
http://ijr.sagepub.com

Research 
The International Journal of Robotics

DOI: 10.1177/0278364907080253 
 2007; 26; 759 The International Journal of Robotics Research

Sergi Bermudez i Badia, Pawel Pyk and Paul F.M.J. Verschure 
 neuronal principles for course stabilization, altitude control and collision avoidance

A fly-locust based neuronal control system applied to an unmanned aerial vehicle: the invertebrate

http://ijr.sagepub.com/cgi/content/abstract/26/7/759
 The online version of this article can be found at:

 Published by:

http://www.sagepublications.com

 On behalf of:

 Multimedia Archives

 can be found at:The International Journal of Robotics Research Additional services and information for 

 http://ijr.sagepub.com/cgi/alerts Email Alerts:

 http://ijr.sagepub.com/subscriptions Subscriptions:

 http://www.sagepub.com/journalsReprints.navReprints: 

 http://www.sagepub.co.uk/journalsPermissions.navPermissions: 

 http://ijr.sagepub.com/cgi/content/refs/26/7/759 Citations

 at Eidgenoesische on May 31, 2010 http://ijr.sagepub.comDownloaded from 

http://www.ijrr.org/
http://ijr.sagepub.com/cgi/alerts
http://ijr.sagepub.com/subscriptions
http://www.sagepub.com/journalsReprints.nav
http://www.sagepub.co.uk/journalsPermissions.nav
http://ijr.sagepub.com/cgi/content/refs/26/7/759
http://ijr.sagepub.com


Sergi Bermúdez i Badia
Laboratory for Synthetic Perceptive, Emotive and Cognitive Systems,
Universitat Pompeu Fabra, Ocata num. 1, 08003 Barcelona, Spain
Institute of Neuroinformatics, ETH/University of Zurich
Winterthurerstr. 190, CH-8057 Zurich, Switzerland
sergi.bermudez@upf.edu

Pawel Pyk
Institute of Neuroinformatics, ETH/University of Zurich
Winterthurerstr. 190, CH-8057 Zurich, Switzerland

Paul F.M.J. Verschure
Laboratory for Synthetic Perceptive, Emotive and Cognitive Systems,
Universitat Pompeu Fabra, Ocata num. 1, 08003 Barcelona, Spain
ICREA & Technology Department, University Pompeu Fabra
Passeig de Circumval.lació 8, 08003, Barcelona, Spain

A fly-locust based
neuronal control system
applied to an unmanned
aerial vehicle: the
invertebrate neuronal
principles for course
stabilization, altitude
control and collision
avoidance

Abstract

The most versatile and robust flying machines are still those produced
by nature through evolution. The solutions to the 6 DOF control prob-
lem faced by these machines are implemented in extremely small neu-
ronal structures comprising thousands of neurons. Hence, the biolog-
ical principles of flight control are not only very effective but also
efficient in terms of their implementation. An important question is to
what extent these principles can be generalized to man-made flying
platforms. Here, this question is investigated in relation to the compu-
tational and behavioral principles of the opto-motor system of the fly
and locust. The aim is to provide a control infrastructure based only
on biologically plausible and realistic neuronal models of the insect
opto-motor system. It is shown that relying solely on vision, biologi-
cally constrained neuronal models of the fly visual system suffice for
course stabilization and altitude control of a blimp-based UAV. More-
over, the system is augmented with a collision avoidance model based
on the Lobula Giant Movement Detector neuron of the Locust. It is
shown that the biologically constrained course stabilization model is
highly robust and that the combined model is able to perform au-
tonomous indoor flight.
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1. Introduction

Nature has produced highly versatile and robust flying ma-
chines (Dudley 2000). Indeed it was bird flight itself that in-
spired the Wright brothers in the construction of the first fixed-
wing air plane (Kelly 1950). In addition to having informed
the construction of flying platforms themselves, nature can
also provide us with solutions to the 6 DOF control problem
faced by flying machines (Dudley 2000). For instance, drag-
onflies can fly in cluttered environments at a speed of 102 body
lengths/s (Marden 2005), while a blowfly can make rapid flight
maneuvers at up to 1.2 m/s, with accelerations of up to 20 m/s2

(Schilstra and van Hateren 1999). These flight maneuvers are
mainly generated by the opto-motor system of a brain of about
1 mm3 comprising about 200,000 neurons (Posey et al. 2001).
Although it is not the only system used for navigation, ap-
proximately two-thirds of the fly brain is dedicated to visual
processing (Strausfeld 1976). Hence, the brain of flying in-
sects includes principles of visual flight control that are not
only very effective but also efficient in terms of their imple-
mentation. An important question is to what extend these prin-
ciples can be generalized to man-made flying platforms. Here
we investigate this question in relation to the computational
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and behavioral principles of the opto-motor system of the fly
and locust. We will evaluate to what extend a biologically con-
strained neuronal model of this system is able to control an
Unmanned Aerial Vehicle (UAV).

A large number of models for insect based opto-motor be-
havior have been proposed and many of these show reasonably
good results (Harrison 2005� Netter and Franceschini 2002�
Martin and Franceschini 1994� Franceschini et al. 1992). How-
ever, occasionally biologically unrealistic sensors are included
in the control system to achieve a functional result (Zufferey et
al. 2002� Ichikawa et al. 2001). Instead, as opposed to resorting
to additional sensors we aim at providing a control infrastruc-
ture based only on vision and biologically plausible and real-
istic neuronal models of the insect opto-motor system. In ad-
dition, a considerable amount of work has been done on obsta-
cle avoidance, homing and trajectory following using ground
based robots (Netter and Franceschini 2002� Harrison 2005�
Blanchard and Verschure 1999� Blanchard et al. 2001� Hafner
et al. 2002� Hafner and Salomon 2002� Martin and Frances-
chini 1994� Franceschini et al. 1992). However, despite the rel-
evance of these robot experiments, using ground based mobile
robots as a platform reduces the 6 DOF problem that flying
insects need to solve to a 3 DOF problem. The latter negotiate
complex dynamics that include inertia and 6 DOF that lead to
problems of course stabilization, altitude and position control
that ground based systems do not have to face. Hence, we will
use flying robots to investigate and reconstruct the principles
underlying biological flight control systems. The insect flight
control system is of particular interest because of its ability
to show robust flight stabilization, collision avoidance, secure
takeoff, landing and so on using relatively simple visual mech-
anisms (Tammero and Dickinson 2002� Srinivasan et al. 1996�
Egelhaaf and Borst 1993� Egelhaaf 1985� Reichardt 1961). In
the field many types of UAVs are and have been used, most
of these helicopter, fixed wing or blimp based (Skafidas 2002�
Iida 2001� Zufferey et al. 2002� Musial et al. 2000� Saripalli
et al. 2003� Netter and Franceschini 2002). Since our opto-
motor model is a component of a larger system that has to serve
chemical localization and search (Pyk et al. 2006) we limit its
application to a dirigible that will exert a minimal effect on the
structure of the chemical plumes in its environment.

2. Methods and Materials

2.1. Setup

We have developed a blimp-based robot designed to work
within indoor environments (Figure 1). The dimensions of
the hull are 30 by 120 cm (radius � length) that provides
for a payload of about 250 g at 600 m over sea level. Four
propellers are mounted in a lightweight balsa wood struc-
ture providing the robot with independent control for altitude

and translation. The propellers (DIDEL SA, Belmont, Switzer-
land, www.didel.com) are hand made and optimized for the
combination of motors (08GS – 8 mm motor, API-Portescap,
La Chaux-de-Fonds, Switzerland, www.portescap.com) and
1:7 gearboxes (8R78 mm, DIDEL SA, Belmont, Switzerland,
www.didel.com), providing 20 g thrust per motor at full speed.
The robot is powered using a 10 g lithium-polymer battery
(West-technik, Germany) providing for about one hour of au-
tonomous flight.

The UAV is equipped with two CCD color cameras (“Mod-
ule 3”, Conrad Electronics, Germany) mounted on the front
part separated by 110�, pointing to the left and right side re-
spectively. Each of these lightweight high-resolution cameras
(628 [H] x 582 [V] pixels) is equipped with a wide-angle lens
(2.5 mm lenses, Conrad Electronics, Switzerland). Given the
opening angle of the cameras (100 [H] � 87 [V] degrees),
the combined camera system covers over 180� of the frontal
horizontal sphere. The images acquired with the cameras are
transmitted via two lightweight PAL transmitters (SDX-21LP
video transmitters working in the 2.4 GHz band, produced
by RF-Video, Canada) to our ground station where they are
further processed. An on-board radio receiver allows the re-
mote control of the speed of all the motors independently via
a radio link. Serial communication with the flying platform is
established using a pair of BIM433-F transceivers (Wireless
World AG, Switzerland), allowing for up to 115200 baud. The
ground station setup consists of two PAL receivers (Wavecom,
RF-Video, Canada) that receive the signals from the on board
cameras� a quad combiner (Grand Virtual Guard, ARP Data-
con) that combines them together in just one image� and a USB
frame grabber (Lifeview USB Capview, Lifeview, Taiwan) that
allows a laptop or PC to acquire the video stream.

2.2. Experimental Room and 3D Tracking System

Experiments are performed in a 5 � 4 � 4.5 m room with
randomly distributed solid black squares on the walls and the
floor as visual cues (Figure 1). In order to analyze and quantify
the trajectory and the behavior of the UAV accurately, we have
developed a 3D real time visual tracking system that provides
us with the position (x, y, z), heading direction (xh , yh , zh) and
linear velocity of the UAV. The tracking system, uses two in-
frared cameras (2.5 mm lenses, Conrad Electronics, Switzer-
land) mounted at the ceiling at 4.5 m and uses stereoscopy
to infer the 3D position of two IR LEDs mounted on top of
the hull of the UAV. The transformation of the two camera
pixel coordinates into a pair of three dimensional positions is
achieved with a multilayer perceptron. A large number of reg-
ular spaced pre-mapped positions in the room are used as ref-
erence points for interpolation. The tracking system achieves
an accuracy of up to 5 cm. Furthermore, the tracking data is
acquired synchronously with the internal states and responses
of the neural model that controls the flight behavior. Hence, we
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Fig. 1. Image of the blimp-based UAV in our test arena. The
walls and the floor of the 5 � 4 � 4�5 m room are covered
with randomly distributed black squares to provide visual cues
to the UAV. A vision based tracking system is mounted at the
ceiling of the room, providing us with the position, orientation
and velocity of the UAV.

are able to directly correlate the neuronal states of our model
to the behaviors produced by the UAV. The data acquisition is
performed at 5 Hz and the data analysis is performed using
Matlab (Mathworks, USA) and our simulation environment
IQR421 (Bernardet et al. 2002).

3. Models

Our neuronal model includes components for course stabiliza-
tion, altitude control and collision avoidance and is derived
from our current understanding of the insect opto-motor sys-
tem (Reichardt 1961� Egelhaaf and Borst 1993� Srinivasan et
al. 1996� Kern et al. 2001� Braitenberg 1967). Our model com-
prises several processes performed in different layers of the
insect visual system (Figure 2). These systems are considered
to have a hierarchical organization where the signals from the
photoreceptors are ultimately integrated in the response of, so
called, wide field neurons that are tuned to specific properties
of the visual input. For this reason these high-level neurons are
also called matched filters. The first step in the processing hi-
erarchy occurs at the level of the lamina where the luminance
signal acquired by the photoreceptors is normalized using a
logarithmic compression (Levine 1985) with:

Iphoto � ki � log�k j Iinput � const� (1)

where Iphoto is the photoreceptor response, Iinput the input
luminance level and ki � k j � const scaling constants. Subse-
quently an edge enhancement is performed in the Lamina us-

ing a centre/surround inhibition, a method similar to a differ-
ence of Gaussians based zero-crossing edge extraction (Gon-
zalez and Woods 1992):

Edgeimage � I nputimage � Di f f GaussK ernel (2)

where I nputimage is an input image, Di f f GaussK ernel a dif-
ference of Gaussians kernel and Edgeimage the resulting image
from the convolution operation.

Di f f GaussK ernel � f ��� � 1�� f ��� � 2� (3)

f ��� � � � 1	
2��

exp

���x � ��2
2� 2

�
(4)

with � the mean value, and � 1 � � 2 fixed standard deviation
values.

After the isolation of the contrast information, three parallel
processing streams deal with extracting optic flow information
relevant for flight stabilization, altitude control and collision
avoidance. There are two different priority levels: stabilization
and altitude control responses are inhibited whenever a colli-
sion is detected, hence, an avoidance action is always priori-
tized.

3.1. Course Stabilization and Altitude Control: Elementary
Motion Detectors and the HS/VS system

Course stabilization and altitude control are achieved by re-
acting to any drift or perturbation of basic optic flow patterns
(Srinivasan et al. 1996). These optic flow patterns are detected
by the, so called, wide-field Horizontal and Vertical System
neurons (HS and VS respectively) located in the Lobula plate
layer (Hengstenberg 1982). These cells are known to be mo-
tion sensitive and they respond maximally to a stimulus mov-
ing in a certain preferred direction whereas they show a de-
crease in the membrane potential due to stimuli moving in the
opposite direction, i.e. null direction (Egelhaaf and Borst 1993�
Egelhaaf 1985). The responses of these visual neurons result
from the integration of the activity of local visual motion sensi-
tive cells called Elementary Motion Detectors (EMDs). Since
these neurons are able to extract egocentric motion informa-
tion, they are therefore good candidates to be used for a set
of tasks such as course stabilization, altitude control, odome-
try, etc. (Srinivasan et al. 1996� Tammero and Dickinson 2002�
Franceschini et al. 1992). Both HS and VS cells are neurons
of the visual system believed to be involved in providing rele-
vant visual information that is used in flight control (Egelhaaf
1985). These cells encode the direction of rotation of the an-
imal largely independent of the spatial layout and texture of
the environment (Hengstenberg 1982). Only when the animal
is very close to an object are the responses affected (Kern et al.
2001� Tammero and Dickinson 2002).

In the specific case of Drosophila, there are about 800 om-
matidia and 8 photoreceptors (R1–R8) per ommatidia (Ready
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Fig. 2. Functional (left) and anatomical (right) structure of a prototypical insect visual system based on the locust. See text for
further explanation.

et al. 1976). In our implementation a slightly lower resolution
is used instead: 25�25 input pixels (625 pixels). Furthermore,
flies have about 50–60 wide-field motion sensitive neurons or
tangential cells that encode motion information (Hengstenberg
1982). Instead, our implementation only makes use of four
wide-field motion sensitive neurons. In our model, these cells
integrate the response of 25 � 25 local motion sensitive cells
(EMDs). A higher resolution is impractical since the compu-
tational cost would slow down the system and would provoke
aliasing related problems. In contrast, a lower resolution would
reduce the motion sensitivity of the model. Since, each one of
the EMDs is sensitive only to local motion in the visual field
(Egelhaaf and Borst 1993� Egelhaaf 1985�Douglas and Straus-
feld 1996� Reichardt 1961), the integration of the EMDs over
the whole visual field produces a VS/HS cell type of response
that encodes the ego-motion of the insect. Using this informa-
tion provided by the HS/VS cells we can generate the motor
actions that will compensate for any drift of the UAV or main-
tain a specific altitude.

Up to now we have described a hierarchical structure that
goes from the photoreceptors to the selection of the opto-motor
action. Every layer described above performs an important op-
eration that only makes sense in the given context of the neural
structure. Therefore, the output of the HS/VS cells can only be
understood as the integration of EMDs, and those in turn only
as a pairwise processing of neuronal responses in the Lamina
and so on.

The so called “correlation model” of the EMDs, or Re-
ichardt correlator, was proposed long ago (Reichardt 1961)
and this model only requires a few elaborations to reflect the

specific physiological features of the fly’s motion detection
system (Egelhaaf and Borst 1993� Higgins et al. 2004) (Fig-
ure 3).

The Reichardt correlation model is applied at the pixel level
between neighboring pixels (Ia and Ib in Figure 3) separated
by a certain distance D. There are two branches, the null and
preferred output, which are computed independently. Given a
translating object from pixel a to b at speed 	 , the Reichardt
correlation Rcorr�Ia� Ib� is defined as:

Rcorr�Ia� Ib� � Outpre f erred�Ia� Ib�

� Outnull�Ia� Ib� (5)

Outpre f erred�Ia� Ib� � Ia �t � 
� � Ib �t� (6)

Outnull�Ia� Ib� � Ib �t � 
� � Ia �t� � (7)

Given the speed 	 and a pixel separation of D,

Ib �t� � Ia �t � D�	� (8)

then,

Outpre f erred �Ia� Ia �t � D�	��

� Ia �t � 
� � Ia �t � D�	� � (9)

We find that Outpre f erred and Outnull are maximum when,

�

�

Outpre f erred � 0� for 
 � D�	 (10)
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Fig. 3. HS/VS cell implementation, making use of the Re-
ichardt correlation (Reichardt 1961), where 
 represents a de-
lay, X multiplication and – subtraction. In this case, the pre-
ferred direction of motion is rightward (arrow). The Reichardt
correlation (Rcorr(Ia , Ib)) is extracted between neighboring
pixels (Ia , Ib). The result of all pixel level correlations is spa-
tially integrated to construct a wide field directionally selective
output.

and
�

�

Outnull � 0� for 
 � �D�	� (11)

The resulting wide field motion selective output is:

Outputdirectional �
pixels�

i

Rcorr �Ii � Ii �t � D�	��

�
pixels�

i

Outpre f erred �Ii � Ii �t � D�	��

� Outnull �Ii � Ii �t � D�	�� (12)

and given I j � Ii�t � D�	�,

Outputdirectional �
pixels�

i� j

Outpre f erred
�

Ii � I j
�

� Outnull
�

Ii � I j
�
� (13)

We observe that the Reichardt detector is optimized for a
certain speed. The closer D�	 is to 
, the higher the preferred

output is (equation (10))� and therefore, the closer D�	 is to –

, the higher the null output is (equation (11)). The subtraction
of the null branch to the preferred one results in a local motion
directional selective response.

The integration of the EMD responses with the same pre-
ferred direction over the whole visual field encodes the total
motion perceived in that particular direction and provides a
HS/VS type of response (equation (13)). After computing the
response difference of left and right, and up and down motion
sensitive neurons, a winner-take-all network decides the actual
direction of motion and intensity for both altitude and trans-
lation, and consequently the appropriate compensation motor
command. The neural action states are read-out by the neural
simulator software iqr421 and packaged into a motor com-
mand that is transmitted to the UAV.

3.2. Collision Avoidance: The Lobula Giant Movement
Detector

The target animal to be studied for the neuronal correlate of ob-
stacle avoidance in the insect brain is the locust. This insect is
known to have a highly specialized neuron in the Lobula plate
that responds to imminent collisions or approaching preda-
tors: the Lobula Giant Movement Detector (LGMD). Many
studies have focused on this neuron and a number of neural
models have been proposed. As opposed to the course stabi-
lization task, a few biologically plausible models for collision
avoidance have been proposed and applied to mobile robots
(Blanchard and Verschure 1999� Blanchard et al. 2001� Harri-
son 2005). So far, however, none of these have been tested on
UAVs (Iida 2001� Zufferey et al. 2002, Netter and Franceschini
2002).

The LGMD increases its firing rate in response to an ap-
proaching object. Recent studies have modeled the LGMD re-
sponses using a multiplication operation between the angular
velocity 
 
, and angular size 
 , of an approaching object:

F � 
 
 exp ��� � 
� �

with � � 1

tan �
 threshold�2�
� (14)

Here F represents the output firing rate and 
 threshold is an
animal and species dependent parameter. It has been shown
that equation (14) provides a very accurate description of the
responses of the LGMD neuron to looking stimuli (Gabbiani
et al. 2002). Hence, we will use it as a benchmark for our own
model of this neuron

Earlier we presented a model of the LGMD that was tested
on mobile robots (Bermúdez et al. 2004). Here we present
a further elaboration of this model that is based on the Re-
ichardt correlation detector and that is able to work in real-
world 3D environments. We quantified and successfully tested
this model on a blimp-based UAV.
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Fig. 4. LGMD model. Left panel: Implementation of the LGMD model, making use of a pre-synaptic Reichardt correlator
network, where 
 represents a delay, X the multiplication operation and – the subtraction operation. The LGMD integrates
excitation and inhibition over time and thresholds it. Right panel: diagram of the LGMD neuron. A large excitatory pre-synaptic
arborization provides the main input to the cell, and two post-synaptic inhibitory connections. The LGMD cell projects onto the,
so called, Descending Contralateral Movement Detector (DCMD) that reproduces the LGMD activity 1 to 1 up to 400Hz (Rowell
1971). See text for further explanation.

Our model assumes that directional motion information of
the specific motion detectors of the lamina is used a poste-
riori to detect expanding, i.e approaching stimuli. Moreover,
our model proposes that the EMD responses found in the lam-
ina are integrated by the LGMD to build up a system that is
able to compute the amount of expansion from the visual input
(Figure 4). The LGMD would then receive input from motion
detectors and emit spikes when this integrated signal exceeds
a specific threshold, i.e an integrate and fire neuron.

The neuron model is built from a capacitor C and a resistor
R connected in parallel to ground on one end and driven by the
current I on the other end (Koch 1999):

C
dV �t�

dt
� V �t�

R
� I �t�� (15)

A switch is used to reset the membrane potential to zero af-
ter a spike. For a constant input current I the voltage is defined
by:

V �t� � I R � �1� exp ��t�RC��� V �t � 0�

� exp ��t�RC� � (16)

The voltage at the membrane of the integrate and fire neu-
ron will increase asymptotically to V � I R. While the voltage
is below the firing threshold (V � VT h) the neuron remains
silent, and once VT his reached it produces an action poten-
tial (spike) and resets the membrane voltage V �t� to zero. The

charging time constant of the membrane potential is defined as
� � RC .

Analog to the HS/VS neuron model, the Reichardt corre-
lation is used to compute local motion at the level of pixels.
A topographic remapping allows us to correlate the activity of
pixels that are aligned radialy through the center of the image.
This process is equivalent to the integration of the responses of
the EMDs that are sensitive to radial outward motion through
the center of the image (Figure 4). Then, the looming sensitiv-
ity of the LGMD model emerges from its particular connec-
tivity with the EMD neurons. However, the more edges in the
image the more activity will come out of the correlators. In
our model this stimulus-dependent aspect of the neuronal re-
sponses is compensated for via post-synaptic inhibition. The
sum of the pixel values of the detected edges is used as a nor-
malizing factor via the feed-forward inhibition that renders the
total input to the LGMD contrast invariant (Figure 4).

Each of the cameras mounted on the front part of the UAV
feeds its own visual processing streams that converge onto a
LGMD neuron. Whenever a train of spikes is produced by one
of the simulated LGMD neurons, either left or right, it triggers
an avoidance reaction in the opposite direction, performing a
turn over of an angle that is defined by the strength of the re-
sponse of the LGMD. If both right and left LGMD models are
active at the same time, as can happen in corners, the avoidance
reaction is a straight reverse movement. In the case of insects
such as flies, they tend to land in these situations (Tammero
and Dickinson 2002).
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Fig. 5. Time plot of the response of a modeled wide-field mo-
tion sensitive cell (HS and VS) stimulated first in its preferred
direction, then in its null direction and finally without stimula-
tion (no motion in the visual field).

4. Results

4.1. Motion Detectors

Both the course stabilization and the collision avoidance sys-
tems of our model rely on the EMDs (equation (5)) and
the wide-field HS/VS neurons that integrate these EMD re-
sponses. These neurons show a strong response to motion in
their preferred direction and a reduced response to motion in
their non-preferred or null direction (Egelhaaf and Borst 1993�
Egelhaaf 1985). Our model indeed displays this property (Fig-
ure 5). Motion in its preferred direction produces an increase
of the membrane potential while motion in the null direction
has the opposite effect. Hence, the physiological signature of
our EMD model is consistent with that of its biological coun-
terpart.

4.2. Course Stabilization

Although the properties of the EMD system are rather well
studied at the level of single cells and small populations, it is
unclear how they collectively can contribute to course stabi-
lization. Hence, here we evaluate their capabilities to stabilize
a dirigible in the real-world. An important phenomenon ob-
served in the dynamics of dirigibles are the effects caused by
the added mass and Coriolis forces that prevent it from fol-
lowing a straight course. In an attempt to translate forward, a
blimp acquires an angular acceleration in yaw that produces an
increasing change in its heading direction over time. This is a
standard engineering problem that is often solved with the inte-
gration of a gyroscope in the control system of the flying plat-
form (Zufferey et al. 2002). Instead, our approach relies solely
on vision and EMD type computations to perform this task. In

order to evaluate the performance of the model, a first test is
performed under ideal conditions, without wind or any other
disturbance (Figure 6). The UAV is set to fly in a straight tra-
jectory using the stabilization system to compensate for even-
tual drifts and perturbations. We observe that for all trials the
UAV is kept on a straight trajectory.

The control experiment where the stabilization system is
disabled shows that also our UAV displays a prototypical drift
(Figure 6, right panel, dashed line). However, this phenom-
enon is totally suppressed and the UAV shows straight trajec-
tories when the stabilization system is active. During these test
flights the UAV shows a maximum off-course trajectory devi-
ation of 15� with respect to the ideal trajectory, with a mean
deviation of 7.05�. During these tests a mean velocity of 0.62
m/s is maintained.

One way to test the robustness of the stabilization system
to external disturbances is by creating a controlled bias in the
motor system of the robot. Our UAV is provided with indepen-
dent control for altitude and translation, and therefore we can
disturb the translational motor forces without modifying the
altitude control. There are two bidirectional motors dedicated
to forward/backward translational forces, and each of them is
equipped with a four-blade propeller. In the following test, one
of the propellers used for forward thrust will be replaced by a
two-blade propeller. As a result this motor loses about 23% of
its power, inducing a constant bias in the motor control

In the biased motor control experiment we observe a max-
imum off-course deviation with respect to the straight one of
10.7� (Figure 7, left panel). The mean deviation of the trajec-
tory followed by the UAV is 7.2� with a mean forward speed of
0.23 m/s, which is practically the deviation observed without
motor bias. Compared to the previous experiment the maxi-
mum off-course deviation is 5� lower. This can be explained
in terms of the sensitivity threshold of the system, since higher
drifts are more easily detected than very small ones. The mean
deviation of the trajectory followed by the UAV is compara-
ble between the two experiments. Hence, our model is able to
completely compensate for a significant motor bias.

The last experiment assessed the efficiency of the stabiliza-
tion model under extreme conditions� total absence of right
propulsion. In this case the right propeller was totally removed
and the UAV was forced to fly forward (Figure 7 right panel).
Usually in this situation, the UAV starts turning in rightward
circles in an uncontrolled manner due to the torque generated
by the only remaining motor. However, the stabilization model
tries to maintain always a constant heading direction (Figure 7
right panel). The result of this experiment is that after 14 sec-
onds of free flight, the UAV was displaced just about 1 me-
ter to the right and only slightly changed its heading direction
(2.8�/s). The fact that the robot is only using the left motor has
to be taken into account in order to understand the lateral dis-
placement to the right since the UAV has no way to compen-
sate for it. The UAV is turning right when forward commands
are sent and then the stabilization system corrects for this drift.
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Fig. 6. Test flights traces using the stabilization model. Left panel: Six traces using the course stabilization system in our test room.
Right panel: Comparison between a non-stabilized run and one with our biologically based model. The dashed line indicates the
flight trajectory when the course stabilization model is disabled. The arrows on the trace represent the motor compensation forces
applied to the UAV. The UAV is drawn to scale.

Fig. 7. Stabilization behavior with biased motor control. Left panel: Horizontal view of the trajectories of six test flights using the
stabilization model for the control of an unbalanced propulsion system. Right panel: trajectory of the UAV in absence of the right
propeller for a period of 14 s, resulting in a lateral displacement of about 1 m. while attempting to move forward. The direction
of the arrow head indicates the heading direction of the UAV, and its length is proportional to the UAV speed. The UAV is drawn
to scale.

During the duration of this experiment, the UAV has attempted
to move forward 30% of the time, and it has been compensat-
ing the resultant drifts the remaining time. The resulting mean
velocity is 0.08 m/s.

We compare the above three experiments by evaluating the
difference of the motor actions generated (Figure 8). Under
ideal conditions left and right rotations should be the same (ex-
cept for the added mass and Coriolis effect), and therefore, the
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Fig. 8. Comparison of the motor actions taken in the three experiments. The histograms represent the power used for left rotation
minus the one used for right rotation for three experiments: (a) unbiased motor control� (b) biased motor control and (c) removed
right propeller.

histograms should be symmetrical and centered at 0. We ob-
serve that this is indeed the case for the first set of experiments
(Figure 8, left panel), whereas in the case of biased motor con-
trol, the fraction of compensatory commands to the right motor
increase proportional to the bias in the thrust of the right motor
(66%). This effect further increases to 70% in the absence of
the right propeller. Moreover, not only the compensation time
increases but also the power used for the compensation actions
(Figure 8). All these experiments corroborate the effectiveness
and robustness of the system. Under very different conditions,
our fly-based stabilization system is able to compensate drift
and perturbations without compromising overall performance.

4.3. Altitude Stabilization

Our model of course stabilization can also be used for alti-
tude control. In this case the upward and downward optic flow
detected by our model is used to trigger compensation motor
commands that cancel these flow patterns, i.e. keeping a con-
stant altitude. Our analysis of the responses of the UAV shows
that the motor compensation forces of the altitude control sys-
tem are tightly coupled to variations of the altitude of the UAV
(Figure 9 bottom panel). Thus, we can observe that the sys-
tem is trying to compensate the descending tendency of the
UAV with a strong upward response proportional to the verti-
cal displacement detected with the neural model and vice versa
(Figure 9 bottom panel).

All the traces obtained are found to be constrained to a nar-
row margin of just 0.66 m. for a journey of up to 8 s (Figure 9,
top panel). The traces present a mean altitude of 1.7 m. and a
standard deviation of 0.1 m. The standard deviation compared
to the size of the blimp (� 0.6 m high) represents only about
18% of blimp height.

Fig. 9. Altitude control. Top panel: Lateral projection for six
test traces of the UAV with non-biased motor control. Bot-
tom panel: A selected representative trajectory with standard
deviation (�lled area) that shows the relationship between the
behavior of the UAV and the responses of the altitude control
system. The length of the arrows is proportional to the value
of the motor command sent at that very moment in time. The
UAV is drawn to scale.

There appears a constant delay of about one second be-
tween the instant when the blimp is displaced and the cor-
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Fig. 10. Responses of the LGMD model to five consecutive
approaching and receding maneuvers at 0.25 m/s. The model
shows high activity when approaching whereas no activity
while receding. Adapted from Bermúdez et al. (2004).

responding compensatory response (Figure 9 bottom panel).
This response latency is due to the use of the Reichardt cor-
relator model that requires integration and time delayed com-
parisons (Figure 3, equation (5)) and the computational cost of
running this system in real time. However, the impact of this
delay is negligible compared to the one caused by the large in-
tegration time required to have a reliable estimate of the optic
flow. This integration time is modeled in our system by making
use of high membrane persistences (equation (15)), equivalent
to a low-pass filter. In addition, we are constrained by the ac-
quisition rate of the video data which is 15 frames/s. A faster
video acquisition system would reduce the latency consider-
ably. Hence, the delays observed in our system are more due
to implementation issues than to fundamental properties of the
model.

4.4. Collision Avoidance

Collision avoidance in our model is based on the locust LGMD
neuron. In addition to the evaluation of this model in flight
tests we use an off-line method to validate its biological plau-
sibility similar to those used in physiology (Gabbiani et al.
2002� Hatsopoulus et al. 1995). Here, in order to characterize
the model responses with respect to looming stimuli, black-
filled expanding and contracting squares of different sizes on
a white background have been presented as visual input to the
LGMD model. A distance range from 2.5 to 3.5 m is chosen
for these approach maneuvers. From five to ten experiments
are performed for looming speed values ranging from 0.1 m/s
to 0.5 m/s.

Consistent with the properties of its biological counterpart,
the responses of the model show a strong activation and a
high firing rate during the approaching maneuvers whereas
no activity is shown during the receding ones (Figure 10).
This demonstrates the sensitivity of our model to looming, and
therefore the possibility of applying it to the collision detection
task.

Subsequently, 10 repetitions for a number stimulus speeds
(equation (14)) were performed using the same stimuli. When
we evaluate the firing rate (spikes/s) of the responses of
our model LGMD neuron to different of l/v ratios (object
size/object velocity) (Figure 11, left panel), an increase in the
activity and a later frequency peak is observed as the stimu-
lus speed increases. This prototypical behavior of the LGMD
neurons is systematically reproduced by our model. The corre-
lation between our model and the formal description of LGMD
physiology (equation (14)) is between 0.88 and 0.94 (Fig-
ure 11, right panel). The responses of our model, however,
have to be understood as an emerging property from the inte-
gration of the responses of many motion sensitive cells (EMD-
like neurons) combined with a gain control signal (Figure 4)
and not from the multiplication of angular speed with angular
velocity per se. Therefore, and consistent with other EMD-
based models (Harrison 2005), the explicit measurement and
representation of angular speed and angular velocity are not
required for the collision avoidance task.

To be successful in the collision avoidance task, the animal
must not only reliably detect an imminent collision but also
do it at a prudent distance. This is also crucial when dealing
with fast moving vehicles, vehicles with slow reaction times
or when the inertial forces play an important role, as in the
case of dirigibles and underwater vehicles. Hence, we have as-
sessed this relationship between distance and detection for our
LGMD model (Figure 12). Our analysis shows a later response
for high speeds, being in the worst case at a distance around
1.75 m. In addition, the peak in firing frequency always occurs
before the collision happens, largely independent of the ap-
proaching speed. These results show that the responses of our
model LGMD are consistent with those of its biological coun-
terpart and that it can provide information that can be used for
obstacle avoidance.

To measure the performance of the collision avoidance
model we counted the number of successfully detected col-
lisions, false detections and missed collisions using a ground
robot in an arena delimited by randomly textured walls. We
observed that 89% of the collisions are successfully detected
and 7% are false positives and 4% missed collisions.

4.5. Behavior

We evaluate the overall performance of our biologically based
control model in free flight experiments where the UAV is con-
trolled by the combined course stabilization, altitude control
and collision avoidance neural models. This experiment con-
sists of a four minutes flight in our 5 � 4 � 4�5 m test room.
We observe that during this period the UAV is able to negotiate
this environment with a minimal number of collisions, show-
ing continuous flight without getting trapped in corners. The
LGMD model shows obstacle detection at a mean distance of
1.7 m. from the wall within a range of 1 to 2.7. The largest
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Fig. 11. Response characteristics of the model LGMD. Left panel: Theoretical evolution of the LGMD responses according to
equation (14) for a range of looming speeds, where the ratio l��	� represents the ratio between object size and speed. Right panel
top: Measured evolution of our model responses with the l��	� ratio. The raw data of our model is fitted using equation (14). Right
panel bottom: Evolution of the angular size of the looming object over time. Ten approaching maneuvers have been performed
for every speed (0.1, 0.4 and 0.5 m/s).

distance in the test room is about 6.5 m (Figure 13). This mean
obstacle detection distance is calculated using the first LGMD
model spike as the position at which the system detects the col-
lision. Avoidance maneuvers are performed with a mean time
of 3.9 s. In order to trigger an avoidance reaction the LGMD
model response is integrated for some time, and when this in-
tegrated response exceeds a certain threshold a collision avoid-
ance maneuver is triggered. This integration over time avoids
having false positive detections while allowing the UAV to get
closer to the walls, and therefore explore a bigger area. This
explains that a collision can be detected at 2 m from the wall
but a reaction is not triggered until the UAV is close to the wall
(Figure 13). Hence, at this point a trade-off between the speed
of the UAV and its collision detection appears. The higher the
flight speed, the faster the rate of looming of stimuli in front
of the UAV, although less time is available to avoid it. In ad-
dition, we observe that the flight trajectories between the dif-
ferent points of rotation, i.e. avoidance, are practically straight
due to the drift compensation mechanisms or our model. The
altitude standard deviation of the blimp during this experiment
was 0.16 m.

5. Discussion and Conclusions

We have presented a model of flight control, including course
stabilization, altitude control and obstacle avoidance, based
on our current understanding of the opto-motor systems im-
plemented in the brains of flying insects. These experiments
demonstrate that the underlying principles of insect visual

Fig. 12. Firing rate versus distance of the stimulus to the
LGMD model for a constant stimulus size and three different
approaching speeds (0.1, 0.2 and 0.4 m/s). Collision distance
and the peak firing rates are marked with a dashed line and
solid line respectively. Each trace corresponds to an average of
10 approaching maneuvers.

navigation can be generalized to UAVs, and that autonomous
flight can be achieved by the combination of simple reac-
tive systems. The simplicity of these three insect-based reac-
tive systems (course stabilization, altitude control and collision
avoidance) is reflected in a low computational cost, no use of

 at Eidgenoesische on May 31, 2010 http://ijr.sagepub.comDownloaded from 

http://ijr.sagepub.com


770 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / July 2007

Fig. 13. Free flight traces of the UAV in our test room. Example of a one minute trace of the UAV flying autonomously controlled
by our neural model. The trace represents the position of the UAV, the arrows are the compensatory course stabilization forces
generated by the model, and the intensity coded dots represent the activity from the LGMD collision detection model. The dots
are only present when the LGMD activity � 0, the intensity is proportional to the firing rate.

additional memory or any training period. Moreover, the prop-
erty of extracting optic flow from the image via correlations
makes this system very robust in terms of its independence on
the textures of the surfaces it encounters as long as any visual
cue is present (Hengstenberg 1982).

Our experiments demonstrated the performance of the dif-
ferent model components separately as well as in combina-
tion applied to a UAV under a range of conditions, including
the absence of one propeller. As the conditions become worse
and the UAV does not respond as was expected (biased mo-
tor control), the percentage of time invested in compensating
course drifts increases, going from 60% of the time under ideal
conditions up to 70%. The increase of compensatory motor
commands results in a considerable decrease in the speed of
the UAV, this being 0.62 m/s for unbiased motor control and
0.23 m/s for biased control. However, the insect-based mod-
els adapt to each situation and are able to generate a straight
course with a mean off-course deviation of no more than about
7�. Furthermore, the altitude control system allows us to keep
a constant altitude with a standard deviation value of only 0.1
m, i.e. about 20% of the size of the device. However, the mo-
tion sensitive cells we model are specifically tuned to respond
maximally at a given speed (equation (10)), suggesting that
a combination of EMDs tuned to different speeds would also
provide a speed invariant response.

The presented LGMD collision avoidance model has been
characterized for a range of speeds and is able to reliably pre-
dict an imminent collision (�1.7 m distance). We have shown
that it can be successfully applied to flying robots with speeds
of up to 1 m/s. This model allows us to detect collisions at a
prudent distance from the obstacle, being a good candidate to

be applied in relatively fast robots or where the environmental
conditions do not permit a fast response (underwater or aerial
vehicles).

Other behaviorally similar collision avoidance models have
recently been proposed to explain the behavior of the saccades
of the fruit fly Drosophila Melanogaster, which are triggered
in order to avoid collisions (Tammero and Dickinson 2002),
but these have so far never been implemented. A very simi-
lar approach to the one proposed here was implemented on an
aVLSI chip and has been evaluated using a terrestrial robot
(Harrison 2005).

The correlation values obtained support the similarity be-
tween our LGMD model and its biological counterpart. How-
ever, the specific connectivity of the LGMD is not yet well
defined, and it is not clear whether motion sensitive neurons
could provide the main excitatory input to this neuron. The ba-
sic structure of the LGMD is known since the 1970s (Rowell
1971), but so far there is no evidence of what the connectivity
with its pre-synaptic layers is. Therefore we don’t know yet
what information is used and processed by the LGMD, and
where its sensitivity to looming exactly comes from. Hence,
there are still a number of issues to be studied, like the par-
ticular non-linear properties of the LGMD found that was re-
cently reported (Gabbiani et al. 2002�Hatsopoulus et al. 1995),
its concrete pre-synaptic connectivity and whether the EMD
type of neuron is a valid model for the neurons previous to
the LGMD in the Medulla layer. Our model leads to quantita-
tively and qualitatively similar results to the ones obtained by
experiments on the locust (Hatsopoulus et al. 1995� Gabbiani
1999� Gabbiani et al. 2001� Gabbiani et al. 2002), suggesting
that both could be based on the same principles. Our model
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is unique in the sense that we have shown that the principles
underlying the LGMD detection system can both match the
physiology of this system and reliably control a flying vehicle.
In addition, in our approach we present realistic task specific
insect-based models that allow a blimp based UAV to perform
successful course stabilization, altitude control and obstacle
avoidance.

Many different UAV systems are in use and small heli-
copter-based UAVs might be more appealing than blimp-based
ones, but these do require the experimenter to deal with a num-
ber of additional handicaps. Model-sized helicopters have a
short flight time and the time constants describing their dy-
namics are very short. Therefore, due to the difficult dynam-
ics, these devices are unstable and tremendously demanding on
the flight control side. This means that in order to solve basic
navigation problems one is obliged to resort to inertial sensors
(Skafidas 2002� Musial et al. 2000). The fact that some plat-
forms require the use of specific sensors for basic navigation
tasks implies that methods or systems must be developed to
process their data and perform the actual control task. A dirigi-
ble type platform is a good compromise between the complex-
ity of a helicopter based UAV and the oversimplification that
accompanies the use of ground based robots. Some attempts
to control blimp-based UAVs without specialized sensors use
optimization approaches such as evolutionary algorithms and
hence require a considerable training period to adapt to the
environment (Zufferey et al. 2002). In Iida (2001), an EMD-
based system used for stabilization is also used for obstacle
avoidance, trying to compensate the asymmetries of the optical
flow when an agent is getting close to a wall. Therefore, it is
avoiding collisions since it tries to maintain the UAV flying at
the same “apparent distance” from the reference walls. The im-
mediate engineering or biological relevance of this approach,
however, is not obvious.

Our results show for the first time that the neuronal princi-
ples of flight control found in insects can be successfully gen-
eralized to the control of a flying robot. This generalization
is robust and also computationally efficient. Our flight con-
trol system is part of a larger model that also includes mecha-
nisms for chemical search and localization based on the moth
pheromone communication system (Pykk et al. 2006). This bi-
ologically based flight control system will be used to control
a fleet of autonomous UAVs with chemo-sensing capabilities
for environmental monitoring. As such our approach shows the
synergy that can be found between the life sciences and en-
gineering where we use robotic technology to understand the
brain while using the acquired insights to construct novel real-
world technologies.
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