
extract radial object distance and analyze the consequences of
this result for coding in the trigeminal ganglion.

Part 1: Developing an analytical model of a tapered rat
whisker with inherent curvature

AN ANALYTICAL EXPRESSION FOR THE DEFORMATION OF A TAPERED

WHISKER WITH NO INHERENT CURVATURE. Expressions for the
deflection of a straight cylindrical cantilever beam under a load
are readily available in the literature (Young and Budynas
2001). However, the diameter of a rat whisker decreases
approximately linearly with length (Hartmann et al. 2003;
Neimark et al. 2003). We therefore extended the cylindrical
model to account for the taper of the whiskers. The basic
derivation for tapered deflections is the same as for the cylin-
drical case and can be found in APPENDIX A. The analytic
solution for the small-angle deflections of a tapered beam was
found to be

y�x� � �
2FLx2

3E�rbase
4 �3La � Lx � 2ax

�L � x�2 �, x � a

2FLa2

3E�rbase
4 �3Lx � La � 2ax

�L � a�2 �, x � a

(4)

Comparison of Eq. 4 with Eq. 3 shows clearly that a whisker’s
taper has a substantial effect on its deformation characteristics;
these effects are quantified in detail in APPENDIX B.

EFFECTS OF TAPER ON THE SMALL ANGLE APPROXIMATION. The
small angle assumption implicit in the linearization of Eq. 1
means that the deformations expressed in Eq. 4 will become
inaccurate after a certain bending angle. We used numerical
simulations (see METHODS) to explore how linearization impacts
the accuracy of the analytical model under large angle deflec-
tions and inherent whisker curvature.

Figure 3A shows the difference between the small-angle
approximation and the large-angle numerical result for a
200-�N force applied at distances of 10, 20, and 30 mm out
along a 60-mm tapered whisker. For the first two locations of
applied force, the difference between the small angle approx-
imation (dotted line) and the numerical result (solid line) is

FIG. 2. Geometrical method used to predict the final shape that a whisker will assume under an imposed force. Predicted whisker shape was found by summing
the inherent curvature of the whisker (from a photo) with the curvature resulting from an imposed force as predicted by the tapered beam model. Top row:
deflections of entire whisker. Bottom row: enlarged versions of region near the base for visual clarity. In each figure, upside-down triangle indicates position of
applied force. A, top: under conditions of zero force, the (undeflected) shape of the whisker was extracted from a photograph and partitioned with nodes spaced
at equal arc-lengths. This quantified the inherent curvature of the whisker. Bottom: inward pointing unit normal was found for all nodes between the base of the
whisker and the stimulator contact point. B, top: model 1 was used to predict deflection of a linearly tapered cantilever beam with the same dimensions as the
real whisker (base diameter and length). Modeled beam was partitioned with equally spaced nodes as in A. Bottom: vertical distance that each node traveled from
undeflected to deflected case was found. C, top and bottom: magnitude of vertical deflection for each node in B was added to its corresponding node in A, in
the associated unit normal direction shown in A (bottom). It is clear from C (top) that even a very small deflection imposed near the whisker base can have a
large effect on the position of the tip of the whisker.
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negligible. When the force is applied at 30 mm, the small angle
approximation clearly diverges from the numerical result as the
deflection angle becomes sufficiently large. The effect of taper
increases for deflections applied further from the base.

MODEL 1: DEFORMATION OF A TAPERED WHISKER WITH INHERENT

CURVATURE. The simplest way to incorporate curvature into
the analytical expression for a straight, tapered whisker (Eq. 4)
is to sum the inherently curved shape of the real undeflected
whisker with the deflection of a straight, tapered cantilever
beam. Our first model performed this summation according the
method depicted in Fig. 2.

To validate the assumptions implicit in the summation, we
used numerical simulations to calculate the deflections of an
inherently curved whisker through large angles (see METHODS).
Before we could compare the analytical results of model 1 and
the results of the numerical simulations, however, we noted
one additional complexity, as follows: if the whisker is initially
straight and deforms only through small angles, the arc length
a (the distance as measured along the length of the whisker)
differs negligibly from the straight distance from whisker base
to point a out along the whisker. This was discussed previously
in METHODS. If the whisker is not straight, but instead has an
inherent curvature, these two values are different. Thus for the
remainder of this paper, it is important to remember that a is
always defined as the arc length distance, not the straight
distance from base to point of contact distance.

Figure 3B shows the error between deflection profiles found
using model 1 and using numerical simulations. The thin solid
lines represent straight (black) and inherently curved (gray)
whiskers. The inherently curved whisker was chosen to have a
constant normalized curvature (ratio between the total arc
length and the radius of curvature) of 1. This normalized
curvature value is similar to the values found for the whiskers
used in this study (data not shown). An increasingly large force
was applied at a � 30 mm for both whiskers until the
magnitude of deflection at a, y(a), differed by 10% between the
two models. The thick solid and dashed lines give the deflected
shape of the initially straight (black) and curved (gray) whis-

kers, as found by using model 1 (dashed) and numerical
simulation (solid). It is clear that model 1 yields an accurate
description of the deflected whisker up to the force location a,
but is less accurate further out.

Figure 3C quantifies the amount of angular deflection that
results in 10% error between the two models for a force
imposed at any point along the whisker. The inherently curved
whisker again had normalized initial curvature of 1, as de-
scribed for Fig. 3B. The same procedure described for Fig. 3B
was repeated for several a values and the resultant deflection
angle, 	, at which 10% error was reached for each a value was
recorded. Figure 3C shows the amount of angular deflection
plotted against normalized location of the imposed force, a/L,
for an inherently straight (black) and curved (gray) whisker. It
is apparent from this figure that imposed force location affects
the amount of deflection possible before 10% error results
between model 1 and the numerical simulations. As the loca-
tion of imposed force increases, the amount of deflection
before the 10% threshold is reached decreases for both the
straight and precurved whiskers. This relationship is steeper for
the inherently curved whisker, but both cases show that model
1 is most accurate when forces are applied close to the whisker
base.

This analysis has shown that by summing the inherently
curved shape of the real whisker with the deformations calcu-
lated from Eq. 4, experimenters can obtain an approximation of
the deflected whisker shape up to point a with �10% error,
provided the force is imposed at a/L � 70%.

Part 2: Validating model 1 against experimental data
obtained from real rat vibrissae

Model 1 incorporates the effects of taper and inherent
curvature, and we have shown it to be particularly accurate for
forces applied close to the base. We used two different meth-
ods to determine how well model 1 captured the bending
characteristics of a real rat whisker. First, we compared force-
displacement curves between model and experiment. Second,

FIG. 3. Effects of taper and inherent curvature on the small angle approximation. A: effect of small-angle approximation is exemplified by imposing a 200-�N
force at 10, 20, and 30 mm from the base of a straight, tapered 60-mm whisker and comparing the small-angle (linearized, analytic) and large-angle (numerical)
results. Results using the small angle approximation are shown as dotted lines, and results for the full numerical solution are shown as solid lines. Because
deflections increase as force is exerted further from the base, the small angle assumption begins to break down and curves accordingly diverge. B: comparison
of analytical and numerical results after including effects of inherent whisker curvature. Thin lines represent an undeflected straight whisker (black, overlaps with
the x-axis) and an undeflected curved whisker (gray). Normalized curvature of the curved whisker is 1. In simulation, an increasingly large force was applied
at a � 30 mm until magnitude of predicted deflection y(a) differed by 10% between analytic and numerical results. Thicker black (initially straight) and gray
(initially curved) lines represent results of analytic (dashed) and numerical (solid) solutions. Analytical model does an excellent job of predicting shape of the
whisker up to a, but is less accurate beyond the point of contact. C: accuracy of analytical model depends on location of imposed force. An increasingly large
force was applied at several points along a tapered, straight whisker (black) and a tapered, curved whisker with unity normalized curvature (gray) until the
predicted deflection y(a) disagreed by 10% between analytic and numerical results. Values on the y-axis represent the angle 	 that is achieved when the 10%
threshold is reached. Analytical model clearly performs best when force is applied close to the base. It is also apparent that taper has a moderate affect on the
accuracy of the analytic model.
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we used the model to predict the entire shape of deflected
whiskers, and compared this prediction with experimentally-
obtained shapes of deflected whiskers.

FORCE DISPLACEMENT CURVES: ANALYTICAL EQUATIONS AND EX-

PERIMENT. We experimentally quantified bending for a real
rat whisker in response to a force imposed at different distances
from the base. Figure 4A shows three overlaid images of the E2
whisker bending under the same force (121.8 	 24.5 �N)
imposed at a distance of 7, 8, and 11 mm horizontally from the
base. Note that although during experiments the stimulator was
positioned at horizontal distances, during all analysis the hor-
izontal distance was converted to arc-length.

Figure 4A clearly shows that when a force is imposed
further away from the base, the whisker deflects more. This
effect is quantified in Fig. 4B, in which forces are imposed
at different distances (4, 5, 6, 7, 8, and 9 mm horizontally
from the base of the E2 whisker). The solid lines are the
theoretical force-deflection relationship predicted from Eq.
4. The dotted lines indicate experimental data. In Eq. 4, we
used the measured diameter (232 �m) to calculate I �
1.42 � 10�16 m4. The measured length of the whisker was
48.0 mm, and a good fit for E was found to be 2.6 GPa. For
these values of E and I, an excellent match was found
between Eq. 4 and experiment.

Figure 4C shows superimposed images of the C3 and 

whiskers as they were deflected by approximately the same
force (840.3 	 94 �N) imposed at a horizontal distance of 8
mm. It is clear that the force has a larger effect on the C3
whisker (Dbase � 119 �m, L � 21.50 mm) than on the 

whisker (Dbase � 225 �m, L � 66.20 mm). Figure 4D quan-

tifies this effect for seven different whiskers of varying size. In
this experiment, whiskers 
 and � are the longest whiskers,
with lengths of 66.2 and 60.3 mm, respectively, whereas E2
and 
 are the thickest at the base, with base diameters of 232
and 225 �m, respectively. The last four whiskers are all shorter
and thinner at the base than 
, �, or E2, and therefore require
less force to deflect the same amount.

Notably, Fig. 4D shows that at a given horizontal distance
away from the base (6 mm in this case) the force-displacement
curve follows a linear relationship for each whisker. This
relationship can be seen explicitly in Eq. 4. Importantly, this
does not mean that for a given force F the whisker will bend
linearly along its length, because the proportionality constant
between F and y(x) is different at each point x.

CAPTURING THE COMPLETE SHAPE OF A WHISKER: MODEL 1 COM-

PARED WITH EXPERIMENT. The force-displacement curves in
Fig. 4 showed a good match between Eq. 4 and experiment
for discrete values of force and displacement. They also
serve to quantify the effects of whisker size (base diameter
and length) and force location on whisker deflection. How-
ever, the curves of Fig. 4 only quantify the relation between
force and displacement at point a, where the force is
applied. How well can model 1 as described in part 1
characterize the entire shape of the whisker when it contacts
an object, purely as a function of whisker length, diameter,
and object distance a? To answer this question, model 1 was
used to predict the deflection of the whisker everywhere
along its length (i.e., at all values of x). These modeling
results were then compared with the photographed shape of
the whisker (Fig. 1A). Because Fig. 3C shows that the model
should remain accurate for relatively large deflections close
to the base, it would be surprising if model and experiment
were not in good agreement.

We used model 1 to calculate the full shape of the whisker as
a function of x analytically while leaving Young’s modulus (E) as
a free parameter. Experimentally, we took digital photographs to
obtain the entire shape of each whisker as it was increasingly
deflected by the stimulator. We imported the photographed shape
into MATLAB and superimposed the modeling result. The value
of E was varied in the model until the best match was found
between model and experiment. If E was too large, the model did
not deflect enough compared with the experimentally deflected
whisker, and if E was too small, the model whisker deflected too
much.

The inset of Fig. 5 shows the quantities used to find the best
match between model and experiment. The error between the
model and the experimental data were found by taking the ratio
of the areas between the model and the deflected whisker (area
2) and the area between the deflected whisker and the unde-
flected whisker (area 1 
 area 2). All areas were calculated
from the whisker base to the point of contact, a. Normalization
to the area between the undeflected whisker and the deflected
whisker accounted for any error induced by apparent changes
in length due to the small angle approximation, and permitted
comparisons of error estimates across whiskers of different
lengths. This ratio is referred to as the percent area error,
plotted on the y-axis of Fig. 5.

Seven whiskers (A1, B2, 
, C3, E2, E3, �) were used in
the analysis of the complete whisker shape. For each whis-
ker, we averaged over all vertical deflections at each hori-

FIG. 4. Matching force-displacement curves between theory and experi-
ment. A: superimposed images of the E2 whisker, bending as a force F �
121.8 	 24.5 �N is imposed at 3 different locations (arrows). B: relation
between deflection and force needed to cause that deflection is approximately
linear for any given point where force is imposed. Solid lines represent
expected force-deflection relationship derived from model 1 using a Young’s
modulus of 2.6 GPa, whereas dotted lines represent experimental data where
deflections were imposed at evenly spaced horizontal distances from the base
(4–9 mm). C: shorter whiskers deflect more than longer whiskers when the
same load is applied. Bending of whiskers C3 (short whisker) and Beta (long
whisker) is shown here. D: whiskers have unique geometrical dimensions,
which result in different force-deflection relationships. Each whisker was
tested with force imposed 6 mm horizontally from the base.
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zontal distance from the base. This amounted to �110
comparisons between experiment and model, �20 values of
Young’s modulus, for a total of �2,200 comparisons per
whisker.

Figure 5 shows the results for the A1 whisker. Plotting
error as a function of Young’s modulus (E) shows that 1) the
smallest error (2.72% for the A1 whisker) is found when the
object is closest to the base of the whisker, 2) estimated E
for the A1 whisker has a range of �1.5– 4.3 GPa, with an
average of 2.75 GPa, consistent with the value found for
Fig. 4B and with previous estimates (Hartmann et al. 2003;
Neimark et al. 2003), and 3) the value of the “best” E
decreases as the object moves further from the base. These
results were representative of all whiskers. A1 does not
represent a “best case.”

The ranges for E of the other whiskers were mostly
similar to that of A1. Table 1 shows geometrical dimensions
and average values of E for all seven whiskers. Results for
the C3 whisker lay outside the range of results for the other
whiskers. For C3, Young’s modulus ranged from 4 to 9.5
GPa and had an average value of 6.25 GPa. The C3 whisker
was by far the shortest and thinnest of the whiskers and
deflections were imposed up to �50% along the whisker
length. Most other whiskers only had deflections imposed up
to �35% along the length of the whisker. This could help
explain the large value of Young’s modulus found for the
C3 whisker.

Part 3: A biomechanical model for extracting radial object
distance using information about moment

MODEL 2: AN ANALYTICAL EXPRESSION FOR RADIAL OBJECT DIS-

TANCE AS A FUNCTION OF MOMENT AT THE WHISKER BASE. Equa-
tion 4 describes a relationship between the deflection, y(x), at
each point, x, along a tapered whisker and the arc length, a. The
value of y(x) is related to a through the force F imposed at
point a, the bending stiffness represented by the product EIbase,
and the total arc length, L, of the whisker. We asked whether
the rat could use the relationship expressed in Eq. 4 to infer
information about the radial object distance d, from the whis-
ker base to the contact point. Note that in general the distance
d is shorter than arc length distance a, however, assuming a
straight whisker and evaluating Eq. 4 at y(d) yields

y�d� �
FLd3

3EIbase�L � d�
(5)

Using M � d � F and 	 � y(d)/d (assuming small angle
deflections) yields

M � C	 �1

d
�

1

LBT
� (6)

where C � 3E
�rbase

4

4
� 3EIbase and LBT is the linear base to tip

length of the whisker. Note that L was replaced with LBT to
enforce the boundary condition that M � 0 when d � LBT.
Solving for the variable d, and taking time derivatives yields

d �
C	̇LBT

C	̇ � ṀLBT

(7)

Equation 7 represents our second analytical model. It relates
radial object distance to change in moment at the whisker base.

Note that Eq. 7 is expressed in terms of time derivatives.
These time derivatives are included primarily for biological
plausibility. Recall that 	 represents the angle that the whisker
has rotated since the time of initial contact with the object. M
is the moment experienced at the base, which increases as the
whisker rotates against the object. In an engineered system, it
is easy to set 	 � 0 at the angle of initial contact and to keep
track of its increasing value. In principle, just like the engi-
neered system, the rat could use the absolute position of the
whisker (	) combined with an absolute measurement of mo-
ment to determine object distance. However, given the well-
known difficulty for the nervous system to accurately measure

TABLE 1. Geometrical whisker dimensions and calculated values
for average Young’s modulus (E)

Whisker
Name

Arc Length,
mm

Base Diameter,
�m

Average E,
GPa


 66.2 225 1.40
� 60.3 199 3.75
A1 51.7 160 2.75
E2 48.1 232 1.90
B2 41.1 169 2.30
E3 33.3 189 3.90
C3 21.5 119 6.25

The best fit Young’s modulus was found at each combination of deflection
amplitude and contact distance. Average E was calculated as the mean of all
best fits.

FIG. 5. Model 1 accurately captures the shape of the entire whisker
during deformation. Inset: how error between model and experiment was
calculated. Top solid line represents undeflected whisker, center dotted line
is model of deflected whisker, and bottom solid line is deflected whisker as
measured experimentally. Area 1 represents difference between modeled
deflected whisker and undeflected whisker. Area 2 represents difference
between modeled deflected whisker and experimental data. “Percent area
error” was defined as the ratio of area 2 to the sum of areas 1 and 2. This
measure normalized error over different whisker lengths and stimulator
placements. Plot shows percent area error between model and experiment
for changing values of Young’s modulus for the A1 whisker. Each trace
represents average of percent error over 15 vertical displacements at a
single horizontal distance from the whisker base as indicated in legend.
Best fits were obtained with values of Young’s modulus that ranged
between 1.5 and 4.25 GPa, with an average of E � 2.75 GPa. For visual
clarity, standard deviations are shown on only 2 traces (blue and red),
displaying largest and smallest error ranges.
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absolute quantities, but its exquisite sensitivity to rates of
change, we think it most probable that the rat would use the
time derivatives as represented in Eq. 7.

If the whisker moves at constant velocity, then derivatives of
moment with respect to 	 and with respect to time are propor-
tional. If, in contrast, the whisker moves at nonconstant veloc-
ity, the rat could keep track of how moment is changing
relative to 	. Thus most generally, radial distance can be
computed as

d �
CLBT

C � �dM/d	�LBT

(8)

The fact that the computation can be performed at every instant
in time—and for varying whisking velocities—is a key advan-
tage of the proposed mechanism for determining object dis-
tance. It seems likely that a particularly good time for the rat to
measure moment and angle would be immediately following
contact up until the point in time when the linearization breaks
down. For example, a constant protraction velocity of 400°/s
would allow �2° of rotation in the 5 ms after object contact,
well within the linear range. It should be noted that the rat will
have much less time to compute object distance if contact
occurs close to the tip, as the whisker will quickly fold in on
itself and/or flick past the object for small 	, and Ṁ will change
accordingly.

Equations 7 and 8 show that, if the rat can keep track of the
rate of change of moment and the velocity with which it is
“pushing” its whisker against the object, enough information
will be present to infer object distance. Taken with the results
of previous studies that have described mechanisms for encod-
ing horizontal and vertical position (Ahissar and Arieli 2001;
Ahissar et al. 2000; Szwed et al. 2006), these equations
effectively show that only three mechanical variables are
required to extract 3D spatial information about objects. Those
variables are angular position, angular velocity, and rate of
change of moment (or curvature). In addition to these three
variables, we posit that the rat is sensitive to a fourth vari-
able—moment—so as to remain sensitive to static deflections
of its whiskers.

Predicted changes in moment at the whisker base as the
whisker rotates against an object

We now use model 2 (Eq. 7) to compute the predicted
changes in moment at the whisker base as the whisker is
rotated against an object. Figure 6A plots the rate of change of
moment at the base of the whisker as a function of contact
distance for two different whisking velocities. To highlight the
effects of taper (see APPENDIX B), results for the cylindrical
whisker are also shown (gray traces). For both tapered and

cylindrical whiskers, the steepest change of Ṁ is for
d

LBT

� 0.3,

when the imposed force is closer to the vibrissal base. It is clear
that Ṁ goes to infinity for positions very close to the base. In
addition, Ṁ goes to zero at the tip of the tapered whisker,
meaning that almost no moment is transmitted back to the base
when contact is made very near the tip. Instead, the whisker tip
might locally deflect and subsequently drag along the object.
This suggests that the more distal regions of the whisker may
be more sensitive to low-amplitude, high-frequency signals,

because these small signals can be amplified by resonance
(Andermann et al. 2004).

Figure 6A also shows that the magnitude of Ṁ is larger when
the angular velocity 	̇ is larger. This is an intuitive result, but
the figure makes clear that the rat can obtain the same value of
Ṁ at the whisker base either by increasing whisking speed or
by moving its snout closer to the object. This may suggest the
existence of a “sweet spot” or “sweet combination” of object
distance and whisking velocity. This location on the whisker
would be constrained by the following criteria.

• If the snout is too close to the object, the moment may
become so large that receptors in the follicle may saturate or
the “motor” (i.e., the sling muscles) could max out and the
whisker may barely even bend.

• If the snout is too far away from the object, the moment
transmitted to the base may be below the rat’s detection-
threshold, or differences in moment may be difficult to
resolve. Also, if contact occurs very close to the tip, the
whisker will quickly fold in on itself and subsequently either
flick past the object or drag along it.

FIG. 6. Model 2 provides relationships between rate of change of moment,
Ṁ, moment, M, deflection angle, 	, and radial object distance, d. All simula-
tions modeled whiskers with a Young’s modulus of 3.5 GPa, a base radius of
60 �m and a length of 6 cm. A: rate of change of moment vs. normalized
contact distance for conical and cylindrical whiskers rotating at different
velocities. Black curves represent relationship for a tapered whisker, whereas
the gray curves are for a cylindrical whisker. Solid lines: velocity � 1 rad/s;
Dashed lines: velocity � 4 rad/s. Rates of moment change for both whisker

shapes rapidly approach infinity for
d

LBT

� �0.3. B: moment as a function of

whisker angle since contact with the object. Solid curves are for an object
distance of 0.3 LBT, the dashed curves for an object distance of 0.6 LBT, and
the dash-dotted curves for an object distance of 0.9 LBT. Black curve models
a tapered whisker, and gray curves model a cylindrical whisker. C: whisker
deflection as a function of normalized contact distance with an imposed 0.1
�N-m moment (whisker rotated against the object until 0.1 �N-m was
reached). D: inherent whisker curvature has a negligible effect on rate of
change of moment Ṁ. This graph plots Ṁ at the whisker base as the whisker
is rotated against a point-object placed at different radial distances, d, out along
the whisker. Solid black line indicates initial rate of moment change for a
tapered, straight whisker (model 2). Dashed gray line indicates initial rate of
moment change for a tapered whisker with an inherent curvature equal to that
of a semi-circle (inset) found from numerical simulation. The two curves are
virtually indistinguishable. Semi-circle inherent curvature is an extreme case
and is much larger than that of any real rat whisker.
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• Different velocities will scale the curve in Fig. 6A. Faster
velocities mean that better resolution will be obtained for
objects further away.

Figure 6B plots the rate of moment change at the base of the
whisker as a function of whisker angle, 	. As mentioned
earlier, 	 is the angle subtended since initial contact with the
object and is interchangeable with time on the x-axis as long as
	̇ is constant. Each curve in Fig. 6B represents a different
object distance (0.3LBT, 0.6LBT, and 0.9LBT). It is critical to
understand that the linear relationship between Ṁ and 	 does
not mean that the whisker will bend linearly along its length.
The proportionality constant between Ṁ(x) and y(x) is different
at each point x along the whisker. In addition, imposing a force
at position 2x does not make the whisker bend twice as much
as if the force were imposed at position x. This can be seen in
the uneven spacing of the lines for 0.3LBT, 0.6LBT, and 0.9LBT
in Fig. 6B.

Predicted changes in curvature at the whisker base as the
whisker rotates into an object

It is clear from Eq. 1 that curvature and moment are directly
proportional. The change in curvature at any point along a
beam is equal to moment divided by the whisker bending
stiffness, EI. Figure 6C plots the angular position of the

whisker, 	, as a function of normalized contact distance
d

LBT

,

for an imposed 0.1-�N-m moment. Simply put, this plot
predicts how much the whisker will bend if the whisker is
being actuated by a maximum moment of 0.1 �N-m. For a
cylindrical beam, the relationship is purely linear. For a tapered
beam, much less moment is required for the whisker to deflect
past a distal object compared with a more proximal one.

Effects of inherent whisker curvature on moment sensed at
the base

Finally, we now show that model 2 holds for all realistic
values of whisker curvature (and even much larger curvatures).
A mechanical rule of thumb states that if the radius of curva-
ture of a beam is �10 times its maximum cross-sectional
depth, many fundamental principles of deformation analysis
remain valid (Young and Budynas 2001). Geometrical analysis
showed that the real rat whiskers used in this study exhibited a
maximum curvature of 1.7 (units normalized to whisker arc
length) along their length. A typical ratio of the radius of
curvature to depth was �250. The minimum ratio found along
any whisker was �100. Because the minimum value is much
�10, fundamental elasticity equations apply.

Numerical simulations were used to compare changes in Ṁ
profiles for a straight whisker and for a whisker with a large
inherent curvature. To be conservative, we modeled the defor-
mation of a whisker bent into the extreme shape of a semi-
circle, which has a constant normalized curvature of � 
 3.14.
This is roughly twice the maximal curvature found for any of
the real whiskers. Base-to-tip length for both models was 60
mm. Figure 6D shows the results of the simulation: the Ṁ
profiles for the straight and inherently curved whiskers overlap
almost exactly. The inherent curvature has negligible effect on
the moment that will be sensed at the whisker base.

Effects of whisker or head translations compared with
whisker rotations

As established by earlier studies (Szwed et al. 2003, 2006),
and as schematized in Fig. 7A, cylindrical coordinates are the
most natural system to describe whisking movements of the
rat. Theta describes the rostral-caudal angle, z is the height of
the whisker row, and r is the radial distance out along the
whisker. This coordinate system is particularly suited to de-
scribe the rotational movements that most typically character-
ize whisking behavior.

Sometimes, however, rats’ exploratory behaviors involve
translational movements of the head instead of rotations of the
whiskers. For example, a recent study showed that rats were
able to discriminate the width of an aperture to within milli-
meter resolution using a translational “nose poke” through the
aperture (Krupa et al. 2001). Rats were able to perform this
task at above chance levels even when only one whisker
remained on each side of the face. The authors did not propose
an encoding mechanism for distance detection, but noted that

FIG. 7. Neural encoding of primary mechanical variables during translation
and rotation. A: cylindrical coordinates are the most natural system in which to
describe whisking movements of the rat. B: whisker deflection model presented
in this paper can be used to describe deflections caused by translation and
rotation. A straight, undeflected whisker is represented by the solid horizontal
and slanted lines. The whisker either rotates 	 degrees or translates a distance
h. Deflection by an object (black dot) at a radial distance, d, will eventually
result in identical deflection profiles (black trace). C: proposed representation
for 3 of the 4 mechanical variables found to be important in this study. Axes
of the graph are angular position, angular velocity, and moment at the base of
the whisker. Neural responses of Vg cells could be quantified by placing them
within the state-space defined by these axes. In this schematic, each symbol
represents spike of a ganglion neuron responsive to a particular combination of
parameters. Magnitude of neural response is represented by number of data
points (spike count), and variability in the response is represented by the
3-dimensional breadth of distribution. Triangles, for example, depict a cell
sensitive to a particular combination of angular position (near 40°) and velocity
(between �800 and 250°/s), but not responsive to moment. Square symbols lie
in the velocity-moment plane and represent a cell that responds roughly
independent of position, but only to a particular combination of velocity and
moment.
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whiskers were “deflected rearward” as the rats entered the
aperture.

Figure 7B shows that the models presented in this paper hold
equally well for translation and rotation and can explain the
results of the earlier study by Krupa et al. (2001). The models
also apply to earlier studies that involve small-angle passive
displacements of the whiskers in anesthetized rats (Leiser and
Moxon 2006; Lichtenstein et al. 1990; Shoykhet et al. 2000;
Webber and Stanley 2006). With knowledge of whisker length
and base diameter, approximate Young’s modulus (3–4 GPa),
the location of the imposed stimulus and its magnitude (which
could take the form of a force, rotation or linear deflection),
experimenters can now calculate approximately how much
moment is experienced at the base of the whisker during
passive displacement experiments. As will be shown in DISCUS-
SION, however, this may not be a very useful calculation to
perform for passive displacement experiments.

The variables that this study has found to be important for
shape extraction are angular position, angular velocity, mo-
ment (or equivalently, curvature), and rate of change of mo-
ment. This mechanical analysis suggests that a state-encoding
scheme (Paulin 2004; Paulin and Hoffman 2001; Paulin et al.
2004) is a parsimonious and quantitatively rigorous way to
represent the responses of Vg neurons. Figure 7C shows an
example of a state-encoding scheme using three of the four
mechanical variables. Neurons have a certain probability of
firing a spike when the whisker is in a particular “state.” A state
is uniquely defined by whisker position, velocity, moment, and
moment-dot; in the example of Fig. 7C only three of the four
variables are included. If necessary, velocity could be defined
to have two dimensions (rostral-caudal and dorsal-ventral) to
account for the directional sensitivity of the cells of velocity
information (Jones et al. 2004). This would result in a higher
dimensional space but would otherwise leave the state-encod-
ing representation unchanged.

D I S C U S S I O N

Technical considerations

WHY DEVELOP AN ANALYTICAL MODEL? This study has devel-
oped simple, analytical models for the deformation of rat
vibrissae that account for vibrissal curvature as well as taper.
The models are well matched by experimental results (Figs. 4
and 5). The advantage of an analytical model over the numer-
ical method also presented in this paper is that it can be solved
quickly and exactly, without use of a computer, to obtain a very
close approximation to how a real whisker will bend. This is
potentially useful to all investigators performing experiments
in which the whiskers are deflected by an amount within the
confines defined by Fig. 3C. Analytic models also make ex-
plicit the dependence of whisker bending properties on me-
chanical variables. Numerical simulations are required to pre-
cisely quantify bending of the whiskers in other cases. It is
important to note that the change in curvature and the change
in moment at every point along the whisker length are directly
proportional, related through the whisker bending stiffness EI.

YOUNG’S MODULUS AND WHISKER STIFFNESS. Young’s modulus
(E) for biological materials is an approximation at best. This
study found that E approximately equals 3–6 GPa, in line with
previous estimates (3–4 GPa, Hartmann et al. 2003; 9 GPa,

Neimark et al. 2003; 3.5 GPa, Solomon and Hartmann 2006).
A puzzling result of these experiments is that the value for E
seemed to decrease as forces were imposed further from the
whisker base (Fig. 5). There are at least four possible expla-
nations for this result. First, the result could be taken at face
value. The whisker material may vary with length in such a
way as to result in lower E values further from the whisker
base. Second, it is possible that the equivalent stiffness of the
whisker decreases with whisker length. For example, if the
whisker tapered parabolically instead of linearly, then the
smaller cross sectional area as a function of length would result
in an apparently lower E value. Third, Fig. 3C shows that the
accuracy of the tapered-beam model decreases as the force is
imposed further from the base. It is therefore possible that the
decreased accuracy of model 1 is directly responsible for the
apparent change in Young’s modulus. This is consistent with
the increase in error associated with the “best fit” Young’s
modulus as deflections were imposed at increasing radial
distances. Fourth, friction would have the largest effect on the
most curved (shortest) whisker, thereby increasing the apparent
value for E.

IMPORTANCE OF MOMENT. Almost all previous studies of the
vibrissae have focused exclusively on kinematic variables, that
is, angular position and its time derivatives. These variables are
termed kinematic because they describe the motion of a body
without consideration to the forces or moments that affect the
motion. During active whisking, however, kinematic variables
alone cannot provide a complete representation of all the
information transmitted to the rat through its whiskers. Under
active whisking conditions, the whisker could well be at the
same angular position and yet experience very different mo-
ments at the base. Figure 8 shows some of the differences

FIG. 8. Passive displacement experiments (top row) force a direct relation-
ship between angular position and moment. In active whisking experiments
(bottom 2 rows), moment changes at the base as the whisker deflects into an
object placed at different angular positions.

2448 BIRDWELL ET AL.

J Neurophysiol • VOL 98 • OCTOBER 2007 • www.jn.org

 on M
ay 31, 2010 

jn.physiology.org
D

ow
nloaded from

 

http://jn.physiology.org


between active and passive whisker displacements. The models
presented in this study begin to consider the potentially impor-
tant role that moment may play in conveying meaningful
information to the rat.

For completeness, we note that both of these models
would be considered “quasi-static,” because they assume
that the movement of the whisker can be approximated so
that at every point in time it is essentially at equilibrium.
Assumptions for a quasi-static model require that all forces
and moments are conservative and that the whisker has two
physical constraints: the rigid connection at its base and at
the contact point with the object. A fully dynamic (not
quasi-static) treatment of the whisker would have to incor-
porate mass and inertial quantities and collision forces that
may result in “whip.”

RELATIVE IMPORTANCE OF WHISKER DIAMETER, LENGTH, CURVA-

TURE, AND TAPER. All equations in this study indicate that
moment at the whisker base will depend on the base diameter
of the whisker raised to the fourth power. Thus whisker
diameter will have the largest influence of any single variable
on the moment experienced at the whisker base. There is more
tolerance for small deviations in whisker length. The inherent
curvature of the whisker plays a relatively small role in
determining how the deflected whisker will change shape,
whereas in contrast, the taper of the whisker greatly affects
how the whisker will bend and the moment transmitted to the
base.

Models are highly applicable to natural whisking behaviors

Throughout the METHODS and RESULTS, we have been careful
to emphasize the assumptions embedded in the models and the
limitations that these assumptions impose. This careful expo-
sition of modeling constraints may leave the impression that
the models apply only under very limited conditions. It is
therefore important to emphasize that our analysis is in fact
very general and that versions of the models will hold even for
very complex behaviors.

MODELS CAN APPLY TO A WIDE RANGE OF BOUNDARY CONDITIONS:

THE IMPORTANCE OF INSTANTANEOUS MEASUREMENT. Moment
at the whisker base will vary depending on how stiffly or
loosely the whisker is held in the follicle, that is, on the
boundary conditions in and near the follicle. The rat could
presumably change follicular boundary conditions through
muscular activation as well as by modulating blood flow to the
follicular sinus (Scott 1955). The models in this study are
based on clamped boundary conditions at the whisker base, but
more realistic, tissue-like conditions might be modeled with a
spring-mounted or a torsional-spring-mounted whisker. It is
critical to note, however, that the fundamental results of this
study will not change, even if boundary conditions are very
different from the clamped condition modeled here. This is
because the relationship between moment at the base and radial
object distance will remain monotonic regardless of boundary
conditions. As long as the rat can learn the monotonic function
that relates these variables (M and d), the method proposed
here will work for radial distance extraction.

What happens if the rat changes the boundary conditions at
the whisker base during the course of a whisk? Equations 7 and
8 show that the rat can determine radial object distance based

on the instantaneous rate of change of moment. This means
that the rat need only sense distance at a single instant during
the whisk, and it does not matter if boundary conditions change
before or after that instant. Recent behavioral data (Mitchinson
et al. 2007) have shown that rats often use an exploratory
strategy of “minimum impingement,” in which they tap, rather
than sweep, their whiskers over objects. This suggests that the
rat gains a sense of radial object distance in the first few
milliseconds immediately after object contact. This strategy is
consistent with the one determined to be most effective for
radial distance extraction in a hardware model of the whiskers
(Solomon and Hartmann 2006) and also helps avoid measure-
ment complications caused by whisker slip along the object.
Finally, we note that regardless of boundary conditions, the
amount that the moment will change in a given time interval is
directly related to the whisking velocity. We therefore suggest
that variations in velocity over the trajectory of the whisk may
be of particular behavioral importance to the rat during tasks
that require estimates of object distance.

MODELS CAN APPLY TO A WIDE RANGE OF ANGULAR DISPLACE-

MENTS, VELOCITIES, AND DISTANCES TO OBJECT CONTACT. Nu-
merous papers have shown that naturalistic rat behaviors use a
large range of angular positions, velocities, and distances to
object contact (Brecht et al. 1997; Carvell and Simons 1990,
1995; Guic-Robles et al. 1989; Polley et al. 2005; Vincent
1912). It might therefore be asked how the values for these
variables presented here fit into these ranges. For example,
over what range of angles, whisking amplitudes, and velocities,
do the proposed models apply? The short answer is that the
fundamental results of the models hold over virtually all
distances to contact except very near the tip, all angular
velocities, and all angular displacements. Figure 8 shows the
broad applicability of the models and the differences between
passive displacements and active whisking.

The rat-centered coordinate system for Fig. 8 is defined by 	
in the top left corner. A value of 	 � 0 means that the whisker
is completely retracted, pointed directly backwards toward the
tail of the rat. A value of 	 � 180° means that the whisker is
completely protracted, pointed directly forward toward the
snout of the rat. The first row of Fig. 8 shows passive deflection
assuming that the whisker behaves as a flexible beam. In this
case, pushing a point on the whisker backward or forward
causes the whisker to bend and generates a moment at the
whisker base. Consistent with the models presented in RESULTS,
this figure assumes that the whisker is held rigidly at the base.
Assume that the point on the whisker in contact with the
stimulator is pushed to some value of 	, different from the
whisker’s rest position. The amount of whisker bending, and
hence the moment generated at the base, depends directly on
	 – 	rest, that is, on the position to which the whisker is pushed.
This means that there is no way to “decouple” the absolute
angular position of the whisker (as measured at the point of
stimulator contact) from the moment generated at the base.

The second and third rows of Fig. 8 show that active
whisking permits decoupling of the values of absolute whisker
position 	 and the moment generated at the base. In the second
row, the whisker is actively protracted forward and behaves as
a rigid body until it encounters the object at 	 
 90°. As the
whisker is increasingly protracted into the object, the whisker
begins to bend, and the moment at the whisker base increases
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with increased bending. In the third row, the whisker does not
encounter an object until 	 
 120°. Just as before, the whisker
bends as it is protracted into the object, and the moment at the
whisker base increases with increased bending. The only dif-
ference is that the bending is now occurring near 	 
 120°
instead of 	 
 90°.

Examination of Fig. 8, rows 2 and 3, clearly shows that the
models apply to the whisker encountering an object at any
angular position. The models also apply regardless of the
whisker’s angular velocity. The rate of moment change at the
whisker base depends directly on the angular velocity with
which the whisker is protracted. By learning the relationship
between moment change and angular velocity, the rat can
extract radial object distance d. The second and third rows of
Fig. 8 also show that the small angle approximation applies in
all cases of initial object contact. When the whisker first makes
contact with an object, the initial bending angle is zero. As the
whisker presses by the object, the bending angle increases, and
the angular deflection to which the model holds up depends on
the object’s radial distance, as depicted in Fig. 3C. As dis-
cussed above, we suggest that the rat gains a sense of radial
object distance in the first few milliseconds immediately after
object contact, exactly when the small angle approximation
applies. Importantly, however, the fundamental result of this
paper does not depend on small angles. Large bending angles
will change the function that relates moment M and the radial
distance d, but it will not change the fact that M and d are
monotonically related for a given value of 	. Thus as long as
the rat can learn this relationship, a variation of the model will
apply.

MODELS CAN BE ADAPTED TO APPLY TO MULTIPOINT CONTACT.

The models, experiments, and analysis presented in this study
have assumed frictionless point contact. This means that forces
are assumed to be applied only normal to the vibrissa at the
point of contact. However, recent studies from several labora-
tories have shown that rats engage objects and surfaces in
complex ways, some of which have a large fraction of the
whisker in contact with an object as it sweeps by (Carvell and
Simons 1996). How do the models presented in this paper hold
up under conditions of multipoint contact? The answer to this
question has four components.

First, the initial contact of a whisker with an object will
almost certainly be single-point, before the rest of the whisker
has a chance to make contact with the object. As discussed
above, we suggest that it is only the first few milliseconds after
object contact that the rat needs to estimate object distance.
Second, any force applied to the whisker can be divided into
normal and tangential components. It seems likely that the rat
is able to sense these components independently (Zucker and
Welker 1969), which would permit not only extraction of
radial distance, but also horizontal angle (Gopal and Hartmann
2007). Third, the principle of superposition states that any load
distributed along a beam can be modeled as a resultant force FR
acting at a single point at the beam. This means that moment at
the base can be calculated even for multipoint contact, pro-
vided that the appropriate location and magnitude FR can be
determined. Determining the magnitude and the location of the
resultant force for multipoint contact during natural behaviors
will be an interesting future adaptation to the model. Finally,

point-contact is standard in passive-stimulation experiments in
the anesthetized animal.

Behavioral implications and relevance

WHY DO RATS NEED TO EXTRACT RADIAL DISTANCE WITH A SINGLE

WHISKER AT ALL? It could be argued that during natural
exploratory behavior the rat has use of multiple vibrissae, and
thus might not need to figure out radial distance along each
whisker. Instead, the rat could compare contact between whis-
kers. We can imagine two ways that this comparison could
occur: 1) the rat could either have a sense for the relative
lengths of each of its whiskers and compare contact between
them or 2) the rat could “mold” its entire whisker array around
an object and determine object features by the relative mo-
ments felt at the base of each whisker. The rat could also
combine the two methods.

Let us suppose that the rat has a sense for, or “knows” the
relative length of each of its whiskers. If a whisker of length L
touched an object, but a whisker of length L � �L did not, the
rat could infer that the object was located at a distance between
those two values, after accounting for different whisker base
locations. There are at least three problems with this technique.
First, a recent paper has shown that rats have tactile “hyper-
acuity;” they can distinguish between differences less than �L
(Knutsen et al. 2006). Second, it has been shown that rats can
make accurate distance judgments with a single whisker re-
maining on each side of the face (Krupa et al. 2001). Third,
during complex natural behaviors whiskers are very likely to
contact objects anywhere along their length, not just at their
tips. How can the rat know where this contact has taken place,
given that there are no receptors on the whisker itself? This
study provides a good explanation for how the rat could obtain
this information.

Now let us suppose that the rat shapes or “molds” its whisker
array around an object. What would it mean, mechanically, for
this to occur? It would mean that the whiskers are pushed
against the object until the rat is able to sense that the whiskers
have touched the object. The only possible mechanical cues
that could provide this information are moment and force. No
other variable can describe the “push” on the receptors in the
follicle. As the whiskers are molded around the object, the rat
must determine where along each whisker’s length it has
touched the object. This is one key point of this study.

BEHAVIORAL CONSEQUENCES OF CURVATURE AND TAPER. An
intriguing result of this study is that the inherent curvature of
the whisker plays a relatively small role in determining de-
flected whisker shape for a given force and force location (Fig.
3C). Furthermore, the initial rate of change of moment sensed
at the base is not affected by inherent whisker curvature,
regardless of where along its length the whisker hits an object.
This suggests that the curvature of the whisker may serve some
other behavioral function, such as maximizing the sensory
volume searched during whisking. In contrast, the taper of the
whisker plays a substantial role in determining the way the
whisker will bend and the moment that will ultimately be
transmitted to the whisker base (see APPENDIX B). For a partic-
ular force imposed at a given distance out along the whisker,
the tapered whisker will bend substantially further, yet transmit
the same moment to the base as a cylindrical whisker of the
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same base diameter. The biomechanics thus ensure that large
deflection amplitudes of the distal parts of the whisker are
required to transmit a moment to the base. This makes sense
behaviorally, because the most distal parts of the whiskers are
often deflected through very large amplitudes as they brush
past an object.

COMPLEMENTARITY OF VIBRATIONS AND BENDING. Does whis-
ker taper make the whisker “more sensitive” or “less sensitive”
near the tip? The answer depends on the definition of “sensi-
tive.” The taper makes the whisker bend more for the same
imposed force (more sensitive), but it reduces the moment
ultimately transmitted to the base (less sensitive). This suggests
that object contact near the tip will tend to cause the whisker to
abruptly bend in on itself (or otherwise flick past), and there-
fore implies that the tip would be useful if vibrations were
amplified during resonance (Andermann et al. 2004; Hartmann
et al. 2003; Neimark et al. 2003). This in turn suggests that
differential extraction of texture and shape may occur at
different locations along the whisker as well as within two
different frequency regimens. The two types of information
could be simultaneously extracted in the same whisking mo-
tion: vibrations can be superimposed on the overall deflection
of the whisker.

DO RATS “TAP” OR “SWEEP” THEIR WHISKERS? This study
showed that radial object distance can be determined by ex-
amining how moment at the whisker base changes with angular
position 	 as the whisker is increasingly deflected into an
object. Although outside the scope of this study, it is also
possible to show that local object curvature can be determined
by looking at the second derivative of moment with respect to
time as the whisker is increasingly deflected into an object. If
rats “tap” their whiskers against an object, they would be able
to build up a representation of the object point by point. If rats
“sweep” their whiskers against an object, they would be able to
make use of local curvature information in determining object
shape as well as texture. Combining these two strategies might
help maximize the sensory information acquired. Behavioral
studies to investigate these two potential exploratory strategies
are currently underway. Data from Mitchinson et al. (2007)
suggest that tapping tends to be the preferred strategy.

Physiological correlates and implications for higher-order
neural processing

RESPONSES OF TRIGEMINAL GANGLION NEURONS. In a recent
study, Szwed et al. (2006) recorded from Vg neurons while
stimulating the facial motor nerve to rotate whiskers into
objects placed at varying radial distances. Their results showed
that a subset of Vg neurons (called “touch” cells) encode radial
distance primarily by increases in firing rate. This study offers
a clear biomechanical explanation for these recent physiolog-
ical results.

For example, Fig. 2, C and D, in Szwed et al. (2006), shows
that touch cells increase their firing rate as the object is placed
closer to the whisker base. This is exactly what would be
expected from Fig. 6A of this study, if the Vg neurons were
responding to rate of change of moment (Szwed et al., Fig. 2C)
and to moment (Szwed et al., Fig. 2D). Figure 4 of Szwed et al.
shows that higher velocities at the instant of object contact also
increase the firing rate of Vg neurons. This result is also

predicted by the data in Fig. 6A of our study. Faster velocities
scale the relationship between moment and radial object dis-
tance (compare solid and dashed lines). This makes good
intuitive sense, because the rate of change of moment will be
larger if the whisker is pushed faster past the object. Thus this
study strongly suggests that the touch-sensitive Vg neurons
found by Szwed et al. are responding to the moment and rate
of change of moment at the whisker base.

STATE ENCODING. Responses of Vg neurons have been clas-
sified according to two schemes. The first method divides Vg
neurons into rapidly adapting (RA) and slowly adapting (SA)
cells (Leiser and Moxon 2006; Lichtenstein et al. 1990;
Shoykhet et al. 2000). It has recently been shown that the RA
and SA properties of Vg cells are modulated by the direction of
movement (Jones et al. 2004). The second method classifies Vg
responses by their activity during active touch. Neurons are
described as “whisking,” “touch,” and “whisking-touch” cells
(Szwed et al. 2003, 2006).

This study has shown that whisker angular position, angular
velocity, moment, and the time derivative of moment provide
enough information to describe the 3D coordinates of an
object, as well as static deflection information. This mechanical
representation most naturally lends itself to a state-encoding
scheme in which these variables form the axes of a state-space.
The activity of a neuron can be represented by placing a data
point at the correct place in the state space every time that
neuron fires. The responses of RA and SA cells, as well as
whisking, touch, and whisking-touch cells would form trajec-
tories through the space. In no way do we intend to suggest that
Vg neurons cleanly encode any mechanical parameters or that
the Vg is in any way “imposing” state-encoding on the incom-
ing data. Vg neurons merely respond to highly nonlinear
signals from mechanoreceptors in the follicle. The state-encod-
ing scheme shown in Fig. 7C is intended as a conceptual tool
for grappling with the real-world complexity of Vg neuron
responses.

We suggest that the scheme proposed in Fig. 7C will be
particularly useful for precisely quantifying the spatiotemporal
patterns of activity across the whisker array resulting from
different behaviors. State encoding inherently permits a spec-
trum of response types and allows us to examine how the Vg
neurons “cover” the relevant behavioral space of the rat. This
may ultimately allow us to make strong predictions for coding
strategies in the trigeminal nuclei.

COMPUTATIONS OF GRADIENTS OF DISTANCE AND CURVATURE AT

HIGHER STAGES OF THE NERVOUS SYSTEM. It is well known that
the rat often combines whisking behavior with small, periodic
head movements that tend to be temporally synchronized with
whisking (Brecht et al. 1997; Hartmann et al. 2000; Welker
1964). These head movements seem to allow the rat to obtain
multiple, overlapping samples of the object. If, as we suggest,
information about moment is encoded in trigeminal ganglion
responses, how might it be subsequently processed in the
trigeminal nuclei? We propose that during object exploration,
the trigeminal nuclei are used to compute gradients of object
distance and gradients of object curvature, as follows. 1)
Within a single whisk, ganglion neurons provide information
about the radial distance at which each whisker has contacted
an object. The trigeminal nuclei could then compute the local
curvature of the object by calculating gradients of these dis-
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tances. 2) Across whisks, head movements permit the rat to
compare overlapping whisked samples of the object. The
trigeminal nuclei could compute gradients of local object
curvatures to reconstruct the entire object shape. A very similar
strategy may be used by humans as they perform exploratory
hand movements that enclose objects and follow object con-
tours (Lederman and Klatzky 1987).

WHAT TYPE OF LEARNING IS REQUIRED OF THE RAT WERE IT TO

CALCULATE RADIAL DISTANCE ACCORDING TO THE MODEL PRO-

POSED HERE? Equation 8 relates moment at the whisker base
to object distance through the parameters C and LBT. This in
turn suggests that the rat would need some “knowledge” of
these parameters, which implicitly include parameters such as
Young’s modulus and whisker radius. We do not suggest,
however, that the rat “knows” C or LBT as numbers. Instead,
we suggest that, through interactions with the environment, the
rat gains implicit knowledge of the mechanical properties of its
body. The most general result of this study is that the rate of
change of moment at the base is a curve that monotonically
decreases with object radial distance, and this curve scales
linearly with whisking velocity. This means that object dis-
tance d can always be uniquely inferred from measurement of
M for any given whisking velocity 	. The rat must learn the
shape of the function that relates M, d, and 	 through interac-
tion with the environment. As the whiskers get damaged, fall
out, grow back, age, we expect that it will feel “odd” to the rat
at first, just as when you put on gloves, the movements of your
hands feel different. You have to “learn” the curves that relate
a commanded exploratory movement to a particular sensory
input. This is all that our models require of the rat.

“Take home” messages for investigators of the
vibrissal system

This paper is by necessity replete with technical details. We
want to ensure that the following points are clear.

1) Change in curvature of the whisker and moment (caused
by whisker deflection) are always proportional. They are re-
lated through the quantity EI, representing the whisker bending
stiffness. Both curvature and moment vary as a function of arc
length for a deflected whisker, up until the point of contact. A
whisker cannot be said to have a single curvature, and it cannot
be said to have a single moment. One can only talk about
curvature at a point on the whisker and moment at a point on
the whisker. A useful point to talk about is often the whisker
base, where the rat would actually sense these variables.

2) If an experimenter is performing passive displacement
experiments, in which a whisker is grabbed and shaken, it will
not be particularly useful to calculate the moment at the base of
the whisker. In passive experiments, the moment at the whisker
base is linearly related to angular position of the whisker. (Fig.
8, row 1; Eq. 6). This is very different from situations that can
arise during active whisking (Fig. 8, rows 2 and 3).

3) If an experimenter performing passive displacement ex-
periments for some reason did wish to compute the moment at
the whisker base, it can be calculated from Eq. 6. The exper-
imenter would need to measure the base-to-tip length and base
diameter of the whisker, the angular position of the whisker,
and the radial distance from the whisker base to the contact
location. Both models 1 and 2 will apply to almost all passive

deflection experiments to date, but limitations on their use are
shown in Fig. 3C.

4) Kinematic descriptions of whisker trajectories are not
sufficient to describe the information available to the rat during
active behaviors. During active whisking, the whisker can
experience very different moments while its base is at the same
angular position (Fig. 8, rows 2 and 3). A complete description
of the information available to the rat during active behaviors
must include moment, or its geometrical analog, curvature. To
ensure the use of our equations to experimentalists, we have
expressed them both in terms of moment and curvature. If one
knows the curvature at the whisker base (say from high-speed
video), one can estimate the moment at the base. Conversely,
if one knows the moment at a point along the whisker (say
from contact with a load cell), one can estimate the curvature
near the whisker base.

5) The inherent curvature of the whisker negligibly affects
the dependence of the rate of change of moment on radial
distance. In contrast, the whisker taper has a large influence on
this property.

6) Vibrations of the whisker generated by object contact
near the tip are a natural complement to the low-frequency
moments that can be generated anywhere along the whisker
length. This is likely to permit the simultaneous extraction of
texture and shape.

7) The rat could extract radial object distance by keeping
track of the rate of change of moment at the whisker base along
with whisker angular velocity. This proposed computation for
radial distance works for both translation and rotation and
works even if the rat only keeps track of instantaneous rates of
change in these variables. In theory, this allows the computa-
tion to be performed at every instant in time.

8) The mechanism for computing radial distance proposed
in this study can account for many of the recently discovered
physiological response properties of Vg neurons during active
touch (Szwed et al. 2006).

9) The mechanical description of whisking variables pre-
sented here has shown that angular position, angular velocity,
moment, and the time derivative of moment, can completely
describe the dynamic-state of the whisker. This result naturally
lends itself to a state encoding scheme, describing the dynamic
states of an oscillating cantilever beam. This representation is
likely to be particularly useful when quantifying responses of
Vg neurons during active behaviors, and responses at subse-
quent stages of processing (e.g., the trigeminal nuclei).

10) We propose that the shape of an object can be recon-
structed by finding gradients of distance (r, 	, z) over the sensor
array and gradients of curvature across different positions of
the entire array.

A P P E N D I X A

A N A L Y T I C S O L U T I O N O F T H E S M A L L - A N G L E

D E F L E C T I O N O F A T A P E R E D ( C O N I C A L )

C A N T I L E V E R B E A M

Elasticity equations (Euler 1744; Love 1944; Timoshenko and
Goodier 1970) relate the curvature � of a cantilever beam to the
moment M at its base

� �
d2y

dx2 �
M

EI
(A1)
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where

M � �F�a � x� 0 � x � a
0 a � x � L

In (1), F is the force exerted at a distance a from the base of the beam,
y(x) is the vertical displacement of the beam at each x (horizontal)
location, E is Young’s modulus (also called the elastic modulus) and
I is the second areal moment of inertia. For a cylinder

I �
�r4

4
(A2)

For a cone, however, r varies with length as

r � rbase�1 �
x

L
� (A3)

Substituting Eq. A3 into Eq. A2 yields

I � ��L � x�4,

where � is a constant defined as

� � ��

4
�� rbase

L
�4

(A4)

Inserting expressions for I and M into Eq. A1 for x � a gives

d2y

dx2 � � F

E�
��a � x��L � x��4 (A5)

Integrating once with respect to x yields

dy

dx
� � F

E�
�� 1

2�L � x�2 �
�L � a�

3�L � x�3�� C1 (A6)

And integrating again with respect to x yields

y�x� � � F

E�
�� �a � L�

6�L � x�2 �
1

2�L � x�
�� C1x � C2 (A7)

To find the constant of integration C1 we note that
dy

dx
at x � 0 must

equal zero, so that Eq. A6 becomes:

0 � � F

E�
�� 1

2�L � x�2 �
�L � a�

3�L � x�3�� C1 (A8)

Solving for C1 gives

C1 � �� F�L � 2a�

6E�L3 � (A9)

To find the constant of integration C2, we note that y at x � 0 must
equal zero, so that Eq. A7 becomes

0 � � F

E�
�� �a � L�

6�L � x�2 �
1

2�L � x�
�� 0 � C2 (A10)

Solving for C2 gives

C2 � �� F�2L � a�

6E�L2 � (A11)

Substituting our expressions for C1, C2, and � back into Eq. A7 we
find

y�x� �
2FL4

3E�rbase
4 � �a � L�

�L � x�2 �
3

�L � x�
�

�L � 2a�x

L3 �
�a � 2L�

L2 �, x � a

(A12)

which simplifies to the top half of Eq. 4

To solve for the deflection at values of x greater than or equal to a,
we note that the moment is zero. This means we can write

y�x� � y�a� �
dy

dx
�

x�a

�x � a� (A13)

Substituting in Eq. A6 evaluated at x � a gives

y�x� �
2FLa2

3E�rbase
4 �3Lx � La � 2ax

�L � a�2 � , x � a (A14)

A P P E N D I X B

E F F E C T S O F T A P E R O N W H I S K E R D E F O R M A T I O N

We used model 1 as expressed in Eq. 4 of the main text, to explore
two important consequences of the tapered geometry on whisker
deformation, as would occur when a real whisker contacted an object.
First, whisker taper ensures that the ratio between the displacement at
some distance, a, and the force applied at a increases faster with a for
the tapered whisker than for the cylindrical whisker. Intuitively, this
makes sense: as a given force is exerted at increasing distances from
the base, a tapered whisker will bend more than a cylindrical whisker.
Figure A1 shows this effect for a 50-�N force exerted at 10, 20, and
30 mm along the length of a 60-mm whisker with a base radius of 100
�m. For the force applied closest to the whisker base (a � 10 mm),
the equations describing cylindrical and tapered whiskers yield almost
the same deflected whisker shape. As the value of a increases,
however, the two results diverge, with the tapered whisker deflecting
far more than its cylindrical counterpart.

Figure A1B shows displacement-force curves for models of cylin-
drical and tapered whiskers for forces applied at the same values
distance a as in Fig. A1A. In Fig. A1B, each value on the y-axis
indicates the vertical deflection at point a along the whisker for the
corresponding force F on the x-axis. In other words, Fig. A1B
indicates how much a given whisker will deflect when a force is
applied at point a, for both the tapered and cylindrical beams. In both
cases, the force F increases linearly with the deflection y(a) (as can be
seen directly in Eq. 4), but the displacement associated with a given
force is considerably larger for the tapered whisker than for the
cylindrical whisker.

The above analysis has indicated that (for a given force imposed at
a given distance) a cylindrical whisker will deflect less than a tapered
whisker of the same base radius. This result is not surprising because
the radius (and hence the stiffness) of the tapered whisker at every
point between the base and the contact point is smaller than the radius
of the cylindrical whisker. We next asked: what happens when we
apply the same force to cylindrical and tapered whiskers, but choose
the radius of the cylindrical whisker to match the radius of the tapered
whisker at the point where the force is imposed? The answer is shown
in Fig. A1, C and D. The cylindrical whisker now deflects more than
the tapered whisker. Again, this result should be somewhat intuitive,
because of the difference in radius profiles from whisker base to
contact-point.

Thus one consequence of whisker taper is to ensure a steeper
relationship between displacement and force closer to the tip of the
whisker. This result is summarized in Fig. A1E, which plots the
deflection y(a) as a function of a, for a 50-�N force imposed at a. The
curve for the tapered whisker (base radius 100 �m) falls between the
curves for cylindrical whiskers of base radii 50 and 100 �m. The
effect is easier to observe in Fig. A1F, which plots the identical data
as Fig. A1E, but on a log- log scale. Here it can be seen that the
deflection of the tapered whisker initially matches the deflection of the
cylindrical whisker with the larger radius, but as a increases the trace
curves upward toward the curve representing deflections of the
smaller cylindrical whisker. The tapered geometry thus specifically
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accentuates the magnitude of deflection that will occur further out
along the length of the whisker.

A second difference between the equations for tapered and cylin-
drical whiskers is that deflections in the tapered case depend strongly

on the whisker length, L, whereas the deflections of the cylindrical
case are indifferent of whisker length. In other words, how a whisker
will react to a given imposed force depends on its total length. This
effect is shown in Fig. A1G, which compares the deflections of
cylindrical and tapered whiskers of two different lengths (40 and 60
mm), but with the same base radius (100 �m). In all cases the same
magnitude force is applied 30 mm from the base. The cylindrical
whisker bends the same amount regardless of length, and so only one
curve is seen (blue line). In contrast, the short tapered whisker bends
considerably more than the longer tapered one (red lines).

The effect of whisker length is further characterized in Fig. A1H.
We simulated a 50-�N force acting 10 mm from the base of a whisker
whose length varied from 11 to 60 mm, but whose radius was held
constant. The vertical deflection at the location of the imposed force
(10 mm from the base) was plotted as a function of whisker length for
both cylindrical and tapered whiskers. As described for Fig. A1G, the
deflection of a cylindrical whisker does not vary with overall whisker
length, and so there is only one curve (blue line). In contrast, shorter
tapered whiskers deflect far more than longer ones (red lines). As
whisker length increases, the tapered result asymptotes to the cylin-
drical result. The implication for real rat whiskers is that for a force
imposed at a particular distance (say 10 mm), longer whiskers will
deflect much less than shorter ones. This result would hold true even
if the base radii of all whiskers were the same. This result would not
hold true if the whiskers were cylindrical.
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